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In the recent decades, a paradigmatic change in psychosis research and treatment shifted
attention toward the early and particularly the prodromal stages of illness. Despite sub-
stantial progress with regard to the neuronal underpinnings of psychosis development,
the crucial biological mechanisms leading to manifest illness are yet insufficiently under-
stood. Until today, one significant approach to elucidate the neurobiology of psychosis has
been the modeling of psychotic symptoms by psychedelic substances in healthy individ-
uals. These models bear the opportunity to evoke particular neuronal aberrations and the
respective psychotic symptoms in a controlled experimental setting. In the present paper,
we hypothesize that experimental psychiatry bears unique opportunities in elucidating the
biological mechanisms of the prodromal stages of psychosis. Psychosis risk symptoms
are attenuated, transient, and often only retrospectively reported. The respective neuronal
aberrations are thought being dynamic. The correlation of unstable psychopathology with
observed neurofunctional disturbances is thus yet largely unclear. In modeling psychosis,
the experimental setting allows not only for evoking particular symptoms, but for the con-
comitant assessment of psychopathology, neurophysiology, and neuropsychology. Herein,
the glutamatergic model will be highlighted exemplarily, with special emphasis on its poten-
tial contribution to the elucidation of psychosis development. This model of psychosis
appears as candidate for modeling the prodrome by inducing psychotic-like symptoms in
healthy individuals. Furthermore, it alters pre-attentive processing like the Mismatch Nega-
tivity, an electrophysiological component which has recently been identified as a potential
predictive marker of psychosis development. In summary, experimental psychiatry bears
the potential to further elucidate the biological mechanisms of the psychosis prodrome. A
better understanding of the respective pathophysiology might assist in the identification
of predictive markers, and the development of preventive treatments.

Keywords: experimental psychiatry, psychosis modeling, PCP/NMDA, mismatch negativity, clinical high-risk,
prodrome, schizophrenia

INTRODUCTION
Since more than 10 decades, researchers aim at understanding
the neurobiological mechanisms of psychosis. Concomitant with
the debut of modern nosology in the late nineteenth century,
almost all pioneer thinkers of psychiatry provided theoretical
models regarding the underlying biological mechanisms of psy-
chosis even though the experimental techniques at the time did
not allow for any empirical evidence. The paradigmatic claim that
“all mental disorders are brain disorders”dates back to Griesinger’s
works (1). Later on, Kraepelin, the ancestor of modern nosol-
ogy, proposed that “dementia praecox” originates in a misdirected
neurodevelopment and insisted on the idea that psychosis is iden-
tical to a brain disease (2). Bleuler, who gave birth to the name
“schizophrenia,” provided a sophisticated theoretical model of
disrupted neural association networks contributing to the schiz-
ophrenic Grundsymptome (3). In this tradition, one of the last
hypotheses can be found in the seminal works of the German
psychiatrist Gerd Huber, who proposed an elaborated model to
trace back subtle psychopathological changes to neurofunctional

disturbances of the limbic system (4, 5). Although not all hypothe-
ses of that kind led to fruitful insights, the increasingly elabo-
rated methods of biological psychiatry partially provided empir-
ical evidence for some models in demonstrating, e.g., reductions
in brain volume (6), functional aberrations of association cor-
tices (7), and limbic neuropathology (8), thereby justifying the
modeling approach as one primary route to guide empirical and
experimental work.

However, the empirical work characterized above necessarily
represents a kind of “backwards engineering.” Always starting
from phenomenology, biological psychiatry is principally condi-
tioned to a verification/falsification dichotomy regarding the pri-
mary hypothesis. Thus, this backwards approach is limited by the
demarcations given by psychopathology and phenomenological
nosology.

