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There is emerging evidence that individuals with drug addiction have dysfunctions in brain
systems that are important for interoceptive processing, which include, among others,
the insular and the anterior cingulate cortices. These individuals may not be expending
sufficient neural resources to process perturbations of the interoceptive state but may
exert over-activation of these systems when processing drug-related stimuli. As a conse-
quence, insufficient detection and processing of interoceptive state changes may result in
inadequate anticipation and preparation to adapt to environmental challenges, e.g., adapt
to abstinence in the presence of withdrawal symptoms. Here, we integrate interoceptive
dysfunction in drug-addicted individuals, with the neural basis for meditation and exercise
to develop a heuristic to target the interoceptive system as potential treatments for drug
addiction. First, it is suggested that mindfulness-based approaches can modulate both inte-
roceptive function and insular activation patterns. Second, there is an emerging literature
showing that the regulation of physical exercise in the brain involves the insula and anterior
cingulate cortex and that intense physical exercise is associated with a insula changes that
may provide a window to attenuate the increased interoceptive response to drug-related
stimuli. It is concluded that the conceptual framework of interoceptive dysfunctions in
drug addiction and the experimental findings in meditation and exercise provide a useful
approach to develop new interventions for drug addiction.
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INTEROCEPTIVE DYSFUNCTION IN DRUG ADDICTION
Interoception comprises receiving, processing, and integrating
body-relevant signals together with external stimuli to affect moti-
vated behavior (1, 2). This process fundamentally affects the
degree to which individuals approach or avoid drugs of abuse
(3). Different conceptualizations of interoception have included
its definition as the state of the individual at a particular point
in time (4), or as the sensing of body-related information in
terms of awareness (5), sensitivity (6), or accuracy of the sens-
ing process (7). Interoception provides an anatomical framework
for identifying pathways focused on modulating the internal state
of the individual. This framework comprises peripheral receptors
(7), c-fiber afferents, spino-thalamic projections, specific thalamic
nuclei, posterior and anterior insula as the limbic sensory cortex,
and anterior cingulate cortex (ACC) as the limbic motor cortex
[for reviews, see Ref. (8, 9)]. Central to the concept of intero-
ception is that body-state relevant signals comprise a rich and
highly organized source of information that affects how an indi-
vidual engages in motivated behavior. Importantly, interoception
is linked to homeostasis (10), which implies that an individual’s
motivated approach or avoidance behavior toward stimuli and
resources in the outside world is aimed at maintaining an equi-
librium. For example, a person will approach a heat source in a
cold environment but will avoid it when the ambient temperature
is high.

The insular cortex is a complex brain structure, which is
organized macroscopically along an anterior-posterior (1) and
superior-inferior axis (11) and microscopically as granular, dys-
granular, and agranular from posterior to anterior insula, respec-
tively (12, 13). The anterior cluster is predominately activated
by effortful cognitive processing, whereas the posterior region is
mostly activated by interoception, perception, and emotion (14).
Moreover, the anterior insula, potentially together with the ACC,
appears to pivotally influence the dynamics between default-mode
and executive control networks (15). The insula is thought to be
the central nervous system hub for interoceptive processing such
that somatosensory relevant afferents enter the posterior insula
and are integrated with the internal state in the mid-insula, and
re-represented as complex feeling states within the anterior insular
cortex. Although there has been some debate, a recent meta-
analysis suggests that the anterior insula is critical and necessary
for emotional awareness (16).

