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Abnormalities in reinforcement learning are a key finding in schizophrenia and have been
proposed to be linked to elevated levels of dopamine neurotransmission. Behavioral deficits
in reinforcement learning and their neural correlates may contribute to the formation of
clinical characteristics of schizophrenia. The ability to form predictions about future out-
comes is fundamental for environmental interactions and depends on neuronal teaching
signals, like reward prediction errors. While aberrant prediction errors, that encode non-
salient events as surprising, have been proposed to contribute to the formation of positive
symptoms, a failure to build neural representations of decision values may result in neg-
ative symptoms. Here, we review behavioral and neuroimaging research in schizophrenia
and focus on studies that implemented reinforcement learning models. In addition, we dis-
cuss studies that combined reinforcement learning with measures of dopamine. Thereby,
we suggest how reinforcement learning abnormalities in schizophrenia may contribute to
the formation of psychotic symptoms and may interact with cognitive deficits.These ideas
point toward an interplay of more rigid versus flexible control over reinforcement learn-
ing. Pronounced deficits in the flexible or model-based domain may allow for a detailed
characterization of well-established cognitive deficits in schizophrenia patients based on
computational models of learning. Finally, we propose a framework based on the poten-
tially crucial contribution of dopamine to dysfunctional reinforcement learning on the level
of neural networks. Future research may strongly benefit from computational modeling but
also requires further methodological improvement for clinical group studies.These research
tools may help to improve our understanding of disease-specific mechanisms and may help
to identify clinically relevant subgroups of the heterogeneous entity schizophrenia.

Keywords: schizophrenia, dopamine, computational modeling, reinforcement learning, aberrant salience, predic-
tion error, fMRI, PET imaging

INTRODUCTION AND OUTLINE
The “dopamine-hypothesis” of schizophrenia was initially built
upon the observation that dopamine receptor antagonists, such as
haloperidol, attenuate psychotic symptoms (1). Evidence show-
ing that elevated dopamine levels are indeed involved in the
pathophysiology of psychotic symptoms and schizophrenia is
primarily derived from neurochemical studies using positron-
emission-tomography (PET) with radioactive ligands targeting the
brain’s dopamine system. Such studies clearly indicate elevated
levels of presynaptic dopamine function (2, 3) with particularly
strong evidence from meta-analyses for elevated dopamine syn-
thesis capacity (4, 5). A hallmark of dopamine research was the
observation that phasic releases of dopaminergic neurons code a
temporal-difference prediction error, which was later shown to
be causally involved in learning (6–8). This ability to form pre-
dictions about future outcomes is fundamental for interactions
with the environment and depends on neuronal representations
of such teaching signals. Behavioral impairments in reinforce-
ment learning are a key finding in schizophrenia patients and

have been proposed to be closely linked to reports of elevated
presynaptic dopamine neurotransmission. Influential theoretical
work suggests that dysfunctional reinforcement learning may con-
tribute to the formation of the prominent clinical characteristics
of schizophrenia patients, namely positive and negative symptoms
(9–11). Furthermore, prediction errors are involved in learning-
related changes in synaptic plasticity (12), and aberrant plasticity
has been suggested as a potential common biological mechanism
characterizing the schizophrenia spectrum (13, 14).

Embedded in this context, the central attempt of this article is
to review studies on reinforcement learning in schizophrenia and
to disentangle dimensions of symptom formation and potential
disease-specific mechanisms in the existing literature. The primary
focus of this article is to provide an up-to-date overview of the
existing literature with the aim to review existing evidence for two
influential theories. Therefore, we only include a brief introduc-
tion (see Reinforcement Learning in Schizophrenia: Theoretical
Considerations) to these hypotheses and refer to the original pub-
lications for more detailed theoretical descriptions. The empirical
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studies reviewed here comprise behavioral and functional neu-
roimaging studies [restricted to functional magnetic resonance
imaging (fMRI) and PET] in patients suffering from schizophre-
nia. In the first part, we start with studies on reward anticipation
and processing based on pre-learned contingencies. Subsequently,
we focus on studies that directly examine learning over time with
a focus on studies that implemented reinforcement learning mod-
els. Finally, we summarize studies that combined experimental
perturbations of the brain’s dopamine system, such as pharmaco-
logical challenges and molecular imaging (PET), with measures of
reinforcement learning.

FEEDBACK ANTICIPATION AND PROCESSING
A series of studies used the monetary incentive delay task (MID), a
paradigm invented by Knutson and colleagues [(15), see also Ref.
(16)]. The initial study demonstrated that participants speed up
motor responses to obtain rewards and that anticipation as well
as delivery of rewards evoke ventral striatal activation. The first
application of this task in schizophrenia patients was carried out
by Juckel and colleagues: they found reduced ventral striatal activa-
tion in unmedicated patients (17). This finding was subsequently
replicated in a larger cohort of drug-naïve, first-episode patients
(18, 19). In the study by Juckel et al. (17), it was demonstrated
that blunting of anticipatory ventral striatal activation elicited by
monetary reward reflected the individual degree of negative symp-
toms (17). This association was also present in patients treated
with typical or first generation antipsychotics (FGAs, or “typical”
antipsychotics), who showed reduced ventral striatal activation
during reward anticipation, while patients treated with atypical
or second generation antipsychotics (SGAs, or “atypical” antipsy-
chotics) showed intact activation during anticipation of monetary
reward in the same region (20, 21). This effect of SGAs was recently
replicated in a larger cohort of patients (22). In line with these
results, further studies applying the MID task in chronic schiz-
ophrenia patients medicated predominantly with SGAs did not
find reduced ventral striatal anticipation of monetary reward in
the patient group, as a whole (23–25). Two studies replicated the
association of reward anticipation with negative symptoms (25)
and apathy (24), while two other studies reported a correlation of
ventral striatal activation during reward anticipation with positive
symptoms (18, 19).