In this regard, experimental psychiatry, understood as the mod-
ern continuation of ancient theoretical modeling, provides a com-
pletive approach to the elucidation of the biological mechanisms
of psychosis. The experimental evocation of a psychotic syndrome
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by psychedelics allows for forward predictions on neurofunc-
tional, cognitive, and psychopathological changes (9). Following
this route, experimental psychiatry allows for tracing forwards
the consequences of targeted manipulations of neurochemical
pathways and for the subsequent comparison with empirical and
phenomenological findings.

The birth of experimental psychiatry dates back to the semi-
nal studies of Luby and colleagues (10) who demonstrated that a
“schizophrenomimetic” drug evokes psychotic symptoms resem-
bling schizophrenia in healthy individuals (10). Following this
approach, Domino et al. were able to evoke comparable symp-
toms in healthy persons by applying the “dissociative” phency-
clidine (PCP)-derivate ketamine (11). In the sequel, empirical
findings on the neurochemical features of N -methyl-d-aspartate
receptor (NMDAR) antagonists as PCP and ketamine first sup-
ported the dominating hypothesis of dopamine hyperfunction
in schizophrenia (11). However, further evidence demonstrating
that N -methyl-d-aspartate (NMDA) antagonists critically interact
with various regulatory mechanisms of corticolimbic functions
that are relevant to schizophrenia led to the establishment of the
glutamate hypothesis (11). This hypothesis implies that NMDA-
mediated dysfunctions play a critical role not only in dopaminergic
regulation, which has been reconceptualized as the final com-
mon pathway to psychosis, but particularly predict impairments
in cortical, sensory, and associative brain regions that contribute
to cognitive and negative symptom dimensions (9). Today, it is
widely accepted that the glutamate/NMDA pathway represents a
discrete pathophysiological aspect of schizophrenia (9, 12, 13).

However, a yet widely neglected aspect of experimental psychi-
atry represents its potential contribution to the understanding of
psychosis development and pre-psychotic, i.e., prodromal stages
[but see Ref. (14, 15)]. This aspect, however, may be of particular
interest since the neurobiological mechanisms at the very first, sub-
clinical beginning of psychosis development are yet insufficiently
understood (16). Thereby, experimental psychiatry may signifi-
cantly contribute to the identification of targets for preventive
treatments.

In the present review, we aim to investigate if and how exper-
imental psychiatry may further elucidate the biological mecha-
nisms of the psychosis prodrome. Thereto, we will firstly give a
short overview on the crucial psychopathological, neurocogni-
tive, and neurofunctional findings in the prodrome with special
emphasis on neural information processing [functional magnetic
resonance imaging (fMRI), electrophysiology]. Secondly, we will
exemplarily focus on the well established PCP/NMDA model of
psychosis and its potential to mimic the psychosis prodrome.

METHODS
We carried out a computer search of the MEDLINE database.
No limits were set regarding the publication date. We used the
following Medical Subject Heading (MeSH) categories: (1) (PCP
OR NMDA) AND (psychosis OR schizophrenia), (2) [prediction
OR ultra-high-risk (UHR) OR clinical high-risk OR at-risk men-
tal state (ARMS) OR basic symptoms (BS)] AND [psychosis OR
schizophrenia], and (3) [neurocognition OR cognition OR fMRI
OR P50 OR N100 OR sensory gating OR mismatch negativity

(MMN) OR P300] AND [UHR OR prodrome] AND [psychosis
OR schizophrenia]. Studies on PCP/NMDA were restricted to
human subjects. With regard to the psychosis prodrome, studies
were included if current at-risk criteria (COPER/COGDIS, UHR)
were employed in the respective studies.

THE PSYCHOSIS PRODROME
PSYCHOPATHOLOGY
The prodrome of psychosis is at first a phenomenological concept.
It originates in the observation that mental disorders, and partic-
ularly schizophrenia, mostly do not appear at a sudden. In general,
manifest psychosis represents the severe end of a long-term devel-
opment in which subtle psychopathological changes appear years
before a diagnosis can be validly made (17). Since full-blown
psychosis represents a severe disorder with critical long-term con-
sequences, the establishment of prediction and prevention based
on prodromal signs of psychosis has become a main goal of clin-
ical research. However, although early clinical signs of psychosis
development can validly be traced backwards after an individual
has already developed full-blown psychosis, the forward prediction
of transition to psychosis is difficult and the respective approaches
bear substantial uncertainty regarding their predictions (18, 19).
In sum, two predictive approaches are currently implemented.