The ACC has been labeled the limbic motor cortex by some (9)
for review, see Ref. (17), and is thought to be the critical interface
between cognitive and emotion processing (18). In particular, Von
Economo neurons, which are projection neurons located in layer V
within the ACC and frontoinsular cortex, have been implicated in
the integrative function of the ACC (19). However, whether differ-
ent parts of the ACC are involved in distinct processes and whether
these processes are segregated for different functions is still highly
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debated. On the one hand, several investigators have proposed
an anatomically based topography of the ACC consisting of sub-
genual, pregenual, and anterior mid-cingulate cortex, which are
cytoarchitecturally distinct and have different connectivity with
other brain structures (20). In particular, whereas the rostral ACC
(comprising both sub- and pregenual ACC) is important for emo-
tional processing, the dorsal or mid-cingulate cortex is thought to
implement cognitive control and emotion regulation (21). How-
ever, there is also considerable overlap between the “cognitive”
division of the ACC and the mid-cingulate area that processes
pain and fear (20). This overlap is consistent with the idea that
dorsal-caudal regions of the ACC and medial prefrontal cortex are
involved in appraisal and expression of negative emotion (22). On
the other hand, based on a meta-analysis of imaging studies, some
investigators have proposed that negative affect, pain, and cog-
nitive control activate an overlapping region within the anterior
mid-cingulate cortex, which can be thought of as a hub that links
reinforcers to motor centers responsible for expressing affect and
executing goal-directed behavior (23). In particular, it has been
proposed that the ACC supports the selection and maintenance of
extended, context-specific sequences of behavior directed toward
particular goals that are learned through a process of hierarchical
reinforcement learning (24). This generalized view of ACC func-
tioning is consistent with the proposal that this structure, among
other functions, orchestrates approach or avoidance behaviors in
response to particular internal body states that involve homeo-
static perturbations (25). This function of the ACC is supported
by the strong functional (26) and anatomical (27) connections
between the anterior insula and the ACC. This systemic view is
also aligned with a prediction error based conceptualization of the
specific computational processes that may be carried out within
this structure. For example, a special population of neurons in the
ACC seems to fire with positive and negative value information
during the decision phase using a unified encoding scheme, which
is based on reward prediction errors (28). Others have argued that
the ACC encodes salient prediction errors for appetitive and aver-
sive stimuli (29). Finally, activation in the rostral ACC correlates
with a belief-based prediction error, which is driven by the discrep-
ancy between the anticipation and action of others (30). Taken
together, the ACC receives information about the individual’s cur-
rent state as well as the expected state, and computes various types
of error signals that help to establish the selection of an action that
is optimally adapted to the higher order goal state.

We have previously hypothesized that individuals who are at
risk for drug addiction or who have developed addiction show
altered interoceptive processing (31). In particular, individuals
who show attenuated processing of internal body states may be
at higher risk for substance dependence because these individuals
are not able to utilize “body states” to guide their decision-making
(32). There has been some evidence that neural substrates process-
ing body-relevant information and their associated neural circuits
play an important role in drug addiction (33, 34). Individuals take
substances to feel better or to avoid feeling worse. The positive
and negative reinforcing aspects of drugs of abuse have given rise
to a tremendous insight into the behavioral processes (35, 36),
neural systems (37, 38), and molecular mechanisms (39, 40) of
drug addiction. In comparison, the interoceptive framework is

much less developed and needs further empirical validation. We
have conceptualized that an individual’s motivation to approach
or avoid a stimulus, including drugs of abuse, results from a
brain-generated body prediction error (31, 41–43), i.e., the dif-
ference between the experienced and the expected internal state
of the individual. In particular, we have argued more recently that
optimal behavior emerges from a computational process involv-
ing probabilistic representation of belief states in the context of
partially observable Markov decision processes (44). In this con-
text, body prediction error is evaluated within the context of the
individual’s belief about external stimuli and their relevance for
specific outcomes. For example, when considering a choice of
engaging in risky behavior, individuals with substance use dis-
orders may not appropriately engage the insular cortex to signal
the potential aversive outcome. On the other hand, seeing a cue
that has previously been associated with drug-taking behavior
may generate a large insula response and provide overwhelming
approach behavior manifested in cravings and the urge to use.