Although the static MID task is thought to mirror aspects
of animal experiments studying reinforcement learning in the
dopaminergic system [e.g., Ref. (6)], the gross time scale of fMRI
compared to neurophysiological studies needs to be taken into
account (26). Nevertheless, it has been demonstrated that ventral
striatal activation during reward anticipation is indeed modulated
by dopamine: a positive correlation between the anticipatory acti-
vation in core dopamine areas and reward-induced dopamine
release was observed via competition of endogenous dopamine
with a PET D2/3-receptor radioligand (27). In a study by Knut-
son et al. (28), diminished ventral striatal reward anticipation was
reported when comparing healthy participants receiving amphet-
amine (resulting in a massive release of dopamine) to placebo
(28). The latter study coincides with the results reported above in
schizophrenia patients during reward anticipation and the well-
established finding of elevated presynaptic dopamine function in

schizophrenia using PET with FDOPA and similar tracers [for
meta-analyses see: Ref. (4, 5)]. Based on this, it appears conceivable
that event-related responses to reward-indicating cues disappear
in the noise of elevated dopaminergic activity observed in schiz-
ophrenia patients and that this may ultimately contribute to a
failure of salience attribution to environmentally relevant stim-
uli (9, 10, 29). Interestingly, Esslinger et al. (18) implemented the
MID task in combination with another task possibly reflecting
salience and showed in an exploratory correlation analysis that
more pronounced ventral striatal hypoactivation during reward
anticipation was associated with more salience attribution to neu-
tral stimuli (18). In line with this, a recent study using emotional
picture stimuli demonstrated that schizophrenia patients rate neu-
tral pictures as more salient (30). These results provide some rather
indirect support for the idea of aberrant salience in schizophrenia,
which we will briefly introduce in the following section.

In contrast to reward anticipation, fewer studies used the MID
task to examine the delivery of monetary outcome. One study (31)
found that violations of outcome expectancies triggered abnor-
mal neural responses in unmedicated patients: While medial-
prefrontal activation was exaggerated when an expected-reward
was omitted, ventral striatum (VS) displayed reduced activation
for successful versus unsuccessful loss avoidance. The degree of
delusion severity was found to be associated with activation in
medial-prefrontal cortex (PFC) for successful versus unsuccessful
loss avoidance. Moreover, functional connectivity between VS and
medial PFC was reduced in patients. In a similar vein, Waltz et al.
(25) found reduced activation in the medial PFC and lateral PFC
when comparing win versus loss trials in schizophrenia patients
medicated with SGAs. Activation to reward delivery in lateral PFC
was negatively correlated with the degree of positive and negative
symptoms (25). Another study (23) tested high and low rewards
together with high and low punishments against neutral events
and found significant activation in lateral PFC of healthy con-
trols, most likely reflecting salience. This activation pattern was
diminished in patients treated with SGAs. Interestingly, a recent
study showed exaggerated activation in dorsolateral PFC elicited
by neutral outcomes in unmedicated patients (19).

Two studies examined classical conditioning that actually took
place outside the MRI scanner (32, 33). These designs might be
thought of as extensions to studies using the MID task: Contingen-
cies were pre-learned before scanning, but allow one to distinguish
between expected-rewards, unexpected-rewards (presumably mir-
roring positive prediction errors), and unexpected omissions of
rewards (presumably mirroring negative prediction errors; (32)).
Juice was used as a primary reinforcer in 18 medicated patients
(32). Attenuated neural responses in dopaminergic core areas
(midbrain and striatum) to expected and unexpected-reward
deliveries were observed, while activation in reward omission trials
was largely intact. Morris et al. (33) completed this approach in
a full 2× 2 design, thereby enabling an orthogonalization of the
factors “rewards” and “surprise” as well as the interaction of both
factors, which is assumed to mirror prediction-error-related brain
activation. In 21 schizophrenia patients medicated with SGAs, this
revealed a disrupted differentiation between expected and unex-
pected events in a way that ventral striatal activation is not coding
prediction errors: while response to expected events in right VS
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was exaggerated, response to unexpected outcomes in left VS was
found to be blunted (33).

In summary, fMRI studies in reward processing using the
MID task have so far provided important insights into the neural
processes underlying outcome anticipation and delivery in schiz-
ophrenia. In particular, the finding of reduced ventral striatal
activation during outcome anticipation was consistently repli-
cated across three studies involving a total of 68 unmedicated
patients. An association of anticipatory ventral striatal activation
with negative symptoms was reported in five studies involving 10
unmedicated patients and 52 medicated patients. Antipsychotic
medication remains a crucial issue since these drugs specifically
block those striatal D2-receptors that are (among others) acti-
vated by potentially prediction-error-associated dopamine release
[e.g., Ref. (34, 35)] and moreover affect presynaptic dopamine
synthesis (36, 37). Therefore, assessing unmedicated patients is
key to understanding dopamine dysfunction in schizophrenia and
to avoiding confounds by medication effects, which also appear to
differ depending on FGAs versus SGAs (20, 21). Furthermore, one
important limitation of the studies discussed thus far is the fact
that all reward contingencies are pre-learned (i.e., before partici-
pants enter the MRI scanner and perform the task). Anticipatory
brain activation during the MID task is likely to capture some
aspects of reinforcement learning in particular with respect to cue-
or action-related value signals. Some kind of value quantification is
usually the main outcome variable of reinforcement learning mod-
els. It is important to note that these functions evolve over time,
which is also a fundamental principle of brain signals. This points
out an important limitation of the MID studies which may there-
fore provide a rather coarse proxy of value-related brain activation
and consequently emphasizes the necessity to study learning over
the course of time. Thus, studying the temporal dynamics under-
lying the actual learning process may provide more insights into
symptom- and disease-specific processes associated with schizo-
phrenia. In contrast to studies which used the MID task or similar
designs, all studies discussed in Section “Behavioral Studies of
Reinforcement Learning in Schizophrenia” refer to experimen-
tal paradigms that investigate learning on a trial-by-trial basis.
Detailed computational modeling of such temporal dynamics
may be particularly helpful to elucidate dysfunctional processes
in patients and to improve characterization of a heterogeneous
disease entity that is so far still based on symptoms (38–41).

