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The mismatch negativity (MMN) component of the auditory event-related potential has
become a valuable tool in cognitive neuroscience. Its reduced size in persons with schizo-
phrenia is of unknown origin but theories proposed include links to problems in experience-
dependent plasticity reliant on N -methyl-d-aspartate glutamate receptors. In this review
we address the utility of this tool in revealing the nature and time course of problems in per-
ceptual inference in this illness together with its potential for use in translational research
testing animal models of schizophrenia-related phenotypes. Specifically, we review the
reasons for interest in MMN in schizophrenia, issues pertaining to the measurement of
MMN, its use as a vulnerability index for the development of schizophrenia, the pharmaco-
logical sensitivity of MMN and the progress in developing animal models of MMN. Within
this process we highlight the challenges posed by knowledge gaps pertaining to the tool
and the pharmacology of the underlying system.
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With more than 150 papers discussing or reporting smaller mis-
match negativity (MMN) amplitude in schizophrenia, changes in
this component of the auditory event-related potential (ERP) are
now recognized as one of the most replicable electrophysiological
abnormalities in this group. This review begins with an expla-
nation of why this finding holds so much potential as a tool in
the study of biological changes associated with the schizophrenia
illness. However, the sections that follow expose the many chal-
lenges to the endeavor to translate this research – both in terms
of understanding the meaning, relevance, and cause of smaller
MMN amplitude and in terms of building animal models that can
provide insight into etiology.

THE POTENTIAL – WHY IS THERE SO MUCH INTEREST IN
MMN IN SCHIZOPHRENIA?
Auditory MMN is evident in scalp-recorded evoked potentials
when an unexpected event or sound transition occurs in a regular
repeating pattern (1). MMN is not a response to novelty per se
but rather to how unlikely a particular sound transition is given
a preceding sequence (2). It is therefore a very context-dependent
evoked potential that only occurs when a pre-existing prediction-
model exists specifying the most likely sound transitions in the
present environment.

The nature of sound sequences used to elicit and study MMN
range from very simple to highly complex. The vast majority
of studies in schizophrenia employ the former in which a reg-
ular repeating identical sound occurs with high probability (the
standard) and a physically deviant sound (the deviant ) interrupts
these repetitious trains on rare occasions (estimates suggest max
p≤ 0.30) (3). Sequences of this kind, known as oddball sequences,
promote the formation of a prediction-model specifying that

acoustic input is best explained by standard-to-standard transi-
tions and the rare occurrence of a standard-to-deviant transition
is generally used to index MMN (although note that deviant-to-
standard transitions also elicit a smaller MMN-like response). Reg-
ularities are implicitly learned as MMN does not require attention
to sounds: sound sequences are usually presented via headphones
to participants who are asked to ignore sounds and direct attention
to an alternate task (3).

The classical derivation of MMN involves a deviant-minus-
standard difference waveform with MMN quantified as the most
negative peak evident between ~100 and 250 ms following the
point of deviance (4). The quintessential finding in studies of this
kind is that the averaged response to standard stimuli is similar in
schizophrenia and matched control groups but the response to the
deviant is significantly smaller resulting in smaller MMN in the
difference waveform (5).

The major cortical sources contributing to scalp-recorded
MMN are located bilaterally in primary and secondary auditory
cortices with the precise locations dependent upon the sound
characteristics (6). Intra-cortical recordings in primates suggest
that the additional negativity in scalp-recorded response to devi-
ations has its origin in lamina II/III of the auditory cortex (7).
The neural mechanisms contributing to the difference in response
to predicted versus deviating sound are the topic of considerable
debate. There is general acceptance that processes such as neu-
ronal adaptation make an important contribution; that is, the
regular stimulation of the same afferent pathways will result in
adaptation which reduces the response to sounds matching these
properties, while in contrast deviating tones that are physically
different will stimulate new afferent pathways (8–10). However,
both sophisticated sequence designs and computational modeling
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support the existence of additional processes subserving predic-
tion. Although some of these will be reviewed in more detail below
(see The Measurement of MMN – Is there an Optimal Para-
digm with Which to Study MMN in Schizophrenia?), extensive
discussions can be found elsewhere (2, 3, 11–13). In summary,
there is accumulating evidence that the altered responsiveness to
sounds (reduced to expected and sensitized to deviant) cannot be
explained by neuronal adaptation alone. Computational models
suggest that predictions are expressed in the input from higher to
lower levels within a hierarchical network (11, 12, 14). Changed
response to sound therefore becomes a function of both neuronal
adaptation and top-down inputs to auditory cortex (e.g., from
secondary to primary cortex and from prefrontal to secondary cor-
tex) that modify responsiveness to sound reflecting the predicted
continuation of a learned pattern.

A network-level appreciation of MMN generation is valu-
able because it emphasizes that understanding the smaller MMN
amplitude in schizophrenia could require consideration of both
cause and consequence, acknowledging the functional role of the
signal. According to free-energy conceptualizations of brain func-
tion, prediction-modeling (the use of regularity to extrapolate pat-
terns) provides a regulatory service allowing the brain to conserve
energy (15). Reduced response to the predicted causes of sen-
sory stimulation, such as diminished response to standard input,
reserves resources for events that contradict expectations and that
may signal important changes in the environment prompting new
learning. MMN signals a prediction-error indicating that the model
presently influencing cortical response has failed to account for the
current sensory event. The error communicates a need to adjust
the current model to facilitate more accurate predictions, and
simultaneously alerts the system to the possible importance of the
eliciting event (15, 16). The error is communicated upward (via
feed-forward connections) within a hierarchical network which
enables future predictions to be weighted by error frequency (17).
When a model is highly reinforced (low error frequency) pre-
dictions specified in top-down connections are weighted strongly
and errors elicit large MMN. Conversely, when error frequency
is higher the weighting on top-down predictions is reduced and
MMN elicited by errors is smaller in amplitude. This concept
has elsewhere been described as predictive confidence in a model
which is of course inversely related to the probability of devi-
ations (2). MMN amplitude therefore reflects quantification of
confidence that the eliciting event violates a contextual regularity.
Large MMN can trigger an orienting response with consequences
for performance of concurrent tasks (18–23). These observations
demonstrate the way in which a deviation from predictions can
draw upon resources engaged in other activities.

In schizophrenia, MMN as a process appears to be largely intact
in that it obeys similar principles to those evident in healthy com-
parison groups – MMN is larger for deviations that are rarer and/or
more physically different from the current prediction-model (24).
However, MMN amplitude reaches asymptote at a lower ampli-
tude resulting in the most pronounced group differences generally
being observed where MMN is very large in controls (25–27).
Understanding the functional relevance of MMN amplitude is
pivotal to understanding the potential impact of smaller MMN in
schizophrenia. It has been proposed that MMN amplitude in part

communicates the change in cortical responsiveness required to
accommodate the new event into prediction-models (16). To the
extent that this is true, the lower plateau in MMN amplitude in
schizophrenia means that the adjustment to predictions prompted
by larger or rare deviations may be equivalent to that for smaller
or more frequent deviations. So if the size of the error-signal itself
influences the adjustment in predictions, then equivalence of error
signals across a range of deviant probabilities or physical differ-
ences (25–27) would perpetuate insensitivity to these different
contexts.

This circular challenge becomes particularly relevant when
considering how smaller MMN is related to biological changes
associated with the illness, such as gray matter changes and involve-
ment of the N -methyl-d-aspartate (NMDA) glutamate receptor
(NMDAGluR) system. A key biological change observed in schiz-
ophrenia is loss of cortical gray matter volume (28–35). Within
the auditory system this volume loss is due to a combination of
reduced pyramidal somal cell size, reduced dendritic spine density,
and (a correlated) reduction in axon terminal density in lamina III
(36–39). Molecular-level studies in schizophrenia therefore place a
core pathological process in the very same cortical layer implicated
in the generation of MMN. The projected functional consequence
of reduced volume in this cell layer is a net “diminished excitatory
synaptic connectivity” consistent with an impact on the spread
of activation [(36), p. 384]. The generation of MMN includes
spreading activation across lamina III within A1 (Heschyl’s gyrus
or primary auditory cortex) but also importantly from A1 to STG
[superior temporal gyrus or auditory association cortex (11, 17)].
So in terms of MMN generation, this pathology in auditory cor-
tical regions is expected to lead to smaller MMN generated in
response to error and/or a lower limit to MMN size [consistent
with experimental observations reviewed (36, 38)]. This predicted
consequence is also consistent with observations that in schizo-
phrenia (but not in matched controls) limited MMN size correlates
with reduced gray matter volume in auditory regions (35, 40) and
in the only published longitudinal study, progressive loss of gray
matter in auditory cortices correlated with progressive reduction
in MMN (40).

The etiology of this auditory cortical pathology in schizophre-
nia is unclear but two hypotheses put forward include a devel-
opmental origin and/or failure in sustained support of structural
integrity (36). The first supposes that there is an over-elimination
of excitatory synapses in lamina III during development. Since
this process is very protracted [continuing into the third decade
in auditory cortices (41)], it maps well onto data showing pro-
gressive reductions in STG gray matter volume in schizophrenia
over this period (42). However, experience-dependent plasticity
modifies dendritic spine structure throughout life (through long
term potentiation and depression) and this activity has a stabiliz-
ing effect on these structural elements. The same pathology could
therefore also arise (uniquely or in conjunction with developmen-
tal over-pruning) through failure in the factors that should support
structural integrity.

The second and not unrelated biological factor with rele-
vance for smaller MMN in schizophrenia is the impairment in
NMDAGluR system function proposed in glutamatergic mod-
els of schizophrenia which have become increasingly accepted
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as etiopathological models of schizophrenia. These models
arose from observations that the drug phencyclidine (PCP) has
(i) psychotomimetic effects and (ii) non-competitively blocks
NMDAGluRs [for detailed reviews see Ref. (43–45)]. NMDAGluRs
have a key role to play in experience-dependent synaptic plas-
ticity, and in particular long term potentiation and depression.
Importantly (as reviewed later in Section “How do Pharmacolog-
ical Manipulations Alter the MMN Process?”), MMN is reduced
in healthy individuals administered an NMDAGluR antagonist,
such as ketamine. So the question that emerges is this: is smaller
MMN in schizophrenia a consequence of gray matter reduction
and/or NMDAGluR hypofunction in auditory cortex, or could
the process of prediction-modeling in audition provide clues as
to why structural integrity in this region is inadequately sup-
ported? In summary, the reasons to suppose that MMN can be
used as tool to provide insights into schizophrenia-related brain
changes are many and derive from both empirical and theoretical
origins. In the following sections we review MMN research from
several perspectives to identify some important challenges to real-
izing its potential in the study of biological processes linked to
schizophrenia.