There is emerging evidence of insula dysfunction across differ-
ent groups of substance dependent individuals. Yet, it is important
to not engage in excessive inverse inference and conclude that
because there is evidence for insula dysfunction, this dysfunction
extends to interoceptive processing. It is more likely that interocep-
tion is one among various processes that are altered in these popu-
lations. Specifically, exposure to nicotine-related stimuli increases
blood flow in a large network, including the insular cortex (45) and
smokers when not smoking (46) and when anticipating to smoke
(47) show greater anterior insula activation. In addition, recently
abstinent smokers who were more likely to relapse also showed
greater insula and ACC activation to smoking-related images (48).
Finally, smokers with higher levels of nicotine dependence showed
enhanced insula reactivity to smoking-related pictures (49). Sim-
ilarly, acute administration of cannabis increases blood flow (50)
and functional magnetic resonance imaging (fMRI) perfusion
signal (51, 52) in the insula. Several fMRI studies demonstrate
that cannabis users exhibit less activation in the insula during
inhibitory processing (53), which has been linked to reduced error
awareness (54) but, in contrast, show enhanced insular response
to cannabis-related cues (55). In amphetamine users, fMRI stud-
ies show attenuated insula activation in cognitive control (56) and
emotion processing tasks (57) but enhanced response to pharma-
cological agents, such as modafinil, aimed at increasing cognitive
control (58). Moreover, within an amphetamine dependent sam-
ple, attenuated insula activation during a simple decision-making
task was associated with increased propensity for relapse (59). Sim-
ilar to amphetamine, there is evidence for dysfunctional insula
in cocaine dependent individuals. fMRI research demonstrates
attenuated insula activation during an inhibitory task (60) but
enhanced insula response in other tasks such as those involving
monetary reward-related processing (61), stress-related imagery
(62), presentation of cocaine-related cues (63), which is related
to the degree of craving (64, 65). This altered insula reactivity in
these individuals may undergo dynamic changes as a function of
sobriety, e.g., longer periods of abstinence in cocaine dependent
subjects relative to those with fewer days of sobriety showed atten-
uated insula responses during errors on a cognitive control task
(66). Considering the different substance dependent populations,

Frontiers in Psychiatry | Addictive Disorders and Behavioral Dyscontrol October 2013 | Volume 4 | Article 137 | 2

http://www.frontiersin.org/Addictive_Disorders_and_Behavioral_Dyscontrol
http://www.frontiersin.org/Addictive_Disorders_and_Behavioral_Dyscontrol/archive


Paulus et al. Addiction and interoceptive dysfunction

there is consensus that insula reactivity is reduced during cogni-
tive control tasks but enhanced when individuals are exposed to
cues or processes involving reward. This view is consistent with
that expressed by Garavan (67), who stated that “drug craving
may be an example of the anterior insula’s role in interoception
and subjective feeling states,” which is influenced by changes in
general internal states such as satiety (68) as well as top-down cog-
nitive modulation. Moreover, these findings are consistent with
the notion that cue reactivity involves a significant visceral com-
ponent and an urge to act to acquire the drug. In summary,
insula dysfunction and altered interoceptive processing consisting
of either attenuated processing of non-drug stimuli and excessive
processing of drug-related stimuli is emerging as an important
pathological process in addiction (33, 69).

MODULATING INTEROCEPTIVE SYSTEMS
There are several possible approaches to modulate how an indi-
vidual processes and integrates afferent sensing from the inside
of the body. The basic proposition is that altering these processes
will affect the way an individual processes drug-related cues due to
their significant effect on the body state. Here, we will focus on two
strategies, that have been used and for which there is some empir-
ical evidence for their efficacy in treating drug addiction. First, we
will discuss mindfulness approaches, which are aimed at creating
a non-judgmental awareness of the experiences within the body
as a function of events that take place in the person’s life. Second,
we will briefly review the role of physical exercise, which creates
an acute bottom up perturbation of interoceptive processing.