The BS approach points to subtle, subjectively experienced
changes of mental functions that are thought to mark the earliest
stages of psychosis development (20, 21). Empirical research has
led to two well-defined criteria, pointing either to a collection of
highly predictive cognitive and perceptive disturbances (COPER)
or to predominantly cognitive disturbances (COGDIS), respec-
tively (22). Subjects qualifying for the COPER criterion developed
psychosis in 34.9% within 11 months on average (range 1–37,
median 9 months) (23).

The currently most widely used clinical criteria of psychosis
prediction point to so called UHR symptoms that are thought to
mark the latest stages of psychosis development (24, 25). Accord-
ing to this approach, either attenuated psychotic symptoms or
brief, spontaneously remitting psychotic symptoms or a genetic
liability in combination with an actual loss of functioning indicate
a markedly increased risk for an imminent onset of full-blown
psychosis (26). Transition rates in samples identified by the afore-
mentioned criteria amount to 30% on average within the available
observation periods (27).

Taken together, the prediction of psychosis development based
on clinical criteria inherits significant uncertainty, as mirrored by
non-conversion rates of more than 50%, at least within feasible
observation periods (27). This observation has led to a paradigm
shift in that the aforementioned criteria are thought to identify a
“risk-state”probably leading to psychosis rather than a“prodrome”
mandatorily leading to manifest psychosis (17).

Although the prospective identification of individuals making
the transition to full-blown psychosis thus faces major chal-
lenges, it is undoubted that the prodromal development com-
monly starts from subtle changes in perception and cognition
and ends up with attenuated and transient psychotic symptoms,
respectively, at the verge of manifest psychosis (28). Furthermore,
even though not highly predictive of the further course, negative
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symptoms appear at very early stages of the prodromal devel-
opment, thereby even preceding (pre-)psychotic symptoms (29).
Besides psychopathology, however, recent research has suggested
that the prodrome can also be validly characterized on other
domains, i.e., neurocognition and neurofunctioning (28).

NEUROCOGNITIVE FINDINGS
A huge number of studies demonstrated neurocognitive deficits in
individuals at-risk and prodromal subjects, respectively. In partic-
ular, studies focusing on working memory, executive functions and
verbal fluency/learning were able to provide discriminative statis-
tics for the prospective identification of future converters (30–37).
Thereby, investigations employing language based tasks demon-
strated that verbal fluency deficits precede psychosis onset up to
30 months (30), and that disturbances of working memory can be
found up to 64 months prior to psychosis (31). Executive dysfunc-
tions in the prodrome comprise attention and processing speed
which appear as well years before psychosis onset (32, 33, 35, 37).

NEUROFUNCTIONAL FINDINGS
Regarding fMRI investigations, yet two studies compared fMRI
correlates of neurocognitive functions in converters (i.e., pro-
dromal subjects) to non-converters. Sabb et al. demonstrated a
higher activation of temporal lobes, the frontal operculum, the
left precentral gyrus, the caudate, and striatal regions of future
converters during the semantic logic condition of a language pro-
cessing task (38). Allen et al. demonstrated an increased activation
in future converters, too, with regard to the left superior frontal
gyrus, the middle frontal gyrus, parts of the brainstem, and the left
hippocampus in a verbal fluency task (39). Taken together with
suggestions of a gradual decline in frontal and striatal activation
from the clinical risk state to chronic psychosis (40, 41), partic-
ularly regions contributing to language processing seem to be
involved in prodromal stages (28). Progressive structural changes
during transition to psychosis have been found in the superior
temporal gyrus (42).