THE MEASUREMENT OF MMN – IS THERE AN OPTIMAL
PARADIGM WITH WHICH TO STUDY MMN IN
SCHIZOPHRENIA?
Smaller MMN in schizophrenia has been observed over a num-
ber of different experimental paradigms so the underlying reasons
for MMN-reduction are likely to reflect the common demands
inherent in processing the various sound sequence types. Differ-
ent paradigms each have advantages and disadvantages (reviewed
below) and it is the authors’ opinion that there is no ideal par-
adigm. In fact, to nominate an ideal could be detrimental to the
field – the advantage in doing so (increased comparability between
studies) is outweighed by the disadvantage which is neglect of the
opportunities to use this tool to address specific questions about
the integrity of the underlying system.

CONSIDERATIONS IN MEASURING A DIFFERENCE WAVEFORM
There are at least three contributing factors to MMN obtained
in the classical deviant-minus-standard waveform: (i) differences
in physical attributes of the deviant and standard sounds (this
is particularly likely when the deviant contains physical features
that vary in acoustic energy such duration or intensity), (ii) differ-
ences in refractoriness (or more properly called adaptation) of the
neural generators of responses to the more frequently presented
standard versus rare deviant stimulus and (iii) a genuine deviance-
detection process or the true MMN resulting from the deviant
violating predictions derived from contextual regularities. This
means that a group difference in classically derived MMN could
arise from any one or a combination of these factors. A number
of experimental control protocols have been developed to refine a
measure of true MMN – the primary motivation for these studies
being to determine whether a true MMN exists or whether what
is measured as MMN could be accounted for entirely by adapta-
tion effects on other components of the ERP. In a series of papers,
Schröger and his colleagues devised a random control stimulus
sequence, the many-standards sequence. For example in the case

of a frequency deviant, a many-standards control would involve
random presentations of tones of different frequencies (includ-
ing tones with the frequencies of the deviant and standard tone)
each having the same probability as the deviant in the oddball
sequence [Frequency/pitch: (46–48); Duration: (49); Location:
(50)]. A comparison of responses to the deviant from an oddball
sequence and to the same sound in a many-standards sequence
controls for physical differences and adaptation contributions to
the classically derived MMN. In this way the resultant difference
waveform can be attributed to a novel event violating a stored
neural representation of regularity in recent stimulation. This is
because the random presentation order of the many-standards
sequence prevents the development of a representation of regular-
ity in recent stimulation but preserves the rate of occurrence and
therefore some level of equivalence in terms of adaptation effects.

To our knowledge there are no studies that have implemented
conservative control procedures to extract true MMN in schiz-
ophrenia. As noted above, the vast majority of the published
literature in schizophrenia has employed MMN derived using
the classical oddball derivation. The common finding of simi-
lar responses to standards in schizophrenia and matched control
groups is reassuring in that it suggests that adaptation effects on the
standard response at least are not detectably impaired in patients
and implies that the major group differences are in how the brain
responds to deviations. However whether there are group differ-
ences in the extent of cross adaptation to other frequencies (or
durations/intensities, etc., in the case of simple deviance para-
digms) is unknown and this could impact on the response to a
physically different deviant tone. It is also reassuring to note that
in healthy individuals, even when stringent controls such as the
many-standards control are implemented, the classical derivation
gives a reasonable approximation of the true MMN (49). But once
again – whether this is equally true in patients is unknown. Below
we review some of the literature employing non-classical MMN
derivations indicating that there may indeed be some group dif-
ferences in response to repetitive sound as well as the response to
deviations.

EXAMPLES OF PARADIGMS USED IN SCHIZOPHRENIA
A few patient studies have employed methods that can differentiate
components of the MMN process and these have yielded mixed
findings. Some have controlled for the physical differences between
standard and deviants sounds, either by presenting two oddball
sequences with the roles of deviant and standard sounds reversed
[a flip-flop design: (51, 52)] or by presenting a sequence consist-
ing of repeated presentations of deviant sounds only (53), referred
to as a deviant-as-standard sequence. In both instances, it is pos-
sible to derive difference waveforms from comparing responses
to the same sound as a repetitive standard and a deviant event.
While these studies report no group difference in response to the
repetitive oddball standard presentations, Todd et al. (54) recently
found evidence of clear group differences in the morphology of
ERPs to the repetitious presentation of deviants and these differ-
ences had a significant impact on computation of the MMN. The
group difference appeared in a negative component of the ERP
to repetitive sounds occurring ~200–300 ms post-stimulus. While
its origin and functional role are unknown, it suggests that such
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differences in cortical response to a repetitive sound more gener-
ally warrant further investigation. However, neither the flip-flop
control nor the deviant-as-standard sequence removes the con-
tribution of adaptation effects to the difference waveform. Nor
does it ensure that the computed MMN represents true deviance
detection of a violation of contextual regularity. That is, these
procedures do not allow the extraction of the true MMN.

The roving paradigm is another method that can partially
address group differences in various contributions to MMN. In
a typical roving paradigm a string of sounds of the same pitch
are eventually interrupted by a sound with a higher or lower
pitch which then continues to repeat. Predictive processing is
highly dynamic so within two to three repetitions, the new sound
becomes a standard and deviations from its properties will now
elicit MMN (55–57). In the roving paradigm, it is possible to study
the way the response to a new standard changes after incremental
repetitions (e.g., 6 vs. 12 vs. 24, etc.). An increasing positivity as
a function of repetition length, termed “repetition positivity,” is
apparent in the ERP to standards approximately 50–200 ms post-
stimulus. The increase in MMN amplitude with the length of
repetition is referred to as a memory trace effect and is a func-
tion of both this apparent increased positivity (which is in fact a
decrease in negativity) to the standard and increased negativity to
a subsequent deviant [although see Ref. (58)]. In schizophrenia,
the increment in both components is smaller than that in controls
(59), but more notably in this study, the positivity in response to
standard repetitions failed to increment at all. So in this paradigm
smaller MMN in schizophrenia appears to indicate less change in
responsiveness to sound generally.

In a recent magnetoencephalographic (MEG) study in schiz-
ophrenia (60), the MMNm data in a similar roving paradigm
was explored using a technique called dynamic causal modeling
(DCM). DCM differs from conventional source modeling and
brain connectivity methods by utilizing a biologically informed
causal model placing constraints on model inversion such that
the parameters of reconstruction describe specific processes like
change in synaptic coupling strength between source locations
and postsynaptic gain. Rather than estimating dipole activity at a
particular point in time; it models dipole activity over a period
of time to identify parameters that change (11). When applied
to the roving paradigm, DCM has provided evidence supporting
the conceptualization of MMN as an active contextual perceptual
inference process. The“best fit”to experimental data is achieved by
a model that incorporates both local intrinsic adaptation effects as
well as plastic changes in extrinsic inputs to auditory cortex (i.e.,
from STG to A1 and also from areas of the prefrontal cortex to
STG). When applied to schizophrenia data, DCM has provided
evidence for problems in two of three components: the largest
effect size for group differences was for reduced change in intrin-
sic connections within primary auditory cortex A1. Such changes
are considered evidence of impaired feature specific adaptation.
There was also a reversed polarity in changes to connectivity
between prefrontal and auditory areas which was interpreted as
a failure in the normal influence of these top-down inputs in
modifying auditory cortical response. The authors also comment
on reduced modulation of the forward connection from the A1

to the STG (but this was not significant according to Table 2,
p. 26). Although this is the first study of its kind in schizophre-
nia, the results conform to the view that impaired signaling of
error (smaller MMN) could be indicative of impairment in encod-
ing the contextual memory against which deviance is registered
(potentially including impaired adaptation), but also consequently
impaired ongoing modification of cortical responsiveness by feed-
back projections. It is therefore possible that the roving standard
paradigm is more sensitive to any problems in forming a contextual
memory based on tone repetitions. However, when interpreting
results it is important to consider the assumptions of the rov-
ing paradigm carefully before drawing this conclusion. The MMN
elicited to a change in frequency in a roving paradigm signals that
the current prediction-model failed to account for the present
stimulus properties and the model may require updating. With
repetition of the new frequency, an updated prediction-model is
built. The degree to which the model requires updating will be
a function of the difference between the representation of the
new and former standard frequencies. Given that the changes in
frequency can be quite subtle and that frequency discrimination
is impaired in schizophrenia (53, 61, 62), it is possible that less
evidence of updating after a new standard (repetition positiv-
ity) could in part reflect less distinct representations of the new
and former frequency. So the roving paradigm places considerable
weight on stimulus-specific adaptation to a new frequency, which
therefore may augment the importance of intrinsic adaptation in
A1. Whether DCM of a classic oddball paradigm would replicate
major group differences in intrinsic A1 connections remains to be
determined.