MINDFULNESS APPROACHES
Mindfulness is “the awareness that emerges through paying atten-
tion on purpose, in the present moment, and non-judgmentally to
the unfolding of experience moment by moment” (70). Mindful
awareness is cultivated by providing guided instruction in mind-
fulness meditation practices including breath-focused attention
and body-scanning of sensory experiences. Mindfulness-based
techniques, and in particular, mindfulness-based stress reduction
(MBSR) developed by Jon Kabat-Zinn (71, 72), have been shown
to reduce stress-related sequelae (e.g., self-reported stress, med-
ical symptoms, neuroendocrine changes) associated with chronic
mental health disorders [e.g., Ref. (73, 74)], medical conditions
[e.g., Ref. (75, 76)], and non-clinical populations [e.g., Ref. (77–
79)]. As part of mindfulness training, individuals are trained to
focus their attention and are instructed to return their atten-
tion to their focus point when they become distracted. Thus, it is
not surprising that individuals who undergo meditation training
show improved attention processing (80–83). There is converging
evidence that anatomical (84–87) and functional (88–93) brain
changes are associated with mindfulness training, particularly in
the insula, ACC, and other brain structures such as the prefrontal
cortex. In particular, during pain stimulation, experienced med-
itators show an increased reactivity consisting of low baseline
activity coupled with high response in the anterior insula, which
was related to accelerated habituation within the amygdala (94).
Experienced meditators also show greater gray matter concentra-
tion in the anterior insula (86), which may be the consequence
of attention-related adaptation. Others have shown that degree of

mindfulness training was related to more efficient pain processing
(93), greater inhibitory control (95), greater interoceptive atten-
tion in anterior dysgranular insula, as well as altered functional
connectivity between posterior insula and dorsomedial prefrontal
cortex (96). Taken together, training involving attention modula-
tion and interoception increases the efficiency of the insula and
associated neural systems when processing afferent information.

A growing literature suggests that mindfulness-based
approaches for the treatment of substance use disorders may be
able to reduce the susceptibility to relapse. From a mechanistic per-
spective, these approaches are intended to increase discriminative
awareness, with a specific focus on acceptance of uncomfortable
states or challenging situations without reacting with habitual
affect (97). There is a small number of well-designed clinical trials
and experimental laboratory studies of mindfulness approaches
in smoking, alcohol dependence, and illicit substance use (98).
For example, meditation has been used as an effective adjunc-
tive therapy for relapse prevention in alcohol dependence (99),
smoking cessation (100), and a diverse group of substance depen-
dent individuals (101). In these trials, individuals participating
in mindfulness-based interventions demonstrated significantly
lower rates of substance use and greater decreases in baseline and
negative affect-induced craving (97).

Despite the evidence for the clinical efficacy of mindfulness-
based methods, the specificity of the underlying cognitive and
neural mechanisms is still unclear (102). For example, increased
levels of mindfulness were associated with lower alcohol atten-
tional bias, stress, and craving, as well as greater alcohol-related
self-efficacy (103). Neuroimaging studies indicate greater dor-
solateral prefrontal cortex responses during executive processing
(95) and decoupling of functional connectivity between subgen-
ual ACC and insula when viewing craving-inducing stimuli such
as smoking pictures (104). Finally, there is evidence that cue-
elicited high-frequency heart rate variability may be modulated
by mindfulness and may function as a peripheral marker for
relapse susceptibility (105). On the whole, the effect of mind-
fulness appears to involve brain systems that are important for
interoceptive processing in general, and relapse in particular, and
alters peripheral markers that have been associated with intero-
ceptive processing. Specifically, mindfulness may enhance one’s
ability to adequately process body-state relevant information, i.e.,
improve insula recruitment when experiencing changes in intero-
ceptive afferents, without having to select actions, i.e., engage the
ACC to recruit approach or avoidance behaviors. The relative “dis-
connect” between sensing and acting might result in short-term
relief such that following mindfulness intervention, an individual
may be able to recognize feelings of craving without acting on
them. In other words, the disengagement of motivated action as a
result of interoceptive perturbation may enable the individual to
learn new actions and not engage in habitual drug use behavior.