REINFORCEMENT LEARNING IN SCHIZOPHRENIA:
THEORETICAL CONSIDERATIONS
Reinforcement learning represents a promising, theory-driven tool
(42) which aims to quantify learning on a trial-by-trial basis and
has so far been implemented in a limited number of clinical group
studies [e.g.,Ref. (43), Table 1]. Although there are several different
variants of models, most of them separate two main contributors
to the learning process and both of them change on trial-by-trial
(Box 1): first, the delivered outcome which refers to the time point
when prediction errors arise. This teaching signal is thought to
be crucially involved in driving any learning process. Second, the
values of environmental cues or actions which are learned via this
teaching signal. Concepts of motivational or incentive salience are
closely linked with values of actions or environmental cues (44)

that can be acquired during prediction-error-driven trial-and-
error learning. Differences in the perceived properties of feedback
stimuli per se (e.g., shifts in hedonic experience or salience) may
also influence the elicitation of prediction errors and thus poten-
tially corrupt learning processes. Based on these two main time
points, we will proceed with a brief summary of two influential
hypotheses with respect to the potential contribution of rein-
forcement learning to symptom dimensions and disease-specific
features in schizophrenia.

We begin with the“aberrant salience”hypothesis: schizophrenia
patients may attribute salience to otherwise neutral environmen-
tal stimuli, and those stimuli may ultimately appear meaningful
and evoke delusional mood in patients (9, 10). This process has
been described as closely linked to a dysregulation of the dopamine
system where both chaotic dopamine firing (45) and elevated base-
line dopamine levels (46, 47) have been proposed to be involved.
Whether this process actually reflects reinforcement learning in the
same way as it was theoretically and mechanistically defined for
healthy people (42) remains an open and exciting question. If this
is the case, then neutral events should elicit prediction errors which
may consequently train values for the associated cues or actions,
and these values may finally exceed incentive values associated
with rewarding or otherwise reinforcing events. In other words,
patients are assumed to attribute importance to stimuli ignored
by healthy volunteers and thereby learn something else. The degree
of this alteration should be related to positive symptom levels, in
particular delusions. It is important to note, that a prerequisite
for the latter idea is that misattributed salience to certain neutral
events remains stable over a period of time. Alternatively, it may
also be possible that the process of misattributing salience is fluc-
tuating permanently, resulting in a random pattern (a state where
“everything is salient”) that would formally result in no learning at
all and might therefore be harder to quantify. It is also conceivable
that aberrant aspects of reinforcement learning have not yet been
formulated correctly. Here, the role of unsigned prediction errors,
as a valence-unspecific salience signal, might be of interest and
could possibly be integrated in models of reinforcement learning
(48–50).

The second hypothesis focuses on a deficit in the representa-
tion of learned values (11). This hypothesis posits that prediction
errors are not adequately used to learn values even though hedo-
nic experience itself remains mainly intact. This concept relates
closely to the idea that reward feedback is not adequately trans-
formed into motivational drive for goal-directed behavior (51)
and has been proposed as a potential mechanism for the origin
of negative symptoms (11). In general, a failure to learn any value
may also be based on a reduction of hedonic experience, in which
case no prediction errors are elicited and therefore no values can
be learned; based on studies reviewed in the next section, this
appears to be unlikely in schizophrenia patients. On the other
hand, a deficit in using monetary and primary rewards for moti-
vated behavior would appear similar to what was proposed in
the incentive-sensitization theory of addiction disorders, which
assumes a shift from non-drug rewards to drug-related rewards
(44). In schizophrenia, such a shift may predominantly concern
neutral stimuli and therefore result in aberrant learning as pointed
out in the aberrant salience hypothesis.
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Table 1 | Studies in schizophrenia patients using a computational model approach.

Reference Paradigm Methods Model Main findings

Strauss et al.

(89)

Temporal utility

integration task

51 Medicated

schizophrenia and

schizoaffective patients,

behavioral data only

RT-based RW Impaired go, intact nogo learning in patients, correlation

with negative symptom level

Gold et al.

(64)

Instrumental probabilistic

reward-approach versus

punishment avoidance

learning

47 Medicated

schizophrenia and

schizoaffective patients,

behavioral data only

Actor-critic

Q-learning

hybrid of these

two

High negative symptoms patients fail to represent and learn

from reward value properly, loss avoidance is preserved

Murray et al.

(43)

Instrumental reward

learning

13 First-episode patients, 8

on SGAss, later diagnosed:

1 bipolar, 1 psychosis, 11

schizophrenia, fMRI

Q-learning Impaired differentiation between neutral and reward

predicting stimuli, attenuated activity for reward predicting

stimulus, trend-wise augmented for neutral stimulus,

reduced RPE activity in midbrain and VS

Koch et al.

(103)

Instrumental gambling

task

19 Medicated (except 1)

schizophrenia patients,

fMRI

TD Impaired behavioral performance, reduced dorsolateral PFC

and cingulate gyrus probability related activity, reduced RPE

response in PFC, putamen, hippocampus and insula

Gradin et al.