At present the literature certainly suggests that altered (smaller)
response to sequence deviations is a major contributor to smaller
MMN in schizophrenia. It is clear that the reduction in classical
MMN is not only robust across many different cohorts, laborato-
ries, ethnic groups, etc. (5), but also exhibits substantial stability
over time (63). However there is reason to suppose that there may
also be differences in responding to repetitive sound more gener-
ally that could be contributing to problems in prediction-modeling
and/or MMN computation. Novel paradigms and novel data pro-
cessing approaches are likely to provide valuable data with which
to address these contributions. Despite these differences it should
be noted that many elements of the predictive process underly-
ing MMN remain intact in schizophrenia. In addition to those
covered above we recently demonstrated that persons with schiz-
ophrenia, despite producing smaller MMN amplitude to deviants,
are equally able to reduce MMN size to a deviant if the occur-
rence of that deviant could be inferred from the identity of the
prior tone. The equivalent use of this predictive information in
both schizophrenia and control group reinforces the position that
abnormalities in the MMN process in schizophrenia primarily
involve limited gain in the differential response to a very rare ver-
sus common event. So while the choice of paradigm used to study
MMN in schizophrenia will depend not only on the questions dri-
ving your research but also the time you have available, the one
principal recommendation that we do put forward is to ensure
that you adopt a very rare deviant event (<15%) to maximize
your power to expose group differences.
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DOES MMN-REDUCTION INDICATE VULNERABILITY TO
SCHIZOPHRENIA?
In this section we review studies addressing whether small MMN
may be a vulnerability index for schizophrenia. It should be noted
that research into schizophrenia has always been limited by its diag-
nostic heterogeneity and phenomenological overlap with related
developmental, affective, or personality disorders which all can
share some of the clinical features of schizophrenia, such as psy-
chosis, cognitive impairment, or therapeutic response to certain
classes of pharmacological agents (64). Not surprisingly, attempts
to find a diagnostic marker for schizophrenia – that not only rep-
resents an endophenotype of the disorder but can also serve as a
tool helping to unveil its pathology – continues to be limited by
the lack of a pathogenomic definition of the condition. Diagnos-
tic limitations notwithstanding, a number of groups have indeed
investigated MMN’s status as an endophenotype for schizophre-
nia as defined by current diagnostics tools and this research is
pertinent to evaluating the translational potential of MMN in
schizophrenia. The definition upon which the evaluation is based
is that proposed by Gottesman and Gould (65) where an endophe-
notype is defined as an intermediate phenotype along the pathway
between genotype and the observable established aspects of the
illness. Specific criteria to be met include: (i) it is associated with
illness in the population; (ii) it is heritable; (iii) it is primarily state-
independent (manifests in an individual whether or not illness
is active); (iv) within families, small MMN and the illness co-
segregate; and (v) smaller MMN is evident in non-affected family
members at a higher rate than in the general population (65).

CRITERION (I) AND (II)
Mismatch negativity amplitude reduction in schizophrenia is
a very robust finding with an effect size of 0.99 observed by
Umbricht and Krljes (5) in their meta-analysis of 32 studies pub-
lished prior to 2004. Reduced MMN is less prevalent in related
conditions, such as bipolar affective disorder independent of the
presence of psychotic symptoms (52, 66–68) and in major depres-
sion (66) but see (69–71). That is, there is considerable evidence
that criterion (i) is met in terms of its association with the illness,
although its specificity to schizophrenia is less clear than initially
thought. MMN appears to be heritable based on twin studies with
heritability estimates ranging from 0.48 to 0.68 when using a dura-
tion increment deviant (67, 72) but not for a frequency deviant
(73). However, even duration MMN shows only weak phenotypic
association (0.39) with schizophrenia (67). Nonetheless, there is
preliminary evidence supporting criterion (ii) for endophenotypic
status of MMN.

CRITERION (III)
Across the large number of studies on MMN in schizophrenia
there are no consistent relationships between MMN size and the
severity of symptoms of psychosis. Although impaired prediction-
error signaling is implicated in the genesis of delusions (74) and
although there is preliminary but consistent evidence from one
group of a relationship with auditory hallucinations (75–77), the
literature fails to demonstrate consistent relationships across stud-
ies. The meta-analysis by Umbricht and Krljes (5) emphasized
that the majority of studies did not find correlations (either with

positive or negative symptoms) and observed no change in MMN
when symptoms improved. Further (63), found duration MMN
in very large sample of patients (N = 163) exhibited substantial
stability across a 1 year retest interval, and to be independent
of fluctuations in clinical symptoms, positive or negative. So at
face-value, these results from cross-sectional designs seem to sup-
port state-independence of presence of smaller MMN [criterion
(iii)]. However, the evidence about state-independence of degree
to which MMN is reduced in patients in an acute phase vs. a post-
acute phase is mixed (78, 79) although differences due to med-
ication changes cannot be eliminated (see later Section “How do
Pharmacological Manipulations Alter the MMN Process?” for fur-
ther discussion of state vs. trait effects on MMN as a vulnerability
marker).

The failure to demonstrate state-dependence is paralleled by
more consistent relationships between MMN amplitude and rela-
tively stable features of the illness such as level of functioning (80)
and cognitive impairments (81) despite substantial changes in neg-
ative and positive symptom severity. Various measures of current
functioning have been shown to be associated with MMN ampli-
tude in patients: global assessment of function [GAF: (82–84)],
social and occupational functioning assessment scale [SOFAS; (35)
but not in first episode patients (85)], the independent living scales
[ILS: (86)], and work functioning and independent living ratings
from the role functioning scale (87). It has been suggested that
the relationship between reduced MMN and impaired function-
ing might be mediated by anatomical changes such as gray matter
loss in relevant brain regions (35). Impaired cognition (whether
independent of gray matter declines or consequential) could also
mediate the relationship between MMN and functional status
since there is a wealth of evidence now that the strongest pre-
dictor of functional outcomes in patients is cognition [also often
called neurocognition: (88)]. However, the number of published
MMN studies in schizophrenia that examine not only cognition
in the same sample but correlations between MMN and cognitive
performance as well, is quite limited. This is despite reasonable
expectations that the reliance of MMN generation on the the
NMDAGluR system (see How do Pharmacological Manipulations
Alter the MMN Process? and Translation to Animal Models below
for further discussion) should lead to relationships with those
aspects of cognition that are also reliant on the unique charac-
teristics of the NMDAGluR, such as context-dependent effects,
integration of information over time and new learning (44). How-
ever, there are some data that suggest such relationships do exist
at least in patients (but not necessarily in healthy controls).

NMDAGluRs have a number of unique features. Firstly, acti-
vation of NMDAGluRs currents is conditional in that channels
only gate following presynaptic release of glutamate and concur-
rent postsynaptic membrane depolarization which relieves Mg2+

blockade. This conditional characteristic of the NMDAGluR is
likely to be particularly important where responses are determined
by context, as is the case for MMN, but also in situations where
flexibility of response is required dependent on context. One spe-
cific example of contextual processing is the AX version of the
continuous performance (AX-CPT) task where a response to the
letter X on screen should only executed when the X is preceded
by the letter A. It is well established that patients are impaired on
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the AX-CPT task, producing often fewer correct responses to AX
sequences (impaired priming of response by a target-consistent
cue) and higher rates of false alarms to BX sequences [impaired
inhibition of a response prompted by a target-inconsistent cue
(89)]. However, despite reports of concurrent smaller MMN and
AX-CPT impairments, there appear to be no reports of a correla-
tion between the two (90) and one explicit report of no association
between the two (54).

Secondly, although NMDGluRs exhibit complex kinetics with
evidence of multiple gating modes characterized by different mean
open times (91–93), it is generally accepted that they mediate
long duration excitatory postsynaptic currents in the brain and
participate in synaptic integration and certain forms of synaptic
plasticity (92). Prefrontal cortex NMDAGluRs in particular have
slower kinetics than sensory regions (94) and therefore are poten-
tially involved in maintaining activity in prefrontal neurons (95),
for example during the delay periods of working memory tasks.
There are reports of co-occurrence of working memory deficits
and reduced MMN in patients with schizophrenia (63, 90) but to
our knowledge, only one report of a correlation between work-
ing memory (measured using the digit sequencing task from the
Japanese version of the brief assessment of cognition) and (dura-
tion) MMN in patients (96). Both classic oddball MMN amplitude
(97) and longer term effects on growth in MMN amplitude (98)
have been shown to correlate with digit span (the ability to main-
tain and or manipulate acoustic presentation of digits) in a healthy
control group consistent with the requirement to store auditory
information over time for both indices.

Thirdly, NMDAGluR activation leads to a cascade of events
that initiate long term potentiation and depression, the primary
processes responsible for new memory formation and learning
in hippocampus and cortex. Retention or storage of information
is less reliant on NMDAGluR. One of the most robust cogni-
tive deficits exhibited by patients are deficits in memory (verbal
declarative memory in particular) with the majority of evidence
suggesting that the largest deficit, as measured by effect size, occurs
for encoding or new learning of material in comparison to reten-
tion [although there is still a small deficit in retention even when
initial learning differences are taken into account (99)]. Four stud-
ies report relationships between MMN and memory performance
but in patients only. Baldeweg et al. (59) using a roving odd-
ball paradigm found that the MMN trace effect (the increase in
MMN that occurs with increasing repetition of prior standards)
correlated with performance on an everyday memory test (River-
mead behavioral memory test). Kawakubo et al. (100) in a study
that reports data on patients only found that MMN elicited by a
phoneme duration deviant (but not a tone duration deviant) was
correlated with immediate free recall (initial learning or encoding
measure) from a list learning task, the Rey auditor verbal learn-
ing task (RAVLT). In contrast, Kaur et al. (101) found that tone
duration MMN correlated with verbal memory assessed using
the RAVLT in first episode psychosis patients with a schizophre-
nia spectrum diagnosis of either schizophrenia, schizoaffective,
and schizophreniform illness. No correlations were reported for
controls. Kiang et al. (84) in a standard oddball paradigm found
duration MMN was correlated in patients only with short-delay as
well as long delay free recall but not (significantly) with immediate

free recall on another list learning task, the California verbal learn-
ing task, but neither of the free recall measures was adjusted for
initial or prior learning differences. So while there is evidence of
MMN correlations with memory, these correlations may not be
restricted to initial learning or encoding phase.

In addition, there is evidence of relationships between MMN
amplitude and other cognitive domains that are commonly shown
to be impaired in patients but are less clearly dependent on
NMDAGluR properties, such as executive functions [anti-saccade
performance: (102); proverb interpretation: (84); perseverative
errors on the Wisconsin Card Sorting Task: (103); mental control
subtest of WMS-III: (85)].

In summary – MMN does not appear to be consistently related
to the severity of either positive or negative symptoms experi-
enced by the patient at the time of recording (either examined
across patients or assessed within patients at different time points),
consistent with (symptom) state-independence of MMN. How-
ever, MMN amplitude does appear to vary across individuals as a
function of more stable features of their illness. The relationship
of MMN to functional measures is relatively robust and there is
growing evidence of correlations not only between MMN ampli-
tude and those aspects of cognition that are likely to be reliant
on unique aspects of NMDAGluR but other domains of cognition
that are reliably impaired in patients such as executive functions.
However, these are issues that deserve more attention and in par-
ticular, more systematic investigations are required before any
strong assertions can be made about contributions from a com-
mon mechanism of NMDAGluR-dysfunction to MMN-reduction
and cognitive deficits in schizophrenia.