EXERCISE
There is a growing interest in understanding the neural processes
underlying physical exercise in general and its role in optimizing
levels of physical performance. Several investigators have begun to
delineate which brain processes contribute to athletic performance
(106, 107). The insular cortex has been identified as a component
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of the so-called “central governor,” i.e., the brain systems that
are important for modulating the degree to which individuals
engage in demanding athletic performance (106, 108). Specifi-
cally, increased insular regional cerebral blood flow (rCBF) was
observed during active, but not passive, cycling (109). Further-
more, both the insula and ACC were also found to activate during
imagined exercise (110). Finally, greater insular rCBF was posi-
tively correlated with levels of perceived cycling intensity (111)
and with individual blood pressure changes.

The central governor model is a conceptual approach to deter-
mine how interoceptive afferents influence levels of performance.
In particular, the model focuses on perceived exertion (112), i.e.,
the subjective perception of exercise intensity, as a function of
ongoing exercise (113). Recently this model has been extended
(114) to include a system of simultaneous efferent feed-forward
and afferent feedback signals that are thought to optimize per-
formance by overcoming fatigue through permitting continuous
compensation for unexpected peripheral events (115). Afferent
information from various physiological systems and external or
environmental cues at the onset of exercise can be used to forecast
the duration of exercise within homeostatic regulatory limits. This
enables individuals to terminate the exercise when the maximal
tolerable perceived exertion is attained. In this model, the brain
creates a dynamic representation of an expected exertion against
which the experienced exertion can be continuously compared
(114) to prevent exertion from exceeding acceptable levels. More-
over, the notion of a differential between expected and experienced
exertion parallels our model of the body prediction error (42). For
example, an athlete may utilize the experience of heavy breathing
or heart rate to adjust effort in the presence of external stimuli sig-
naling an upcoming increase in demand. However, Marcora and
colleagues have argued that perceived exertion is generated by a
top-down or feed-forward signal (107), i.e., the brain – not the
body – generates the sense of exertion and proposed that the a
centrally generated corollary discharge of the brain is critical for
optimal effort (116). Moreover, it has been argued that mental
fatigue affects performance via altered perception of effort rather
than afferent and body originating cardiorespiratory and mus-
culoenergetic mechanisms (117). In summary, it is most likely
the brain, not the body, that sets the subjective level of perceived
exertion as a consequence of an interaction between feed-forward
(expectations) and feedback (body-relevant sensing) information,
which maintains a homeostatic state for the individual to be
resilient to physical perturbations. This theoretical formulation
is analogous to the perturbation experienced by a drug dependent
individual when experiencing craving due to conditioned stimuli
that predict availability of drug.

There is an emerging literature on the efficacy and mecha-
nisms of exercise in substance dependent individuals. As recently
reviewed in (118), the beneficial effects of exercise as an adjunct
in treatment of substance use disorders may be due to its ability
to facilitate dopaminergic transmission, normalize glutamatergic
and dopaminergic signaling, and reverse drug-induced changes
in chromatin via epigenetic interactions with brain-derived neu-
rotrophic factor (BDNF) in the reward pathway (118). Acute
exercise reduces alcohol urges (119), cigarette cravings (120, 121),
and daily cannabis use (122). Neuroimaging studies have shown

that relative to a resting condition, individuals undergoing exercise
showed reduced desire to smoke and attenuated brain activation
in limbic areas in response to smoking-related stimuli (120) and
an accompanying increase in default-mode activation (123). How-
ever, the precise cognitive and neural mechanisms that contribute
to the beneficial effects of exercise on drug-taking behavior in indi-
viduals with substance use disorder still await further study. One
possible hypothesis is that the ACC, via repeated engagement of
controlled goal-directed action, is better prepared to respond to
body-relevant information that is initiated by drug-relevant stim-
uli. Thus, in some ways, exercise might also alter cognitive control
mechanisms that are important for drug addiction.