Regarding electrophysiology, the prodrome seems to be charac-
terized by neuronal disturbances in sensory processing domains.
Ziermans and colleagues investigated the Pre-Pulse Inhibition
(PPI), a startle response, and suggested a differential deficit in
converters vs. non-converters (43, 44). Sensory gating measures
(P50/N100) seem to be less relevant to the prodromal devel-
opment since two out of three studies did not find significant
differences between converters and non-converters (45–47). The
P3 amplitude, which correlates to memory and attentive processes,
has been demonstrated to be exclusively disturbed in future con-
verters by one study (48). Of the published studies evaluating
the MMN, a correlate of pre-attentive stimulus discrimination
presumably sensitive to the stage of illness (49–54), the major-
ity consistently demonstrated MMN deficits in future converters
but not in non-converters (55–60). Bodatsch et al. and later on
Perez et al. provided evidence that MMN amplitude deficits pre-
dict psychosis onset and allow for an estimation of the remaining
time until transition (55, 61). Taken together, correlates of sensory
processing and pending higher order functions indicate significant
disturbances of neural information processing that may character-
ize the prodrome (28). Thereby, the MMN might be of particular

interest regarding future research (62, 63) and early intervention
strategies (64).

THE PCP/NMDA MODEL OF PSYCHOSIS
PCP/NMDA AND PHARMACOLOGY
Phencyclidine is a non-competitive antagonist of the NMDA gluta-
mate receptor (NMDAR) (65). Comparable substances are MK801
and ketamine, respectively (66). The binding of PCP at the recep-
tor is state dependent, thereby limited to the open channel state,
and shows stereo-selectivity (67, 68). Other channels that can be
blocked by PCP are voltage-dependent sodium and potassium
channels as well as, with different binding features, the nico-
tinic acetylcholine receptor (69–71). Interactions with membrane
proteins have been identified with regard to opioid receptors,
dopamine, and noradrenaline transporters, respectively (72–74).
However, the main action site seems to be the NMDAR, since all
other effects are less potent and only of minor importance in the
clinically relevant doses of PCP (66).

Since NMDA antagonists have been demonstrated to produce
schizophrenia-like symptoms,clinical investigations aimed at eval-
uating the potential therapeutic benefit of glutamatergic agonists
(75). Studies investigating naturally occurring agonists employed
glycine, d-serine, and d-alanine, respectively (75). The results
demonstrate that the combination of one of these agonists with an
antipsychotic leads to significant improvements in positive, neg-
ative, and cognitive symptom ratings (76–82). In particular, two
studies provided preliminary evidence that glycine might lead to
partial symptom remission in subjects clinically at-risk of develop-
ing psychosis (83). Furthermore, it has been demonstrated that the
glutathione precursor N -acetyl-cysteine improves MMN deficits
in schizophrenia patients (84).

PCP/NMDA AND PSYCHOPATHOLOGY
Since PCP has first been described as “schizophrenomimetic”
in the first publications on that topic (10), subsequent research
has been able to quantify the respective positive, negative, and
cognitive symptoms by psychopathological rating scales (9, 75).
Krystal et al. (85) demonstrated that ketamine produces behav-
ior similar to schizophrenia as assessed with the Brief Psychiatric
Rating Scale (BPRS) (85). Moreover, individuals suffering from
schizophrenia display increases in positive and negative symptom
ratings after administration of NMDA antagonists (85, 86). Taken
together, the psychopathological observations suggest that NMDA
antagonists affect a brain system that is vulnerable to psychotic
experiences (9, 75).