CRITERION (IV) AND (V)
Mismatch negativity has also been investigated as a potential pre-
dictor of developing psychosis or schizophrenia in populations
considered at-risk mental state (ARMS). For instance, the com-
prehensive assessment of at-risk mental state (CAARMS) criteria
(104) defines ARMS as (1) a significant drop of global functioning
over a period of 12 months and having a close biological relative
with a psychotic disorder and/or (2) experiencing attenuated or
very brief episodes of psychotic symptoms in combination with
functional decline. MMN has been investigated in both groups;
however, to date there appear to have been no MMN longitudi-
nal studies of transition to psychosis specifically within a clinically
unaffected genetic group.

Whether MMN is reduced in unaffected first-degree biological
relatives of patients with schizophrenia is controversial. The ini-
tial studies by Jessen et al. (105)1 and Michie et al. (106) reported
reduced oddball frequency and duration MMN respectively in
first-degree relatives when compared to healthy controls, but these
results with one exception were not replicated in later publica-
tions, neither for duration deviants – (72, 107–109) and (102),
[based on a larger sample from the same source as (106)], nor
frequency deviants – (73, 108, 109). The one exception is (110)
which interestingly used an identical MMN duration deviant par-
adigm as (106). While there are design and other methodological

1A somewhat puzzling result in the Jessen et al. study, is that patient MMN amplitude
was not significantly reduced in contrast to relatives.
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differences between those studies (three in total) that show signif-
icant MMN-reductions in first-degree relatives and those that do
not (six in total), the bulk of the evidence suggests that at-risk but
clinically unaffected family members do not exhibit reduced MMN
(minimal support for criterion (iv) and (v) of endophenotype
criteria).

The evidence that MMN is reduced in the ARMS group, is more
consistent, although data on whether reduced MMN predicts tran-
sition to psychosis is still preliminary. It is important to note that
while the term prodromal is sometimes used to describe those
clinically defined at-risk groups (111), strictly speaking whether
they are prodromal or not at the time of assessment can only
be determined subsequently by whether they develop a schizo-
phrenia spectrum disorder within the follow-up period (usually
12–24 months). All of the MMN investigations in ARMS have used
duration deviants, either a duration increment (112–117), or a
duration decrement (111, 118) or both (112) but some also report
data on frequency deviants in the same sample (111, 116–118) or
a double deviant [deviant on both frequency and duration (117)].
Of these eight papers, five found that duration increment MMN
was significantly reduced in the ARMS group (112–114, 116, 117)
whereas duration decrement MMN was either not significant (111,
118) or showed a smaller effect size (112). The findings for fre-
quency MMN are mixed: (117) found that frequency MMN was
reduced (as was the double deviant) but (116) did not. To date
therefore, the evidence seems to suggest that deviants that differ
from standards by being longer in duration are more sensitive to
the at-risk mental state that other deviant types. It seems unlikely
that these findings are due to the effects of medication since in
each sample the numbers of ARMS individuals who were med-
icated with anti-psychotics at the time of testing was small as were
the dosages.

Most investigations of clinical high risk groups also report
transition data and examine whether MMN predicts those who
will subsequently develop a schizophrenia disorder – although in
two cases, the number of transitions was too small for statistical
analysis (112, 113). Bodatsch et al. (118) were the first to report
transition data. Interestingly they found that duration (decre-
ment) MMN predicted those who converted to schizophrenia
within a 24 month period of the assessment date whereas fre-
quency MMN did not. Higuchi et al. (115) and Shaikh et al. (114)
observed similar results for duration (increment) MMN. Neither
included a frequency MMN deviant. However (117), found that
the best predictor of later transition to schizophrenia was MMN to
their double deviant. Neither duration alone nor frequency alone
was significant. Perhaps importantly, the double deviant elicited
the largest MMN (larger than that to frequency or duration alone)
which perhaps reflects the importance of challenging the upper
limits on MMN size in at-risk groups as well as patients with
an established illness. In summary, evidence for smaller MMN
within families in general is not strong but the evidence for smaller
MMN in clinical high risk groups is quite compelling. There-
fore endophenotype criterion (iv) and (v) are only partially met
at best. It remains to be seen whether the reduction in the at-
risk groupings is really about risk status per se or a reflection of
schizophrenia-related pathology that has begun to impact on brain
function.

HOW DO PHARMACOLOGICAL MANIPULATIONS ALTER THE
MMN PROCESS?
Pharmacology as a field of research offers a unique avenue to
study MMN both in terms of how different chemicals can per-
turb the perceptual inference process and how they may relate to
schizophrenia pathology. When considering the pharmacological
sensitivity of MMN, it is clear that a change in MMN could reflect
an effect on any one of a number of constituent processes described
in Section “The Measurement of MMN – Is there an Optimal Par-
adigm with Which to Study MMN in Schizophrenia?”Surprisingly
few studies provide details on how a substance affected response
to standard repetitious sounds with the majority reporting on the
difference waveforms only (16/27 studies, see Tables 1–3). For the
purpose of this review we have restricted Tables to acute drug
effects on healthy adult populations. One of the key foci in phar-
macological research on MMN is how it is affected by alterations
to NMDAGluR activity (Table 1).

Several groups have argued that impaired plasticity linked to
NMDAGluRs is a core feature of the schizophrenia illness (45,
128, 129). The first study to demonstrate this link was actu-
ally in the macaque where Javitt and colleagues demonstrated a
dose-dependent reduction in MMN following local infusion of
the NMDAgluR antagonist, PCP (130). Using a flip-flop control
design (see The Measurement of MMN – Is there an Optimal
Paradigm with Which to Study MMN in Schizophrenia? above for
description and Translation to Animal Models below for additional
detail) the authors report no significant effect of phencyclidine
on response to the repetitive sound (at least in these local field
potentials, see Translation to Animal Models for further discus-
sion) but a pronounced dose-dependent effect on the response
to the deviant. The authors conclude that NMDAGluR activity
is critical to forming the associative links between stimuli (i.e.,
accumulating information about transition statistics) that define
the context against which a rare deviant sound is recognized as
an aberrant event. Studies in humans are largely consistent with
this initial study. Of eight published studies, seven report signifi-
cant dose-dependent reduction of MMN amplitude after ketamine
[although one only in combination with the CB1 inverse agonist
rimonabant (125)]. The one exception (a low-dose study) used
a selective attention paradigm in which participants were asked
to attend and respond to stimuli in one ear while simultaneously
hearing stimuli in the other ear (unattended) from which MMN
was derived (119). Of the studies showing an effect of ketamine
on MMN, four explicitly picture and/or discuss response to the
repetitive standard tones with only one (120) reporting a slight
but significant increase in the obligatory N1 component to repet-
itive sounds in the presence of the drug. The low-dose ketamine
study by Oranje and colleagues also show enhanced N1. The most
recent study reports on a roving standard paradigm demonstrat-
ing that, although MMN was reduced under ketamine overall, the
effect of ketamine was more pronounced with increased repeti-
tion of the standard [i.e., when predictive confidence was highest
(126)]. The paper, however, did not report on whether this pat-
tern was due to effects on the positivity to repetitive standards or
increased negativity to deviants or both. The grand-averaged (i.e.,
across repetitions) ERP to standards is presented in a subsequent
paper reporting a DCM analysis of the same data (14). A visual
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Table 1 | N -methyl-d-aspartate receptor studies.

Reference Study design Main findings Comments

Oranje et al.

(119)

Double-blind, placebo-controlled randomized

ketamine challenge (0.3 mg/kg) in 18 healthy male

volunteers

Processing negativity (PN) and P3

amplitude reduced and N1 amplitude

increased with ketamine; no effects

observed on MMN (frequency

deviants)

Ketamine did not affect error rate and

reaction time in selective attention task;

dose lower than in studies showing an

effect on MMN; study reported ERPs in

response to standard stimuli

Umbricht et al.

(120)

Single-blind placebo-controlled ketamine

challenge (0.9 mg/kg/h) in 20 healthy volunteers

whilst performing a continuous performance task

N1 peak amplitude increase with

ketamine; MMN (i.e., frequency and

duration deviants) amplitude reduction

with ketamine; MMN (i.e., duration

deviants) peak amplitude latency

increase with ketamine

MMN topography was not altered by

ketamine; study did not report ERPs in

response to standard stimuli

Kreitschmann-

Andermahr

et al. (121)

On-off ketamine (0.3 mg/kg) single-session MEG

trial in 13 healthy volunteers (final sample size

N =10 with sufficient data quality)

Ketamine affected MMF latency and

dipole moment due to effects on

deviants (frequency, duration, and

intensity); no effect on N1

Ketamine reduced mean global field

power for MMF; study reported ERPs in

response to standard stimuli

Umbricht et al.

(122)

Single-blind, placebo-controlled psilocybin

challenge (0.28 mg/kg) over two sessions; ERP

recorded 70 min after drug administration in 18

healthy volunteers

N1 peak amplitude reduction with

psilocybin; no effect on P2

Non-significant trend toward smaller

MMN amplitudes for frequency deviants

with psilocybin; study did not report ERPs

in response to standard stimuli

Korostenskaja

et al. (123)

Randomized, double-blind, placebo-controlled

crossover challenge of memantine (30 mg) in 13

healthy volunteers

Trend of MMN amplitude increase in

response to frequency deviants with

memantine

No effect on MEG derived measures of

MMN, P1 and N1; study did not report

ERPs in response to standard stimuli

Heekeren

et al. (124)

Randomized, double-blind, crossover ketamine of

0.007–0.2 mg/kg and dimethyltryptamine of

0.011–0.3 mg/kg challenges, with same-day (after

2 h break) single-blind low and a high-dose drug

administration, respectively, in 15 healthy

volunteers (9 study participants completed both

drug challenges)

Reduced MMN amplitude with

ketamine; no effect with

dimethyltryptamine

Subjects performed a continuous

performance task was performed whilst

EEG was recorded; study reported ERPs

in response to standard stimuli

Roser et al.

(125)

Randomized, double-blind, placebo-controlled,

crossover ketamine (0.5 mg/kg/h following bolus

of 0.24 mg/kg) and rimonambant (20 mg)

challenge in 24 healthy male volunteers

No effect of ketamine alone on MMN

amplitudes (i.e., frequency and

duration deviants); addition of

rimonambant resulted in MMN

amplitude reduction

Ketamine dose lower than in studies

showing an effect on MMN; study did not

report ERPs in response to standard

stimuli

Schmidt et al.