(106)

Instrumental probabilistic

reward learning

15 Medicated

schizophrenia patients,

fMRI

SARSA-TD Less rewards achieved, reduced RPE related activity in

striatum, thalamus, amygdala-hippocampal complex, and

insula, reduced encoding of expected value in

amygdala-hippocampal complex and parahippocampal

gyrus, correlation with positive symptoms

Romaniuk

et al. (93)

Aversive classical

conditioning

20 Medicated

schizophrenia patients,

fMRI

TD No difference in RT, difference in skin conductance, impaired

amygdala activation during conditioning, impaired midbrain

activation during learning, inappropriate activation of nucleus

accumbens in response to neutral cues

Schlagenhauf

et al. (77)

Instrumental reversal

learning task

24 Unmedicated

schizophrenic patients,

fMRI

RW,

double-update,

Hidden–Markov

Deficit in reversal learning, relation to positive symptoms,

VS learning signals are reduced independent of task insight

in contrast to prefrontal activation

RW, Rescorla–Wagner-model; TD, temporal-difference model; SARSA, state action response state action; RPE, reward prediction error; VS, ventral striatum; RT,

reaction time.

As indicated, the two hypotheses are only partially independent.
It is possible that both mentioned mechanisms exist in parallel and
converge in producing a behavioral deficit but diverge in their dif-
ferential contribution to symptom formation. In the following, we
will review studies that aimed to test these hypotheses. Thereby,
we try to build a coherent picture of how reinforcement learning
may contribute to the formation of psychotic symptoms and if this
appears to be dimensional or categorical. Finally, we endeavor to
interpret previous studies with regard to their disease specificity by
summarizing and discussing those studies that examined learning
over time. We start with behavioral studies followed by a section on
imaging studies. We also mention if studies implemented models
of reinforcement learning and how parameters underlying these
models were inferred.

BEHAVIORAL STUDIES OF REINFORCEMENT LEARNING IN
SCHIZOPHRENIA
Behavioral deficits in associative learning, particularly in instru-
mental tasks where feedback is used to guide behavior, are

frequently replicated in schizophrenia patients. So far, only seven
studies have implemented models of reinforcement learning (see
Table 1), and although reinforcement learning modeling quan-
tifies the observed behavior, only two of these studies were
purely behavioral; the other five studies also collected fMRI data
and regressed model-derived learning time-series (e.g., prediction
errors) against imaging data. Studies on classical conditioning are
reported in the subsequent section, because all the clinical stud-
ies conducted so far have assessed classical conditioning effects
via physiological measures. In the following we will summarize
studies that used instrumental tasks. We will also describe model-
ing studies in detail, because this approach represents a powerful
tool to provide a more fine-grained understanding of learning
mechanisms and psychopathology (40, 41, 52, 53).

Based on the direct involvement of dopamine in both rein-
forcement learning and the neurobiology of schizophrenia, more
systematic experimental examinations of alterations in reinforce-
ment learning have been reported in the last decade. With regard to
aberrant salience and the described ideas about aberrant learning,
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Box 1 Reinforcement learning models.

A prediction error is defined as the difference between a delivered reward R and an expected value, here denoted as Q. t and a denote
indices that refer to time and the value associated with a chosen action, respectively.

δQa,t = Rt −Qa,t (1)

In model-free learning, this error signal can be used to update values:

Qa,t+1 = Qa,t + αδQa,t (2)

Here, α represent a learning rate, which weighs the influence of δQa,t on Qa,t +1 with natural boundaries between 0 and 1. For examples
of clinical studies using this algorithm, please compare Murray et al. (43) or Schlagenhauf et al. (77). Equation 2 refers to environments, in
which each time point or trial t consists of one stage, e.g., one action, which results in feedback delivery.This can be extended to sequential
decision tasks, where each trial consists of multiple numbers of stages and for example only the final stage is associated with feedback
delivery. For an extension of the Eqs 1 and 2 for sequential decisions, please compare the work by Daw et al. (80) or Glascher et al. (79).

Still referring to model-free learning, we can define δ and the update equation differently, as for example in actor-critic models.The same
error signal, generated by the critic, updates values of the critic and the actor:

δC ,s,t = Rt − Cs,t (3)

Cs,t+1 = Cs,t + αsδCs,t (4)

Notably, the critic Eqs 5 and 6 neglects the specific action that was chosen in trial t. The actor learns specific action values via the same
error signal δCs,t:

As,a,t+1 = As,a,t + αsδCs,t (5)

This approach was applied in one clinical study (64).
So far, all presented models are examples for model-free learning. Subsequently, we present one example, which touches the ground

of model-based learning. Depending on task structure, it is possible to implement certain aspects of the environment. For instance, in an
environment with two choice options prediction errors may also be used to update values of unchosen actions ua; this can be done by an
additional extension of Eq. 2:

Qua,t+1 = Qua,t − αδQa,t (6)

Equation 8 represents a full double-update learner (77), while it is also possible to weigh the influence of the double-update by adding
another free parameter:

Qua,t+1 = Qua,t − καδQa,t (7)

Here, we use chosen prediction errors to update unchosen values. Based on the task design, it may be possible to use unchosen prediction
errors (143). An elegant approach is to mix values learned by two different algorithms. This can be achieved by introducing a weighing
parameter, for example as in Eq. 7. Please note that the contribution of additional free parameters (e.g., different learning rates for rewards
and punishments in Eq. 2 or different learning rates for the critic and the actor in Eqs 4 and 5) needs to be quantified and that this is ultimately
a question answered by model selection procedures [e.g., Ref. (115)].