However, positive symptoms provoked by ketamine adminis-
tration have been demonstrated being less severe as those observed
in clinical psychosis (85–87). Moreover, some psychopathological
characteristics of clinical psychosis seem to be underrepresented in
the PCP/NMDA model since, e.g., hallucinations are relatively rare
in experimental psychosis (85, 86). However, perception distor-
tion is a typical symptom after ketamine administration (85, 86).
In particular, ketamine affects the intensity and integrity of sen-
sory stimuli (85, 88), and salience (85, 88–90), respectively. In turn,
negative and disorganized symptoms as alogia and formal thought
disorder, respectively, represent specific psychopathological effects
of ketamine (91–93).
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PCP/NMDA AND COGNITION
N -methyl-d-aspartate antagonists have been demonstrated to
produce a wide range of cognitive deficits. Cognitive functions that
can be addressed by ketamine comprise predominantly working
memory and executive processing (85, 86, 88, 92–96). Moreover,
particular performance deficits after administration of subanes-
thetic doses of ketamine have been shown for learning/cognitive
flexibility and verbal fluency (87), which corresponds to the clin-
ical observation of poverty of speech and circumstantiality after
ketamine administration (9). The cognitive deficits produced by
NMDA antagonists seem to be rather specifically comparable to
schizophrenia, since, e.g., a dissociation between disturbed learn-
ing ability but intact ability to retain material once learned can
be observed in schizophrenia as well as after administration of
NMDA antagonists (9, 75, 97).

Taken together, studies demonstrated particularly the induc-
tion of working memory impairments and verbal fluency dysfunc-
tion in healthy volunteers. These deficits have been pinpointed
to ketamine-induced dysfunctions of frontal and temporo-
hippocampal parts of the brain (87).

PCP/NMDA AND NEURAL INFORMATION PROCESSING
Deficits in information processing have been reliably demon-
strated across methods in schizophrenia. NMDA antagonists have
been demonstrated to induce changes in surrogate markers of
neural information processing in terms of behavioral and perfor-
mance changes (9, 15, 75, 87). Furthermore, disturbances of infor-
mation processing have directly been observed by neurofunctional
measures after NMDA antagonist administration. Schizophrenia-
like deficits in MMN generation can be induced by local applica-
tion of NMDA antagonists as well as by systemic administration in
healthy individuals (98–102). In contrast, MMN is not modulated
by serotonergic or dopaminergic agonists (103, 104). In turn, other
brain potentials, e.g., P300, are significantly affected by adminis-
tration of other psychotomimetic drugs as psilocybin (105). In
normal volunteers, however, reduced MMN amplitudes predict
susceptibility to ketamine-induced psychosis (98). In schizophre-
nia, deficits in pre-attentive tone matching might lead to distur-
bances of higher order functions as the detection of prosody and
auditory emotion recognition (9). In turn, in contrast to the results
obtained in animal experiments, NMDA antagonists enhance PPI
and startle magnitude (106, 107).

With regard to brain imaging studies, it has been demonstrated
that ketamine affects metabolic activity in frontal areas, the cin-
gulum, and the thalamus, respectively (90, 108). Furthermore,
ketamine induces an increased dopamine release in the striatum
of healthy volunteers (109).

DISCUSSION
PCP/NMDA AND THE PRODROME
The PCP/NMDA model of psychosis has been demonstrated to
be particularly suited to mimic certain aspects of psychosis (9, 11,
75, 87). These aspects straddle basic neurophysiological aberra-
tions as well as neurocognitive and psychopathological features.
The psychopathological symptom patterns observed after NMDA
antagonist administration have been shown to be largely compa-
rable to clinical psychosis (85, 86). Cognitive deficits produced by

NMDA antagonists can similarly be found in schizophrenia (85,
86, 92, 93, 96). Deficits in neurophysiological measures that have
been conceptualized as an endophenotype of psychotic disorders
have been specifically evoked by the NMDA antagonist ketamine
(98, 99).