(126)

Double-blind, placebo-controlled ketamine

challenge (0.006 mg/kg/min following bolus of

10 mg) in 19 healthy volunteers and psilocybin

challenge of 0.115 mg/kg in 20 healthy volunteers

Reduced frontal MMN with ketamine

with increasing number of standards

(roving paradigm); no effect on MMN

with psilocybin

Placebo MMN amplitudes correlated with

severity of cognitive impairment induced

by ketamine; study did not report ERPs in

response to standard stimuli

Gunduz-Bruce

et al. (127)

Double-blind, placebo-controlled ketamine

challenge (a bolus of 0.23 mg/kg over 1 min

followed by 0.58 mg/kg for 30 min and then

0.29 mg/kg for 40 min) with and without

N -acetylcystein co-administration (oral doses of

2000 mg followed by 1000 mg 2 h later) in 16

healthy volunteers

MMN amplitude reduced for intensity

and frequency deviants but not

duration deviants; N -acetylcystein did

not alter the impact of ketamine on

MMN

MMN recorded with multi-deviant

paradigm; study did not report ERPs in

response to standard stimuli

Schmidt et al.

(14)

Double-blind, placebo-controlled ketamine

challenge (0.006 mg/kg/min following bolus of

10 mg) in 19 healthy volunteers (17 subjects

entered the final dynamic causal modeling

analysis)

Ketamine selectively reduced synaptic

plasticity in the forward connection

from the left primary auditory cortex

(A1) to the left superior temporal gyrus

along with MMN amplitude reduction

Ketamine effects on synaptic plasticity

correlated significantly with ratings of

ketamine-induced cognitive impairments;

study reported ERPs in response to

standard stimuli
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Table 2 | Nicotine receptor studies.

Reference Study design Main findings Comments

Harkrider and

Hedrick (137)

Single-blind placebo-controlled nicotine challenge in

10 smokers (21 mg/day) and 4 non-smokers (7 mg/day)

Larger MMN area and steeper slope in

response to deviant stimuli

Small and heterogeneous

sample; study reported ERPs in

response to standard stimuli

Inami et al.

(142)

Counterbalanced placebo versus nicotine

administration (equivalent to 16.1±2.7 mg/day) 10

healthy non-smokers (5 males)

Nicotine shortened MMN peak latency Small sample size; study

reported ERPs in response to

standard stimuli

Baldeweg

et al. (138)

Randomized placebo-controlled nicotine challenge

(2 mg) in 20 healthy smokers

Nicotine increased MMN amplitude

mainly by affecting response to

standard stimuli (no change in

response to deviant stimuli)

Nicotine enhanced repetition

positivity; study reported ERPs in

response to standard stimuli

Knott et al.

(143)

Nicotine challenge (6 mg single dose) in 14 healthy

non-smokers

No effect on MMN (frequency

deviants)

Study did not report ERPs in

response to standard stimuli

Dunbar et al.

(139)

Randomized and placebo-controlled challenge with

oral nicotine agonist AZD3480 (ascending doses from

2 to 320 mg) in 48 healthy subject and in 24 subject

receiving repeatedly constant oral dose or placebo

Increased MMN amplitude with

reduced latency after 10 days of

consecutive agonist administration

and/or single dose of 200 mg

Study did not report ERPs in

response to standard stimuli

Martin et al.

(141)

Single-blind, placebo-controlled nicotine challenge

(4 mg) in 11 non-smokers and 9 smokers (following 2 h

nicotine abstinence)

Increased MMN amplitude in response

to nicotine without affecting N1 and

ERPs in response to standard stimuli

Study reported ERPs in response

to standard stimuli

Knott et al.

(140)

Randomized double-blind, placebo-controlled

crossover nicotine challenge (6 mg) in 21 non-smokers

(11 males)

Drug by gender interaction of

non-significant MMN amplitude

increase in females and non-significant

MMN amplitude decrease in males

Study reported ERPs in response

to standard stimuli

comparison of Figure 1 (placebo) and Figure 2 (ketamine) from
the paper suggests that the effect of ketamine on MMN was per-
haps a combination of reduced positivity in the standard waveform
and reduced negativity in response to the deviant. However, DCM
analyses applied to the data indicated the ketamine had a selec-
tive effect on parameters representing synaptic plasticity with no
effect on indices reflecting adaptation. Additionally, analysis indi-
cated that the major effect of ketamine was to reduce the normal
increase in synaptic plasticity in the forward connection between
left A1 and left STG in response to the deviant tones. There-
fore while ketamine administration and schizophrenia are both
associated with reduced MMN, the pattern of change (at least
for this roving paradigm) is quite distinct. Ketamine-induced a
prominent change in feed-forward connections between A1 and
STG only (14) while schizophrenia was associated principally with
reduced intrinsic connections within A1 and significant alteration
in prefrontal-STG connections (60).

In Schmidt et al. (14, 126), and an earlier observation by
Umbricht and colleagues (131), MMN measures were associated
with the intensity of psychotic-like reactions to ketamine. Schmidt
et al. (126) reported that participants with the most restricted
growth in MMN with increased standard repetition experienced
the most pronounced disturbances noted on a “control and cogni-
tion” subscale of the altered state of consciousness questionnaire
in the presence of ketamine. Similarly Umbricht and colleagues
observed that the participants who produced the smallest MMNs

at baseline experienced the highest symptom ratings (on a variety
of measures) under ketamine. In the subsequent DCM analysis of
Schmidt et al. (14), those who experienced the most pronounced
“control and cognition” subscale disturbances in the presence of
ketamine also showed the most pronounced decrease in plastic-
ity in the left A1-STG connections under ketamine. Although
the measures differ between studies, these observations invite the
intriguing conclusion that small MMN amplitude (and/or limited
growth in MMN) may indicate a limitation in synaptic plastic-
ity that is linked to vulnerability to psychotic-like phenomena.
Interestingly, this vulnerability does not appear to be generic
as studies have shown no relationship between MMN ampli-
tude and psychotic-like response to psilocybin and no significant
effect of psilocybin on MMN amplitude (122, 126). Furthermore,
there is evidence that this effect on NMDAGluR-mediated plas-
ticity shows some specificity to ketamine-induced antagonism.
Memantine (also an NMDAGluR antagonist) actually augmented
MMN amplitude (123). The downstream effect of ketamine (and
MK-801) has recently been demonstrated to be quite different
to that of memantine. One interesting observation is that these
compounds have opposing effects on postsynaptic density pro-
teins – namely ketamine and MK-801 reliably increased Homer1a
relative to Homer1b expression while memantine has the reverse
effect. Authors suggest that the former impacts the expression of
genes related to response to neuronal injury and preservation of
homeostatic scaling of synaptic response. The latter, in contrast,
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Table 3 | Monoamine receptor studies.

Reference Study design Main findings Comments

Mervaala

et al. (157)

Noradrenaline challenge with alpha 2-antagonist

atipamezole (0.1 mg/kg) in six healthy male

volunteers

Reduced P3 amplitude without affecting

MMN and Nd; improved digit span and

word recognition performance

Small sample size; study did not

report ERPs in response to standard

stimuli

Schreiber

et al. (158)

Double-blind, placebo-controlled crossover

administration of ceruletide (0.5 and 2.5 mg) in 13

healthy volunteers

No effect on MMN; PN larger with

ceruletide

Study did not report ERPs in

response to standard stimuli

Kahkonen

et al. (159)

Placebo-controlled haloperidol challenge (2 mg) in

12 healthy volunteers

MMN increased with haloperidol

without affecting other ERP components

MEG measures were unaffected;

study reported ERPs in response to

standard stimuli

Pekkonen

et al. (160)

Haloperidol challenge 2 mg in 12 healthy volunteers No effect on MMN Study reported ERPs in response to

standard stimuli

Ahveninen

et al. (161)

5HT challenge using acute tryptophan depletion

versus placebo control in 13 healthy volunteers

Delayed MMN latency Study reported ERPs in response to

standard stimuli

Umbricht

et al. (131)

Single-blind, placebo-controlled psilocybin

challenge (0.28 mg/kg) in 18 healthy volunteers and

ketamine (0.9 mg/kg/h) in 20 healthy volunteers

whilst performing a continuous performance task

Smaller MMN to frequency and duration

deviants was correlated with stronger

effects on the brief psychiatric rating

scale during ketamine but not psilocybin

Study does not report MMN in the

respective placebo conditions and

did not report ERPs in response to

standard stimuli

Leung et al.

(162)

Double-blind, placebo-controlled crossover

administration of bromocriptine (2.5 mg) or

pergolide (0.1 mg) in 15 healthy volunteers

No effect on MMN, P1, N1, N2, and P3 Study reported ERPs in response to

standard stimuli

Korostenskaja

et al. (163)

Double-blind, placebo-controlled crossover

administration of methylphenidate challenge

(40 mg) in 13 healthy volunteers

No effect on MMN or N1; P2 amplitude

reduction with methylphenidate

Study reported ERPs in response to

standard stimuli

Leung et al.

(164)

Double-blind, placebo-controlled crossover design

following tyrosine/phenylalanine and/or tyrosine

depletion intervention in 16 healthy volunteers

No effects on ERPs Study reported ERPs in response to

standard stimuli

strengthens synaptic transmission. These very different effects on
plasticity may go some way to explaining the opposing effects of
these NMDAGluR-antagonists on MMN and invite speculation as
to whether individual differences in these same ratios may in fact
confer differential susceptibility to ketamine-induced psychotic-
like experiences (and disruption to the MMN process, however
see also discussion of animal research using memantine in Section
“Translation to Animal Models”). In summary, antagonism of
NMDAGluRs in the presence of ketamine produces quite consis-
tent reduction in MMN amplitudes and continues to hold promise
in furthering our understanding of the plasticity underlying MMN
as well as vulnerability to psychotic phenomena. Of course it
should be remembered that acute disruption under ketamine is
unlikely to mirror the full consequences of adjustment to a more
chronic compromise in function (if present) in schizophrenia.