For all the described models, learned values need to be transformed into choice probabilities to generate behavior. One commonly used
approach is the softmax equation, which can be written as:

p(a, t) =
exp(β×Qa,t )∑
a′ exp(β×Qa′ ,t )

(8)

Here, all models refer to instrumental tasks. Most of the equations are applicable in similar forms to classical conditioning. For detailed
reading, we refer to the scholarly book by Sutton and Barto (42).

so far only one experiment has been developed which specifi-
cally tests changes in adaptive (speeding up of reaction times
for relevant cues) and aberrant salience (speeding up for irrel-
evant cues). This work by Roiser et al. (54) showed reduced
adaptive salience in schizophrenia patients mostly medicated with
SGAs but no general group difference in reaction time measures

of aberrant salience. Within patients only, the individual degree
of delusions was positively correlated with explicit measures of
aberrant salience (54). Furthermore, using the same task, it was
demonstrated that unmedicated people with an at-risk mental
state for psychosis exhibit greater measures of aberrant salience,
and this bias was correlated with their severity of delusion-like
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symptoms (55). Imaging results from this multimodal study (55)
are reported in the next section of this article. These findings point
toward the expected direction but rather support a dimensional
perspective on positive symptoms, in particular delusions, in a way
that the presence of aberrant learning may fluctuate with changes
in clinical symptoms. Nevertheless, the findings require further
validation in unmedicated patients, since antipsychotic medica-
tion directly affects dopamine neurotransmission and primarily
attenuates positive symptoms. Other evidence for aberrant learn-
ing primarily comes from classical conditioning during fMRI and
is reported in the next section on fMRI studies.

Studies from Gold and colleagues have contributed an impor-
tant body of work to the field. These studies provide evidence for
the second hypothesis that postulates a deficit in value representa-
tion (11). With regard to hedonic experience, they demonstrated
that stable-medicated, chronic patients do not differ in ratings on
affective picture material nor do they differ in terms of speeded
motor responses to repeat or to endure viewing of these pictures. It
was observed that patients respond slightly faster to repeat viewing
of neutral pictures (56). These results are in line with behavioral
ratings in other studies using similar affective pictures (30, 57, 58).

Together, these findings indicate that schizophrenia patients are
surprisingly unimpaired in short hedonic experiences. It is impor-
tant to ask how these experiences are used to learn values that may
guide behavior. Studies showed that delay discounting is altered in
schizophrenia in such a way that immediate rewards are preferred
over larger rewards in the future and with the degree of this dif-
ference being associated with working memory deficits (59–62).
A study by Heerey et al. (63) found that in two separate tasks
stable-medicated, chronic patients show intact reward sensitivity
but impaired weighing of potential outcomes in a decision mak-
ing task: only potential losses were weighed less by patients (63).
Again, the ability to use potential outcomes to guide behavior was
correlated with working memory function in patients.

Hypothetically, this deficit may be based on a shift from a goal-
directed to a more inflexible learning system. Even in relatively
simple tasks learning speed may increase based on additional use
of a goal-directed system that accurately maps separate stimu-
lus values to their potential outcome consequences, which may
then be used for appropriate action selection. Models of reinforce-
ment learning do not map perfectly on this distinction. Instead,
several agents that update values based on prediction errors can
be summarized as model-free controllers of learning and deci-
sion processes, because they neglect the contribution of additional
environmental features (task structure) to the learning process
(compare Box 1). Nevertheless, the kind of teaching signal used
to update values can even be varied within the group of model-
free agents. Formally, one class includes model-free Q-learning
algorithms, where each possible action becomes associated with a
single value and these specific values are used to compute a pre-
diction error. In contrast, a more rigid model-free system may
learn values based on teaching signals that convey information
about rewarded or punished states (e.g., a pair of stimuli) as, for
example, formulated in actor-critic learning (42). This appears to
be accompanied by slower learning compared to the more precise
mapping of one Q-value to each stimulus associated with a cer-
tain value. Gold et al. (64) approached this question by applying

a task that requires learning from rewards in one condition and
the avoidance of punishment in another condition in a sample
of 47 stable-medicated, chronic patients. Patients were split into
two subgroups with high and low levels of negative symptoms,
respectively. Only patients with high levels of negative symptoms
were shown to be selectively impaired in the reward-approach
condition but demonstrated intact loss avoidance learning. This
dissociation was also confirmed in a post-acquisition transfer test
(64). A deficit in reward-based learning, but not in the avoidance
of punishment, which was associated with negative symptoms,
was also found in two other independent studies, both in patients
treated with antipsychotic medication (65, 66). In the study by
Gold et al. (64), an actor-critic model, a Q-learner, and a hybrid of
these two models were fitted to the observed data and parameters
were inferred using maximum-likelihood estimation. Based on
model selection, data of the high-negative-symptom group was
better explained by the actor-critic model, while healthy partici-
pants and the low-negative-symptom group of patients were better
explained by the Q-learner. Such a deficit in value-based learning
may also be closely connected to a deficit in cost computation of
effortful behavior (67). The impact of this shift to a more rigid and
rather imprecise learning system may depend on task demands
and may in some rare cases be advantageous – if tasks require
participants to behave rigid and at low levels of exploration (68).
Again, it is important to note that most of the summarized stud-
ies were conducted in stable-medicated, rather chronic patients.
The important question as to what extent these findings generalize
remains to be examined.