Although experimental psychiatry has thus proven its ability
to advance the neurobiological understanding of schizophrenia, it
still faces many criticism. The neurofunctional and psychopatho-
logical changes, respectively, evoked in an experimental setting lack
many aspects of clinical psychosis (11). Furthermore, experimen-
tal psychiatry falls short of modeling the complex brain network
disturbances that underlie schizophrenia (11). The evoked changes
are moreover transient, thus not able to mimic long term, recip-
rocal neurodynamics, and represent in sum only partial aspects
of the pathophysiological picture. However, mimicking the vast
complexity of psychosis in general or schizophrenia in particular
shall certainly not be the goal of experimental psychiatry (11).
At the foremost, such a modeling approach would distract any
well-defined forward predictions. Instead, experimental psychia-
try should aim at providing insights in the effects of particular
synaptic functions in psychosis (11).

However, it has yet been almost neglected that particularly these
alleged imitations of such models provide some unique oppor-
tunities in themselves. Psychosis models promoted our under-
standing of the crucial pathophysiological features of clinical
psychosis. Since the prodrome represents “early psychosis,” it can
be assumed that the neurobiological properties of the prodrome
are at large the very same as in full-blown psychosis, merely at
an earlier stage. However, the phenotype of manifest psychosis
results not only from the latest differentiation of certain neu-
robiological alterations, but represents a complex interplay of
accumulating developmental factors and progressive pathophysi-
ological changes. This pathophysiological progression defines the
later stages of psychosis and makes them distinct from their clin-
ical and biological precursors (110). For example, the pattern of
MMN deficits in later stages of schizophrenia has been demon-
strated to be different from the early and particularly prodromal
stages (111). From a clinical perspective, neurobiological factors
at early stages of illness might inform primarily about disease
trajectories and prognosis, whereas factors at later stages might
inform foremost about persistent pathophysiological mechanisms
(110). Experimental modeling of the pre-psychotic stages might
thus assist to understand the crucial neurobiological pathways that
turn the spontaneously remitting clinical high-risk state into a
prodromal development, although these states are clinically indis-
tinguishable (28, 55). However, although models that explicitly
address the prodrome of psychosis are yet to come, the existing well
established models of psychosis may already provide opportunities
for research in this respect.

In synopsis of the literature, the PCP/NMDA model of psy-
chosis displays some properties that brings it close to the pro-
dromal stages of psychosis (see Table 1 for overview). As in the
clinical at-risk state, the produced symptoms might resemble in
large parts the full-blown psychotic symptomatology (85, 86),
but are, however, transient like at least in some high-risk con-
ditions (brief limited intermittent psychotic symptoms). With
regard to psychopathology, it has been demonstrated that the
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Table 1 | Comparison of the PCP/NMDA model and the psychosis prodrome.

Domain Properties of the PCP/NMDA model Features of the psychosis prodrome

Psychopathology Positive symptoms less severe than in clinical psychosis Attenuated psychotic symptoms

Impaired integrity/intensity of sensory perception and

aberrant salience

Cognitive and perceptive basic symptoms

Specific negative and disorganized symptoms Negative/disorganized symptoms precede positive symptoms

Cognition Verbal fluency deficits and working memory impairments Verbal fluency deficits and working memory impairments

predict psychosis onset

Information

processing

Dysfunctions of frontal and temporo-hippocampal parts

of the brain

Deficits in frontal cortex, temporal lobes, and hippocampus

associated with psychosis onset

MMN rather specifically affected MMN predicts psychosis onset and allows for estimating the