NEURAL BASIS OF INTEROCEPTIVE PLASTICITY AND
TREATMENT IN DRUG ADDICTION
Interoception, particularly its dysfunction in individuals with drug
addiction, provides a conceptual and neural systems framework as
well as various experimental approaches to examine the mecha-
nisms underlying interventions that may be effective in reducing
an individual’s susceptibility to drug use, cravings associated with
exposure to conditioned stimuli, and the ability to select alter-
native behaviors when anticipating aversive states associated with
substance withdrawal. One way to conceptualize the degree of
motivated approach/avoidance behavior in the context of drug
addiction is to view the emerging behavior as a consequence of
a homeostatic adjustment to a body prediction error (31, 41–
43), i.e., the difference between the experienced and the expected
internal state of the individual. However, the simple difference
between an experienced and expected body state does not explain
opposing insular cortex effects in different task settings in sub-
stance use populations. We have proposed that optimal behavior
emerges from a computational process involving probabilistic rep-
resentation of belief states (44). Here, body prediction error is
evaluated within the context of the individual’s belief about exter-
nal stimuli and their relevance for specific outcomes. Specifically,
seeing a drug-related cue may generate a large insula response
and provide an overwhelming urge to engage in drug seeking
behavior. This view of the differential contribution of the inte-
roceptive afferents to motivated behavior is consistent with the
multi-modal connections of the insula with other brain areas.
These modulatory influences may ultimately determine whether
an “embodied” state is (a) amplified and experienced, (b) con-
tributes to ongoing behavior, and (c) becomes a target for the
cognitive control system to modulate its influence. This concep-
tual approach, although based on an interoceptive heuristic, also
involves computational processes that are clearly within the realm
of cognitive control, e.g., the facilitation or inhibition of compet-
ing responses. Thus, this approach is not inconsistent with the
notion of cognitive control dysfunctions in addiction (124, 125)
and should be seen as complementary, i.e., similar to the notion
of embodied cognition (126).

Both meditation and exercise can be viewed as systematic
approaches to alter the way approach/avoidance behavior emerges
from a body prediction error. For example, it appears that elite ath-
letes, which have undergone extensive physical exercise have the
ability to use predictive signals to modulate the insula response
to an aversive interoceptive perturbation (127). Similarly, others
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have shown that meditation alters the influence of the dorso-
medial prefrontal cortex on insula activation in response to an
interoceptive awareness task (96). Together, these findings point
toward the plasticity of the neural substrates that are important
for interoceptive processing. Practically speaking, meditation and
exercise may modulate the interoceptive circuitry by altering the
way the individual processes stimuli that are predictive of an
altered homeostasis, e.g., smoking cues or the emergence of a sub-
stance withdrawal state, and enables one to engage in alternative
behaviors. Moreover, exercise helps to optimize complex goal-
directed behaviors, which may train the ACC to computer more
appropriate value signals. Meditative approaches highlight the
influence of pre-existing belief systems on the evaluation of con-
ditioned stimuli and may thereby alter the computational process

involving probabilistic representation of belief states as proposed
previously (44). Practically, this may optimize behavioral choices
in the context of goal states that are associated with an imme-
diate reward but long-term aversive consequences. Nevertheless,
future experimental approaches will need to examine whether this
conceptualization adequately describes the restricted behavioral
repertoire observed in individuals with substance use disorders.
Finally, many open questions remain regarding the mechanisms of
meditation and exercise on the neural systems that are important
for recovery from substance use disorders. Overall, the conceptual
framework of interoceptive dysfunctions in drug addiction and
the experimental findings in meditation and exercise provide a
useful approach to use neuroscience to develop new interventions
for drug addiction.
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