The deficit of using outcomes to guide behavior may exacer-
bate when patients are confronted with situations where they are
required to adapt their behavior flexibly. This can be examined
in tasks like the Wisconsin Card Sorting Task or reversal learn-
ing. Indeed, a deficit in such tasks has been reported repeatedly
in chronic, medicated states of schizophrenia (69–73). Studies in
medication-free, first-episode patients indicate that such impair-
ments are already present at the beginning of the disease and are
stable over time (for at least 6 years), independent of general IQ
effects (74, 75). Two recent studies demonstrate that the deficit
in rapid behavioral adaptation is most likely due to an increased
tendency to switch in schizophrenia patients (76, 77). A study
by Schlagenhauf et al. (77) implemented detailed computational
modeling of learning – ranging from standard Rescorla–Wagner-
Models to Double-Update-Models (Box 1) and finally belief-based
Hidden–Markov-Models (78) – to the data of 24 unmedicated
patients. While the used Rescorla–Wagner-Models clearly provide
a model-free account of reinforcement learning, the Double-
Update- and the Hidden–Markov-Models can both be regarded
as a model-based account of reinforcement learning because both
incorporate important aspects of the experimental environment
of the given task but in different ways: the Double-Update-Model
simply integrates the dichotomy of the two choice options in the
reversal learning task by updating each action value with the same
prediction error but in different directions; the Hidden–Markov-
Model approaches this differently by updating the probability
of being in one of the two states and thereby actually building
an internal model of the task’s states (in the following, this is
referred to as the participant’s belief about the visited trial being
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informative about the state or not). Maximum-a-posteriori esti-
mates of model parameters were inferred using random-effects
Bayesian techniques complemented by model selection at the
population and at the individual level. Random-effects parame-
ters refer to individual parameter estimates per participant in
contrast to fixed-effects parameters, which assume one set of
parameters for a population. Note that random-effects fitting
of models and model selection are crucially important to com-
pare how models map to learning processes across groups and
to compare parameters between groups. Also, individual model
comparison is important because the meaning of underlying para-
meters remains unclear if the probability that a participant’s data
is given by the inferred parameters (the likelihood) is around
chance (please also compare Section “Methodological Remarks”).
Based on these methods, it was demonstrated that the belief-
based model explained the observed data best. This is in line
with another study on reversal learning in healthy participants
(78). Modeling results revealed increased switching in patients
due to false beliefs with respect to feedback-conveyed information
about the state of the task, which are based on reversals of reward
contingencies (77). The study by Schlagenhauf et al. (77) was con-
ducted in 24 unmedicated patients, of whom a substantial number
was not able to apply the belief-based strategy. In these patients
(n= 11), the reversal learning deficit was more pronounced. This
was best explained by the actual presence of their positive symp-
toms, which is a remarkable contrast to several studies examining
stable-medicated, chronic patients with attenuated positive symp-
toms. This subgroup of patients was additionally characterized by
the model in terms of reduced reward sensitivity and showed a
relatively better (although still poor) fit by the simple, model-free
Rescorla–Wagner algorithm. Parameters of the models were used
to generate regressors for the analysis of fMRI data and the results
are discussed in the subsequent section.

There is convincing support that deficits in flexible behav-
ioral adaptation and reversal learning, in particular, are important
features of schizophrenia patients with an increased tendency to
switch as a potential specific mechanism (76, 77). This is in line
with an important assumption concerning the hypothesis of a
deficit in value representation: an impaired functioning of the so-
called rapid learning system that is assumed to rely on prefrontal
and orbitofrontal brain structures deeply involved in cognitive
functions such as working memory, which allows for flexible
adaptation of decisions (47). This system is thought to interact
with a more rigid learning system supposedly implemented in
the basal ganglia pathways. As already mentioned above, these
complementary learning systems may also be associated with the
distinction of model-free and model-based controllers of learn-
ing, where the latter is implicated in using an internal model of
the environment to optimize choice behavior (79, 80). It appears
plausible that potential deficits in the model-based domain may
be closely linked to well-established findings of impaired cognitive
control with most evidence from measures of working memory
and cognitive processing speed. Model-based learning relies on
precise mapping of the environment and uses this map for for-
ward planning of decisions. This process requires individuals to
keep online values of multiple stimuli to allow for flexible decision
making.

There is indeed evidence that working memory capacity limits
the ability to learn multiple stimulus values to guide decisions and
the degree of model-based behavior (81, 82), while, at the same
time, possibly directing patients toward more inflexible aspects of
learning, which themselves may be affected or spared in schizo-
phrenia. There is additional evidence that patients learn reward
contingencies, but that they may need more time depending on
task demands (68, 83, 84). Interestingly, in a post-acquisition test-
phase, Waltz et al. (83) observed that medicated patients learned to
avoid previously punished stimuli, while preference for the previ-
ously rewarded cues was weakened compared to controls. In a next
step, Waltz et al. (85) studied stable-medicated, chronic patients
with an established go-nogo learning task (86). During the training
phase, patients showed an overall go-bias but no gradual adapta-
tion to the more frequently rewarded stimuli, while the gradual
adaptation to negative outcomes appeared to be intact (85). In line
with deficits in reversal learning, rapid trial-to-trial adjustments
were impaired in patients. This analysis was compared with pre-
dictions from a neurocomputational model of dopamine-induced
basal ganglia-cortex interactions proposed by Frank et al. (87):
high levels of presynaptic dopamine accompanied by alterations
in D1-receptor density may specifically impair go-pathways which
are proposed to facilitate reward-approach rather than punish-
ment avoidance (47). This idea is also supported by recent optoge-
netic animal research (88). In accordance, it was also demonstrated
that patients are less able to speed up responses to approach reward
and show reduced exploration. Both effects were most pronounced
in a subgroup of high-level negative symptoms (89).