Just as there are multiple elements to the MMN process, there
are multiple ways to pharmacologically influence NMDAGluR-
mediated synaptic plasticity [for a relevant review see Ref. (132)].
NMDAGluR antagonism also occurs under acute exposure to
alcohol and consistent with this, acute administration of ethanol
has been shown to reduce MMN amplitude (133, 134). Nicotine
in contrast enhances synaptic plasticity with mechanisms linked

to effects on presynaptic NMDAGluRs (135). Nicotine exerts its
effects on the central nervous system via acetylcholine recep-
tors (135). Galantamine has been used to test theories about
how augmentation of cholinergic neurotransmission can mod-
ulate gain in MMN (136). The results of both an empirical study
and a simulation experiment indicate that enhanced cholinergic
neurotransmission alters precision in prediction-modeling – i.e.,
changes confidence in the current inference model. More specifi-
cally, under these conditions the system places a greater emphasis
on bottom-up input and “boosts” the response to deviants while
also attenuating the usual reduction in confidence in a model fol-
lowing the occurrence of a deviance. The authors suggest that
acetylcholine plays a key role in modulating gain in superficial
pyramidal neurons in early sensory brain areas. Consistent with
this action, five of the seven studies listed in Table 2 support nico-
tine enhancement of MMN. Significant enhancement of MMN
has been demonstrated under both acute (137–141) and more
prolonged exposure (139). Of the seven studies listed, five present
or report on response to standard tones but only one indicates
significant drug effects. Baldeweg et al. employed the roving stan-
dard paradigm and revealed that the increase in MMN amplitude
with nicotine was due to a selective augmentation of the positivity
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to repeated standards with no significant effect on response to
deviants.

Cannabis use is considered by some to be a risk factor in
the development of psychosis. Furthermore, chronic cannabis
use has been associated with gray matter volume changes
and cognitive deficits reminiscent of those in schizophrenia
(144–147). The action of endogenous cannabanoids is also linked
to NMDAGluRs in protecting against excessive stimulation at
glutamatergic synapses. The cannabanoids are released from
postsynaptic neurons and exert their action on CB1 receptors
located on presynaptic neurons which transiently decreases neu-
rotransmitter release [(148) for review]. There are currently two
published studies on the acute effects of cannabis [in fact the
latter is a reanalysis of the former with genetic data included
(149, 150)]. The first of these explored the effect of adminis-
tering ∆9-tetrahydrocannabinol (THC) alone (the psychoactive
component of cannabis) versus in combination with the other
cannabinoids present in cannabis extract. The results indicated no
significant impact of ∆9-THC alone, but significant augmenta-
tion of MMN at central sites in the presence of cannabis extract
compared to placebo. However the study also demonstrated a
significant correlation such that higher concentration of the ∆9-
THC-metabolite 11-OH-THC was associated with smaller MMN
amplitude (r = 0.62, p= 0.002). In their later combination with
genetic data the same group revealed that susceptibility to MMN-
reduction in the presence of ∆9-THC was a function of genotype
for neuregulin 1 (MMN reduced in the presence of ∆9-THC for
those with NRG1 rs7834206 polymorphism). Neuregulin 1 is a
gene implicated in schizophrenia that influences synaptic plastic-
ity via multiple pathways, including those involving NMDAGluRs
(128). The possibility that genes confer vulnerability to ∆9-
THC effects on cognitive processing also finds support in animal
research where heterozygous Neuregulin 1 knockout mice have
been observed to show differential sensitivity to the acute effects
of ∆9-THC on behavioral phenotypes of schizophrenia (151).

Despite dopamine being a modulator of NMDAGluRs and
a central focus of treatment and models of schizophrenia (37,
132), there are no studies supporting a significant effect of
altered dopamine levels on MMN amplitude in healthy adults
(see Table 3). Furthermore, with one recent exception (reviewed
below), studies within schizophrenia do not support a significant
effect of medication type or dose on MMN [see Ref. (5) for review],
and no significant differences in MMN amplitude between med-
icated and unmedicated patients (52, 152). However, Zhou and
colleagues (79) have recently reported a significant progressive
increment in MMN in persons with schizophrenia treated with
aripiprazole (larger at 4 and 8 weeks of treatment than at base-
line). MMN was measured using a traditional oddball paradigm
with two deviant types (frequency and duration) and effects are
presented and reported for the difference waveforms only. Arip-
iprazole differs from other second generation anti-psychotics in
that its action at dopamine D2 receptors shows functional selec-
tivity (153–155). It has been proposed that this selectivity may be
related to observations that it has differential effects on the two
main dopaminergic pathways, namely a predominant effect on
the mesolimbic pathway (156). Although MMN remained signif-
icantly smaller than that in matched controls, the authors argue

that the effect of the drug treatment on MMN does raise questions
about whether MMN amplitude is really a trait or state marker.
Finally studies on benzodiazepines, often prescribed to persons
with schizophrenia, have consistently failed to demonstrate any
effect on MMN amplitude (see Table 3).

In summary, the literature to date on the pharmacol-
ogy of MMN generally reflects its obvious relationship with
experience-dependent synaptic plasticity. The observed effects
of ketamine, nicotine and cannabis provide support for the
NMDAGluR-susceptibility of the system underlying MMN and
therefore utility to schizophrenia research on MMN as they
offer useful insights into the neurobiological processes that can
influence or modulate MMN amplitude. However the memantine
studies clearly caution that the relationship between perturbation
of NMDAGluRs and MMN amplitude is not a simple one. There
is insufficient information within most published studies to deter-
mine exactly how the various agents are altering the underlying
processes with most reporting on difference waveforms only.
Clarity regarding which elements of changed responsiveness are
affected by drugs is particularly important to a thorough under-
standing of the process and these issues are discussed further in
Section “Translation to Animal Models” below. Where possible it
may be advantageous to add genotyping to pharmacology stud-
ies as it is well known that susceptibility to drug effects can be
dependent on genetic profiles but of course the cost and sample
size requirements are often prohibitive.

TRANSLATION TO ANIMAL MODELS
Animal models have the potential to inform investigation of the
physiological basis of MMN and potentially how it is disrupted in
persons with schizophrenia. However, the primary issue of debate
in animal models of MMN is to determine which components of
the MMN process can be observed (and under which conditions
they can be observed) in animals, there being some skepticism
expressed in the past over whether the rodent brain exhibits “true
MMN” (165). Debate over how exactly to measure MMN (see
The Measurement of MMN – Is there an Optimal Paradigm with
Which to Study MMN in Schizophrenia?) is therefore particularly
relevant to animal work. Results from several different control
designs are reviewed in this section and for ease of communication
they are presented diagrammatically in Figure 1.

The presence of adaptation to repeated stimuli (or stimulus-
specific adaptation, SSA) in A1 is well-described in the cat (8, 166),
rat (167–170), and macaque (171). A1 neuron populations will
adapt to repetitive stimuli and will exhibit relatively large responses
to a rare deviant compared to a common standard. However, as
reviewed in Section “The Measurement of MMN – Is there an
Optimal Paradigm with Which to Study MMN in Schizophrenia?”
evidence of “true MMN” must include something more than just
adaptation effects. Terminology used is not consistent across ani-
mal and human studies so for simplicity we adopt the following
nomenclature: oddball mismatch response (MMR) is used when
referring to the difference between the response to a rare deviation
and the regular (usually physically different) repeating sound; and
controlled MMR is used to define evidence of contextual deviance
detection when a study has included some kind of control for adap-
tation and physical characteristics of the stimuli (see Figure 1).
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Todd et al. MMN: translating the potential

FIGURE 1 | Schematic of sequence design showing sequences
with deviants presented at a probability of 0.125 (1/8), two
oddball sequences are presented in a flip-flop design (A),
controlling for the physical characteristics of the stimuli.
Differential adaptation can be controlled for through the use of a

deviant-alone control (B), which presents the deviant at the same
temporal rate as it is presented in the oddball sequence, but without
the intervening standards; or the many-standards control (C), which
presents several stimuli (including the deviant) at the same temporal
rate as the oddball sequences.

WHAT IS THE EVIDENCE FOR A “CONTROLLED MMR” IN LOCAL FIELD
POTENTIALS?
Table 4 summarizes the animal studies that utilize oddball par-
adigms to test for evidence that a contextually deviant sound
has been detected. The location of the recording electrode plays
a large role in the findings of these studies, as epidural-placed
electrodes receive input from a larger and more distributed

network of cortical neurons than local field potential electrodes
(LFP; measuring changes in synaptic potentials) or electrodes
that register multi- or single-unit spike activity [MUA, SUA; see
Ref. (165)]. The majority of studies using LFP recordings have
searched for evidence of contextual deviance detection by record-
ing from A1, but some also have recorded from the hippocampus
(172–174). The majority of investigations using LFP or MUA
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Table 4 | Summary of papers investigating mismatch responses in animal models.

Reference Species/strain Recording

type/location

Anesthesia Control type Oddball

MMR

finding

Controlled

MMR

finding

Effects of NMDAGluR

antagonism

SUBDURAL RECORDINGS

Ulanovsky et al.

(8)

Cat MUA in A1 and

MGB

Xylazine/

ketamine

None Yes N/A

Ulanovsky et al.

(166)

Cat LFP in A1 and

MGB

Xylazine/

ketamine

None Yes N/A

Fishman and

Steinschneider

(171)

Cat LFP in A1 Awake Many-standards Yes No

Javitt et al. (130) Macaque LFP in A1 Awake None Yes N/A Infusions of PCP (5 and 10 µg)

into the auditory cortex

reduced oddball MMR

Ehrlichman et al.

(172)

Mouse

(DBA/2Hsd)

LFP in CA3 Awake None Yes N/A Ketamine (10 mg/kg) reduced

oddball MMR

Ehrlichman et al.

(173)

Mouse

(C57/129Sv

background)

LFP in CA3 Awake None Yes N/A

Farley et al. (169) Rat (unknown

strain)

LFP and MUA in

A1

Awake Many-standards Yes No

Eriksson and Villa

(167)

Rat (Long–Evans) LFP in A1 Awake Deviant-alone Yes No

Imada et al. (175) Rat (Long–Evans) LFP in frontal and

parietal cortices

Awake Deviant-alone,

standard-alone

Yes Yes

Taaseh et al. (170) Rat (Sabra) LFP and MUA in

A1

Halothane Many-standards,

deviant-alone

Yes Yes

von der Behrens

et al. (168)

Rat (Sprague–

Dawley)

LFP and MUA in

A1

Awake None Yes N/A

EPIDURAL RECORDINGS

Pincze et al. (176) Cat Epidural above A1 Awake None Yes N/A

Umbricht et al.

(177)

Mouse (C57/129) Epidural above A1 Awake Deviant-alone Yes No

Jung et al. (178) Rat (black

hooded)

Epidural above A1 Awake Many-standards Yes Yes

Tikhonravov et al.