time until transition

positive symptoms induced by NMDA antagonists are less severe
than in clinical psychosis (85, 86). This is reminiscent of the
attenuated psychotic symptoms that can be found in the pro-
drome (26). Moreover, changes in the integrity and intensity of
sensory perception as well as aberrant salience, as produced by
NMDA antagonists (85, 88, 89), might be analogous to the respec-
tive BS (21). Besides that, subanesthetic doses of ketamine have
been demonstrated to induce particularly negative and disorga-
nized symptoms (91–93) that have been found to precede positive
symptoms in the prodromal development (29). Moreover, deficits
in verbal fluency and working memory, respectively, which can
be evoked by subanesthetic doses of ketamine as well (85, 86,
92–94), have been demonstrated in individuals at-risk and in pro-
dromal stages by neuropsychological and neurofunctional (fMRI)
investigations (30–33, 35–39). In clinical studies, the aforemen-
tioned cognitive deficits have been demonstrated being predictive
of future transition to psychosis in at-risk samples (30–33, 35–37).
Finally, the MMN, which has been demonstrated to be predictive
of psychosis development (55–58), is rather specifically affected by
PCP/NMDA antagonists (9, 75) and altered MMN amplitudes in
healthy individuals predicted the individual’s susceptibility to PCP
induced psychotic experiences (98). The latter aspect suggests that
vulnerability as well as resilience to psychotic experiences might
be further understood by a detailed elucidation of NMDA antago-
nist actions in sensory domains. A close relationship between EEG
measures, structural brain changes, and glutamate neurotransmis-
sion in the psychosis prodrome has already been demonstrated
(112, 113). Counterintuitively, however, a PPI deficit as observed
in schizophrenia can not be evoked by NMDA antagonists (107),
which might illustrate the limitations of modeling. Following the
implications of the glutamate hypothesis, at least two studies have
yet been able to demonstrate beneficial effects of the naturally
occurring agonist glycine in the at-risk state (83).

CONTRIBUTIONS OF EXPERIMENTAL PSYCHIATRY TO THE
UNDERSTANDING OF PSYCHOSIS DEVELOPMENT
At least with regard to the PCP/NMDA model of psychosis, some
features advocate in favor of the models potential to advance the
understanding of psychosis development. As clinical psychosis,
however, not all aspects of the prodrome might be sufficiently rep-
resented in such a model. In particular, it is yet only speculative

if the symptoms provoked by NMDA antagonists are comparable
to prodromal psychopathology (21, 24). Moreover, since psychosis
development might proceed via different psychopathological syn-
dromes (21, 24, 26) and more than one pathophysiological path-
way (110), it is an open question if and which of these could be
best mimicked by psychedelic substances. Furthermore, although
much of the neurocognitive and neurofunctional disturbances
observed in the prodrome might be evoked by NMDA antagonists,
the representation might be rather incomplete.

However, the potential contribution of experimental psychia-
try to the understanding of the psychosis prodrome should not be
underestimated. As in schizophrenia, prodrome modeling might
allow for strong forward predictions and assist in the identification
of crucial pathophysiological mechanism as illustrated by the glu-
tamate hypothesis (9, 75), which has been significantly promoted
by the results of PCP/NMDA research. Regarding the at-risk state
of psychosis, the application of glutamatergic agonists might be
understood as a logical consequence of the implications derived
from the PCP/NMDA model. Experimental psychiatry might thus
not only advance basic research, but assist in the identification
of targeted pharmacological interventions in putative prodromal
stages of illness.

CONCLUSION
A synopsis of the literature shows that the prodrome of psychosis
has been almost neglected by experimental psychiatry and the
focus has yet been on manifest psychotic disorders. Since preven-
tion of mental disorders became increasingly relevant in the recent
decades, it might be fruitful to further evaluate the potential con-
tribution of experimental psychiatry to this goal. As exemplarily
illustrated by the PCP/NMDA model of psychosis, however, many
aspects advocate that prodromal stages might be validly mimicked
by psychedelic substances. In particular,psychopathological as well
as neurocognitive and neurofunctional findings in the prodrome
seem to be well represented by the PCP/NMDA model. In this
regard, future research should aim at comparing the psychopatho-
logical properties of putative prodrome models to the respective
clinical observations. Furthermore, neurocognitive and neuro-
functional effects, respectively, of psychedelics should be evaluated
with regard to those deficits that have been demonstrated being
predictive of psychosis development.
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In summary, experimental psychiatry bears the potential to
further elucidate the biological mechanisms of the psychosis pro-
drome. A better understanding of the respective pathophysiology
might assist in the identification of predictive markers, and the
development of preventive treatments.
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