In this section, we summarized results from studies on behav-
ioral impairments during performance of instrumental tasks and
only three studies, to date, have implemented reinforcement learn-
ing modeling to the observed behavioral data (64, 77, 89). Two of
those studies demonstrated the ability to identify subgroups of the
heterogeneous clinical entity referred to as schizophrenia. Further
studies with similar experiments are needed across different dis-
ease states (e.g., first-episode) and medication states (in particular
unmedicated patients as well as different medications to rule out
the possibility that alterations in learning mechanisms are sec-
ondary to medication effects). This may be a potentially helpful
route toward an identification of patient subgroups based on gen-
erative computational models of behavior and neural mechanisms.
Recent methodological progress shows improved classification
accuracy and allows for clustering within patients based on para-
meters of generative models of brain connectivity (90, 91), and
this may also apply to generative models of behavior.

FUNCTIONAL IMAGING STUDIES OF REINFORCEMENT
LEARNING IN SCHIZOPHRENIA
This section will summarize studies that collected fMRI data dur-
ing reinforcement learning to examine neural substrates of the
behavioral alterations discussed in the previous section of this
article. First, we summarize studies that examined classical condi-
tioning. This process of associative learning has not been discussed
in the previous section because classical conditioning paradigms
do not usually require an instrumental response. Nevertheless,
physiological responses reflect associative changes in stimulus con-
tingencies, namely the unconditioned and the conditioned stimuli
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(US and CS). Second, we report studies that investigated instru-
mental conditioning during fMRI. In both parts, we explicitly
describe the application of reinforcement learning models, how
parameters underlying these models were inferred, and how these
measures were further applied to the imaging data.

CLASSICAL CONDITIONING
Jensen et al. (92) studied aversive classical conditioning in 13 med-
icated patients. Their analysis focused on the onset of CS associated
with a neutral or an aversive event. In patients, they found ele-
vated left ventral striatal activation to CS preceding neutral events
compared to CS preceding aversive events (92). This aberrant attri-
bution of salience was confirmed in skin conductance measures
and post-learning self-reports. In a slightly different aversive con-
ditioning paradigm neural responses to CS and US were studied
in 20 medicated patients, and similar findings were demonstrated
(93): attenuated activation to CS but intact responses to US were
reported in the amygdala. Within patients, CS-related activation
in the midbrain was correlated with delusion severity in a way
that stronger CS-related responses in neutral trials predicted a
higher degree of delusional symptoms (93). The authors addi-
tionally implemented a temporal-difference model to quantify
neural correlates of prediction errors. Notably, the model’s free
parameter, the learning rate, was fixed for the entire sample and
not fitted individually to behavioral or physiological responses
[which were shown to vary, according reaction times and skin con-
ductance e.g., Ref. (94, 95)]. Romaniuk and colleagues found no
aversive prediction error correlate in the midbrain of schizophre-
nia patients as was observed in healthy controls. When modeling
prediction errors for neutral events, they found a neural corre-
late of these prediction errors in patients’ midbrain but not in
controls (93).

With regard to appetitive classical conditioning with mone-
tary reward, one study investigated neural activation to reward-
associated CS in 25 medicated patients. They reported that rel-
atively lower ventral-striatal and ventro-medial-prefrontal acti-
vation depended on the degree of anhedonia (96), which is in
line with previous findings using the MID task (17). Another
study examined appetitive classical conditioning in thirsty partic-
ipants (15 medicated patients) using water as reward. The analysis
focused on reward delivery and found blunted ventral striatal acti-
vation in patients to be correlated with negative symptoms (97).
Further, functional connectivity of the dopaminergic midbrain
with the insula was reduced in patients. Another appetitive classical
conditioning paradigm with monetary reward was used in a study
by Diaconescu et al. (98) in 18 medicated patients. While patients
and controls were similarly able to recall reward contingencies in
explicit ratings, implicit measures (skin conductance) did not dif-
fer between reward CS and neutral CS in patients. The analysis of
fMRI data also focused on CS and revealed that increased activa-
tion in striatal and prefrontal areas of healthy controls to reward
CS was accompanied by stronger effective connectivity between
VS and orbitofrontal cortex as assessed using structural equation
modeling (98). Crucially, this pattern was reversed in patients for
the neutral CS. This is an important finding, as it has long been
described that neural correlates of learning spread over nodes of
a network and thereby drive changes in plasticity. A disturbance

of such a mechanism was also proposed to be at the heart of the
pathophysiology of schizophrenia (99–101). We will return to this
issue in the final section.

INSTRUMENTAL LEARNING
We now proceed with further studies that investigated neural
correlates during instrumental learning. In line with evidence
for aberrant learning from classical conditioning, a recent mul-
timodal imaging study using the instrumental “salience attri-
bution task” [(55); for behavioral results see previous section]
found that ventral striatal activation to irrelevant stimulus fea-
tures were positively correlated to delusion-like symptom severity
in 18 unmedicated people with an at-risk mental state for psychosis
(55). Furthermore, hippocampal responses to irrelevant features
were differently correlated with dopamine synthesis capacity in
VS revealing a positive relationship in controls and a negative
relationship in people with an at-risk mental state.