(179)

Rat (Hannover–

Wistar)

Epidural near A1 Pentobarbital

sodium

Deviant-alone Yes Yes High-dose (0.3 mg/kg), but not

low-dose (0.1 mg/kg) MK-801

reduced oddball MMR

Tikhonravov et al.

(180)

Rat (Hannover–

Wistar)

Epidural near A1 Pentobarbital

sodium

Deviant-alone Yes Yes Low-dose (3 mg/kg)

memantine increased oddball

MMR, high-dose (10 mg/kg)

reduced oddball MMR

Roger et al. (181) Rat (Long–Evans) Epidural above

motor, parietal

and anterior

cingulate cortices

Awake None Yes N/A

(Continued)
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Table 4 | Continued

Reference Species/strain Recording

type/location

Anesthesia Control type Oddball

MMR

finding

Controlled

MMR

finding

Effects of NMDAGluR

antagonism

Ahmed et al. (182) Rat (Sprague–

Dawley)

Epidural above A1 Urethane Many-Standards Yes Yes

Astikainen et al.

(183)

Rat (Sprague–

Dawley)

Epidural above A1 Urethane Many-Standards Yes Yes

Lazar and

Metherate (184)

Rat (Sprague–

Dawley)

Epidural above A1 Urethane/

xylazine

Deviant-alone Yes No

Ruusuvirta et al.

(174)

Rat (Sprague–

Dawley)

Epidural above

A1/LFP in

subiculum, DG,

CA1

Urethane None Yes N/A

Astikainen et al.

(185)

Rat (Wistar) Epidural above A1 Urethane None Yes N/A

Nakamura et al.

(186)

Rat (Wistar) Epidural near A1 Awake Many-Standards Yes Yes

Ruusuvirta et al.

(187)

Rat (Wistar) Epidural above A1 Urethane Deviant-alone Yes Yes

Ruusuvirta et al.

(188)

Rat (Wistar) Epidural above A1 Urethane None Yes N/A

A1, primary auditory cortex; CA1, CA1 region of hippocampus; DG, dentate gyrus; LFP, local field potentials; MGB, medial geniculate body of thalamus; MUA,

multi-unit activity; SUA, single-unit activity.

(intra-cortical recordings), that also use many-standards or
deviant-alone control, have not found any evidence for true MMR
in the A1 (8, 167, 169, 171), whereas the majority of studies
using epidural recordings and appropriate controls have found
evidence for contextual deviance detection. This indicates that
while adaptation to stimulus frequency/pitch does occur in the
A1, the deviance-detection component of the MMN has not been
identified in this region, and if it is present in the A1, it may be
generated by more distributed networks than can only be observed
using LFP recordings.

One of the first animal model studies (130) found larger
responses to deviant sounds in an oddball paradigm originate in
the supragranular layers (II–III) and are dependent upon normal
functioning of the NMDAGluR (covered in Section“How do Phar-
macological Manipulations Alter the MMN Process?”). However,
Javitt et al. did not utilize a many-standard control and in a more
recent study that did (171), larger responses were not observed
to the deviant compared to the same tone in the many-standards
sequence (no evidence of true MMR). The many-standards con-
trol in this study may have overestimated adaptation, however, as
the deviant was presented at a probability of 10% in the oddball
sequence, and the tones used for the many-standards control were
presented at a maximum rate of 5% (171).

There are, to our knowledge, only two studies thus far utilizing
LFP recording that have found some evidence for what might be
considered controlled MMR in the rat brain (170, 175). Imada

et al. (175), using a frequency deviant paradigm, found that the
difference between the ERPs to deviant and standard stimuli was
significantly elevated from 0 in an oddball MMR. However as a
control they included separate sequences preserving the timing
of standard sounds (without deviants) and deviant sounds (with-
out standards) from the original oddball sequence. The ERP to
deviant-alone and the standard-alone did not differ (175). Accord-
ing to the authors, this indicates that there was a statistically
significant change in the response to the deviant stimuli in the
oddball measure, over and above adaptation, which may hint at
the presence of true MMR, albeit one that is not large enough
to produce a statistically significant difference in responses to the
oddball deviant compared to the deviant-alone. Taaseh et al. (170)
utilized both LFP and MUA recording and found that the response
to the oddball deviant tones did not exceed the response to the
same tone in a many-standards control sequence (their diverse-
broad sequence). However, the response to the deviant sound
was larger than the many-standards control in some recordings
(although not at a population level), indicating that perhaps a
subset of neurons do exhibit sensitivity to the contextual deviance
of the sound (170). In addition, their thorough characterization
of adaptation effects was used to generate a model which pre-
dicted that if only adaptation were occurring, the response to the
deviant would be smaller than the response to the same tone in the
many-standards control. However, these responses did not differ
significantly, suggesting (albeit rather indirectly) that contextual
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Todd et al. MMN: translating the potential

deviance detection is occurring in the auditory cortex. There is
therefore some evidence that recognition of contextual deviance
occurs in the rat A1. Such hints of response to contextual aberrance
may represent the first step in a cascade that results in full MMN
responses (170). This study, however, did not identify the signif-
icantly elevated response to the deviant compared to the control
that is similar to the MMN typically seen in humans– a pattern
only observed in animal models when recorded from larger brain
volumes (165).

WHAT IS THE EVIDENCE FOR A “CONTROLLED MMR” IN EPIDURAL
RECORDINGS?
Studies using epidural recordings in animals (mainly rats) use
electrodes implanted in the skull or sitting on the dura over the
auditory cortex (or close to the auditory cortex) to record ERPs
elicited during oddball sequences. Table 2 summarizes these stud-
ies. Of these, four use the many-standards control. Ahmed et al.
(182) used speech sounds as stimuli, and found larger responses
to the deviant sound/ba/in an oddball sequence compared to the
same sound presented at the same rate in a many-standards control
in anesthetized rats (182). Nakamura et al. (186) and Jung et al.
(178) both investigated responses to frequency/pitch deviants in
awake rats, and found larger responses to deviant stimuli com-
pared to those in the many-standards control sequence (178, 186).
Astikainen et al. (183) examined responses to frequency deviants in
anesthetized rats and found evidence of deviance detection when
the deviant was a high frequency (4.2 kHz) stimulus, not a low fre-
quency stimulus (3.8 kHz), as was also found in Nakamura et al.
(3.6 Vs. 2.5 kHz) (183). Nakamura et al. also investigated the effect
of duration deviants and identified larger responses to long (but
not short) duration deviants compared to the same tones in the
many-standards control sequence (186). Therefore all four studies
using the many-standards control have indeed observed a response
reminiscent of controlled MMR.

Although all these studies all report deviance detection in the
rat brain, the morphology of the ERPs differs between each of the
studies, with the most dramatic difference in ERPs being observed
between the awake recordings (178, 186) and the anesthetized
recordings (182, 183). Awake ERPs comprise 3–4 negative and pos-
itive components, and the anesthetized recordings feature only one
large positive component. The polarity of the deviance-detection
effects is also different, with negative deflections in response to
the deviant in the awake animals, and positive deflections in anes-
thetized animals. Such trends can be similarly observed in other
studies (Table 4),with the majority differences between the deviant
and the standard being positive in anesthetized rats and negative
in awake rats. These findings illustrate that deviance-detection
need not be a response that exactly mimics the human MMN
(insofar as being of the same polarity). Indeed human mismatch
responses (MMR) change from negative to positive in polarity
when the recording location is moved from fronto-centrally sites
to the mastoid when recorded using a nose reference (189).

The remainder of studies examining epidural ERPs in oddball
paradigms use either the deviant-alone to control for adapta-
tion, or use no adaptation control at all. Although the deviant-
alone sequence may overestimate the contribution of adaptation
(165), three of the five studies utilizing this control sequence find

evidence for controlled MMR recorded from epidural electrodes
(179, 180, 187). Of those epidural studies that did not imple-
ment a control for adaptation, several did not use simple frequency
deviants (which are highly predisposed to be affected by adaptation
mechanisms in the A1), but rather used more complex deviants
that presumably elicited responses that would not be so readily
perturbed by neural adaptation. For instance, Roger et al. (181)
measured responses to duration deviants [which are not affected
by adaptation in the A1 to the same degree as frequency deviants;
(169)], and found larger responses to duration deviants (181). In
addition, Ruusuvirta et al. (174) examined responses to duration
deviants in combination with stimulus onset asynchrony deviants,
and found evidence for larger deviant responses (compared to
standards) only in the condition in which the deviant occurred
earlier than expected and deviated in duration, indicating a possi-
ble threshold level for deviance that needs to be reached before a
deviance-detection-like response iselicited (174). However, with-
out the use of a many-standards (or even a deviant-alone) control,
it remains difficult to conclude that such responses are com-
pletely independent of adaptation effects. Although tone duration
is coded in a different way to the frequency, and previous studies
have demonstrated that adaptation mechanisms for duration are
not as robust as they are for frequency (169), this was examined in
the auditory cortex only, and it cannot be ruled out that another
region (or network of regions) adapts to stimulus duration in the
same way as the auditory cortex does for frequency. These studies
show that when using methods that detect shifts in potential at a
network-level (i.e., a large spatial scale), signs of human-like MMR
(independent of adaptation) are evident in animals.

HOW DOES ANIMAL RESEARCH AUGMENT HUMAN RESEARCH ON
MMN?
Animal models are an ideal tool with which to investigate the
underlying neurobiology of MMR because of the ability to per-
form more invasive and selective neurobiological manipulations
(e.g., drug microinjection to specific regions). In addition, the
comprehensive genetic toolkit available for mouse models will
enable researchers to determine the role of specific genes and
neural populations in the generation of MMR using transgenic
animals and optogenetics. With a consensus emerging regarding
the ideal recording method (epidural) and the current preferred
control to use (many-standards) to examine MMR (adaptation
and deviance detection) in animal models, the time is ripe for
further studies examining the neurobiology of these elements of
MMR, using pharmacological, developmental, and genetic manip-
ulations. Unfortunately, few studies implement a control for adap-
tation effects (or if they do, do not adequately report drug effects
on these), and it is therefore difficult to determine whether or
not the agents given affect adaptation, deviance-detection, or
both. The preferable way to investigate the pharmacology of
MMN in animal models would be test different manipulations
in a model that exhibits both adaptation and deviance detection
[e.g., Ref. (178)], and to compare how different agents affect the
responses to standards, deviants, and control stimuli; with the dif-
ference between the control and standard representing adaptation
and the difference between the deviant and the control repre-
senting MMR and the effects of drug interventions on these two
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separate components can be examined. To our knowledge, no
studies have tested such a model thus far.

Studies in rats and mice (like those on the macaque described
above) have been used to study the role of the NMDAGluR system
in MMN. These studies, in contrast to Javitt et al. (130), suggest
that perturbations in NMDAR signaling can also alter responses
to standard stimuli. In the absence of a control for adaptation
effects, Ehrlichman et al. found that ketamine (a non-competitive
NMDAGluR antagonist) concurrently increased the response to
the standard (which was small to start with) and reduced the
response to the deviant, albeit not to a significant degree, in awake
mice (172). Tikhonravov et al. used a low (0.1 mg/kg) and high
(0.3 mg/kg) dose of intraperitoneal MK-801 to examine the effects
of NMDAGluR perturbation on responses to oddball stimuli, in
addition to a deviant-alone control in pentobarbital-anesthetized
rats (179). Responses to the deviant were more positive than the
responses to the standard for the saline condition and were rela-
tively unchanged by the low-dose of MK-801. However, the high-
dose of MK-801 lowered the response to the deviant and increased
the response to the standard, effectively reversing the polarity
of the oddball effect. The degree to which MK-801 altered the
magnitude of the difference between the oddball deviant and the
deviant-alone was not reported. However, the period over which
the deviant was significantly different from the deviant-alone was
reported: there was a positive deflection in response to the deviant
(relative to deviant-alone) in saline-treated animals (indicating
deviance detection), which was absent after low-dose MK-801 and
reversed in polarity after high-dose MK-801 (179). The finding
that low-dose MK-801 can reduce the difference between the odd-
ball deviant and deviant-alone, without a change in the differences
between deviant and standard could indicate that this dose can
preferentially disrupt deviance detection, while sparing adapta-
tion. However, the high-dose of MK-801 not only disrupted both
deviance detection and adaptation but reversed the polarity of
these changes. Such reversals, caused by an increase in the response
to the standard and a decrease in the response to the deviant, are
similar to those found after ketamine by Ehlrichman et al.

In a second study, Tikhonravov et al. investigated the effects
of a low (3 mg/kg) and a high (10 mg/kg) dose of memantine on
responses to oddball stimuli and deviant-alone stimuli in anes-
thetized rats (180). Like MK-801, memantine is an uncompetitive
NMDAGluR antagonist, but unlike MK-801, is a very low-affinity
antagonist and has potential as a cognitive enhancer [(190) see
also discussion of memantine in Section “How do Pharmacologi-
cal Manipulations Alter the MMN Process?”]. Similar to previous
studies in anesthetized rats, the oddball MMR was positive in
saline-treated rats. The low-dose of memantine resulted in a sig-
nificant increase in the response to the deviant and the oddball
MMR was significantly prolonged compared to the saline group.
The high-dose of memantine, on the other hand, reduced the
time over which the oddball MMR was significantly different
from 0 and reversed the late phase of the difference waveform,
possibly due to an increase in the response to the standard (180).
With regard to deviance-detection-specific changes, the deviant
was more positive than the deviant-alone in saline-treated rats,
an effect that was prolonged in the low-dose memantine group.
In rats treated with the high-dose of memantine, however, no

deviance-detection response was observed. These findings indi-
cate that low-dose memantine potentiates the deviance-detection
response, with no significant effect on the adaptation response, but
that high-dose memantine acts similarly to high-dose MK-801,
affecting both adaptation and deviance detection and reversing
the polarity of the oddball MMR.

Overall, these pharmacological studies suggest that NMDAGluR-
antagonists act in a dose-dependent fashion, with low-dose/low-
affinity antagonists facilitating deviance detection (by increasing
the response to the deviant), then as NMDAGluR perturbations
are increased with low-dose/high affinity antagonists, deviance
detection is inhibited while adaptation is spared. However, with
high-doses of high affinity blockers (ketamine and MK-801), the
response to the standard is increased, thus indicating impaired
adaptation. The selective impairment of deviance detection and
not adaptation after MK-801 is also highlighted in (169), where
it was reported that subcutaneous MK-801 (maximum dose,
0.1 mg/kg) reduced responses to both the deviant and the standard
together, while preserving the difference between them, indicat-
ing that this dose did not affect neural adaptation in A1, simi-
lar to findings in the study in which the same drug was given
intraperitoneally (179). These studies indicate that the mecha-
nism by which NMDAGluR-antagonists may reduce the MMN
may be rather complex, with the dose and affinity of the antago-
nist interacting with adaptation and deviance-detection resulting
in varied effects on these elements of the MMN. This animal
work highlights a complexity in the role of NMDAGluRs in the
generation of MMRs that was not discovered in human stud-
ies using NMDAGluR-antagonists, most likely due to the smaller
dose-range, smaller sample size, and lack of consistent report-
ing of the response to standards seen in the human work. This
animal work therefore highlights the need to examine a larger
dose-range, as well as the need for consistent reporting of both
standard and deviant responses in human pharmacological MMN
studies.

Several of the previously mentioned animal pharmacological
studies have similar weaknesses highlighted for the human studies.
While (179, 180) used a control for adaptation (the deviant-
alone control), they did not report directly on the magnitude of
responses to the standard, the deviant and the deviant-alone con-
trol, thus making the interpretation of the mechanisms affected
by pharmacological agents very problematic. While these ani-
mal model investigations are still in their infancy, the promise
of such models is far-reaching. Future investigations will be able
to focus on a range of doses of NMDAGluR-antagonists in par-
adigms in which adaptation and deviance detection are well-
described, to further explore the role of NMDAGluR signaling in
both of these components. In addition, NMDAGluR-antagonists
can be infused directly into regions of interests [as performed
by Javitt et al. (130)], to determine where NMDAGluR signal-
ing is important for MMR. Further, high-doses of muscimol
[a Gamma-Amino Butyric Acid (A) agonist] can be infused to
completely inactivate regions to determine their contribution to
deviance detection. For example (174) found evidence of MMR
in rat hippocampus – the degree to which these contribute to
epidural-recorded MMR can be determined by infusing muscimol
into selected hippocampal regions. In addition, animal models of
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schizophrenia-like reductions in MMN could possibly be devel-
oped. (173) used transgenic mice heterozygous for neuregulin
1 (nrg1; an hypothesized schizophrenia-susceptibility gene) and
found a reversal in polarity of the oddball MMR in nrg1 mutants
compared to wild type mice. However, this study did not adopt
a control for adaptation effects, so it is unknown in nrg1 plays a
role in adaptation or adaptation-independent deviance-detection.
Experiments in our lab are currently underway to determine the
effect of maternal immune activation on MMR (both adaptation
and deviance detection) in rats. Maternal immune activation is
a risk factor for schizophrenia and when modeled in rats and
mice, is associated with numerous schizophrenia-like behavioral
and neurodevelopmental outcomes, particularly those related to
NMDAGluR-dysfunction (191–193). This model therefore may
also exhibit schizophrenia-like changes in MMR and could be
used as a potential experimental platform to examine the pathol-
ogy underlying schizophrenia-like reductions in the mismatch
response, and potential treatments for such alterations.

CONCLUSION
The above review supports several conclusions regarding the
potential of MMN as a tool to study the biological processes
taking place in those with (and potentially those at-risk for)
schizophrenia.

MEASUREMENT AND REPORTING OF MMN
There are pros and cons to any experimental design and it is
the authors’ opinion that there is no optimal design for use in
schizophrenia studies. To recommend an optimal design, while
improving consistency in the literature, would come at the expense
of the unique contributions that can be made by novel designs [see
Ref. (24) for review] that can enrich our understanding of the per-
ceptual inference within the MMN process and how gain in this
signal is controlled. Furthermore, study design is often limited by
mundane and yet important considerations of test duration that
could render particular paradigms less feasible. However, two rec-
ommendations arise from this review. The first is that authors and
journals facilitate a closer adherence to publication standards. A
failing of the current literature is that a large number of studies
(including some by our group) do not adhere to recommended
publication standards for ERP research which stipulates the dis-
play of the original ERPs from which difference waveforms have
been derived (194). By comparing research findings across species
and drug studies (as above) the importance of at least report-
ing standard and deviant ERPs becomes clear. Secondly, while
the traditional oddball paradigm provides a robust measure of
the reduction in MMN amplitude in schizophrenia, protocols
designed to identify constituents of the MMN process (or odd-
ball combined with rigorous controls) introduce the capacity to
begin disentangling which components of the process are in fact
compromised. This advantage becomes crucial when attempting
the translation of this research into animal models (see Trans-
lation to Animal Models) and arguably also to pharmacological
studies (see How do Pharmacological Manipulations Alter the
MMN Process?). Where feasible, future studies should consider
the advantage of designs (or analysis techniques) that facilitate the
differentiation between adaption effects and something more akin
to true contextual deviance detection.

VULNERABILITY TO SCHIZOPHRENIA
Our review of the literature to date indicates limited support for
small MMN conferring some vulnerability to schizophrenia but we
consider this an open question best addressed by large longitudi-
nal studies. It is the authors’ opinion that there is much to gained
by continued efforts to understand factors that influence MMN
size (using novel designs, pharmacological, and animal research)
in parallel to such efforts.

PHARMACOLOGY AND ANIMAL MODELS OF MMN
It seems clear from the pharmacological studies (in animals
and humans) that adaptation and sensitivity to contextual
deviance may show differential effects in the presence of compro-
mised NMDAGluR function. Pharmacological, like animal studies,
require indices of both to be informative about the effect of agents
on the MMN process. Similar to schizophrenia studies, animal,
and pharmacological studies inconsistently report on standard
and deviant effects. While our review of pharmacological stud-
ies is more supportive of some agents (e.g., glutamatergic and
cholinergic) than others (e.g., monoamines), our knowledge of
influences on perceptual inference and learning underlying MMN
continues to grow and challenge existing models [e.g., Ref. (98,
195)] and it remains possible that future paradigms may be sen-
sitive to agents that current paradigms are not. In other areas of
learning, animal models and pharmacology have provided great
insight into schizophrenia [associative learning (196)] and there
is good reason to suppose that this will also be true of MMN
research as well as offering the potential to examine commonali-
ties in underlying pathology. While there are many challenges in
translating the potential of MMN in elucidating the pathophys-
iology of the schizophrenic illness, we believe the current state
of research encourages scientists to pursue the many numerous
potentially fruitful avenues available to achieve this goal.
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