One exemplary study that assessed the association between
impaired reinforcement learning and brain activation in dopamin-
ergic target brain areas of first-episode schizophrenia patients
(n= 13, 8 medicated) used an instrumental learning task with two
choice options: one signaled a potential monetary feedback and the
other a potential neutral feedback (43). In contrast to several other
studies (see previous section), the groups did not differ in terms
of acquisition of reward contingencies, which may be due to the
rather small sample size of this pioneer study. In line with another
study (59), patients responded faster on neutral trials in the study
by Murray et al. (43). A Q-learner was fitted to the observed
data based on maximum-likelihood estimates of parameters. Both
groups did not differ in terms of model parameters. To generate
regressors for fMRI data analysis, one set of parameters was fit-
ted for the entire sample (fixed-effects). Model-derived prediction
errors were used as a parametric modulator of feedback events.
Prediction error correlates in bilateral midbrain, right VS, hip-
pocampus, insula, and cingulate cortex were significantly stronger
in controls than in patients. In patients, midbrain correlates of pre-
diction errors appeared slightly augmented in neutral trials (43). A
more complicated “allergy prediction” task design enabled Corlett
et al. (102) to investigate different stages of learning in 14 patients,
most of whom were medicated. For event-related fMRI analysis,
an event was defined to start at the beginning of each stimulus
presentation and to end after outcome delivery lasting a total time
of 4 s. Compared to controls, patients did not activate the left cau-
date during the training stage, which was followed by revaluation
of stimuli pairs that were either ambiguous or well learned pairs
of cues during training. The comparison of these pairs revealed a
failure to activate substantia nigra and right PFC. In the last phase,
expectations about the outcome based on the trained stimulus
pairs were violated. Here, predictable events elicited an augmented
response in right PFC in patients versus controls, while an attenu-
ated response was found for unexpected events (102). This lack of
differentiation between expected- and unexpectedness events cor-
related with the level of unusual thought content. Notably, the
analysis strategy chosen in this design makes it hard to inter-
pret the findings in terms of prediction error or expected value
signals because the whole trial period was modeled in the single-
subject of the fMRI data. Similar results were reported in another

Frontiers in Psychiatry | Schizophrenia December 2013 | Volume 4 | Article 172 | 8

http://www.frontiersin.org/Schizophrenia
http://www.frontiersin.org/Schizophrenia/archive


Deserno et al. Reinforcement learning and dopamine in schizophrenia

study that investigated 20 medicated patients while performing a
guessing–gambling paradigm at different levels of uncertainty but
analyzed expectation-related and reward-related activation sepa-
rately (103). Expectation-related brain activation at time of motor
responses revealed increased activation with lower predictability
in a fronto-parietal network, and this effect was diminished in
dorsolateral PFC and anterior cingulate cortex of schizophrenia
patients. Reward-associated activation was analyzed in relation to
levels of predictability (assumed to mirror prediction error related
brain activation), and patients showed reduced activation in puta-
men, dorsal cingulate, and superior frontal cortex (104). One
study assessed probabilistic category learning (“weather prediction
task”) in medicated schizophrenia patients (n= 40) during fMRI.
Albeit impaired performance in all patients, a small number of
patients were able to apply a similar strategy to the task as controls
did (105). When comparing fMRI data of these matched groups
(n= 8 patients) during the presentation of stimulus combinations,
patients displayed reduced activation in striatum and dorsolateral
PFC. Patients exhibited stronger activation in a more rostral region
of dlPFC and parietal cortex. Results from this task are hard to
compare with instrumental reinforcement learning tasks due to
the experimental design that primarily tests classification learning
at different levels of difficulty.

In another study on instrumental learning, Gradin et al. (106)
examined 15 medicated patients. Temporal-difference modeling
was applied to the task that delivered water as reward. Random-
effects parameters were initially estimated with maximum-
likelihood, and the obtained parameters were subsequently used
as empirical priors to regularize the possible range parameters to
avoid extreme values of parameter estimates [also compare: Ref.
(53, 106)]. Although patients differed in the amount of deliv-
ered water, no difference on model parameters was observed.
To generate regressors for fMRI analysis, a single set of para-
meters was fitted for the entire sample (fixed-effects). Model-
derived prediction errors were analyzed as parametric modulators
of reward delivery, and model-derived values were included as
modulators of expectation-related activation at the trial onset.
Compared to controls, no correlation with prediction errors was
observed in striatum, thalamus, amygdala-hippocampal com-
plex, and insula of medicated schizophrenia patients. A trend-
wise reduction in midbrain correlated with positive symptoms
in patients. Patients also displayed reduced coding of value-
related activation in the amygdala-hippocampal complex and
this, again, was correlated with positive symptoms. Importantly,
this study also included another psychiatric patient group, med-
icated depressed patients, and this group also exhibited blunted
neural correlates of expected-reward values and prediction errors
in slightly different regions. The strength of this reduction was
correlated with anhedonia severity in dopaminergic core areas.
In combination with detailed computational modeling, Schla-
genhauf et al. (77) studied reversal learning (compare previous
section) in 24 unmedicated patients. Analysis of fMRI focused on
the time of reward delivery and included different model-derived
modulations of this onset. The authors found reduced ventral stri-
atal coding of model-derived reward prediction errors in patients.
This finding remained trend-wise significant when restricting the
group comparison to patients who had insight into the underlying

task structure as defined by their beliefs about the states of the
task based on a Hidden–Markov-Model (n= 12). A second fMRI
analysis based on the latter model was applied to define subjective
informative punishment trials, i.e., when participants believed that
a change in reward contingencies had appeared. Both patients with
good and poor task insight showed reduced ventral striatal activa-
tion during these trials (77). Reduced ventral striatal activation was
also reported in another recent fMRI study on reversal learning in
28 medicated, chronic schizophrenia patients (76). In the study by
Schlagenhauf et al. (77), patients with good task insight displayed
relatively stronger activation of ventro-lateral and dorso-medial
PFC than patients with poor insight. Well performing patients
were not distinguishable from controls with respect to activation in
these prefrontal regions. This result may reflect compensatory PFC
processes in schizophrenia patients similar to that which has been
described for the neural correlates of working memory deficits
(107, 108).

In summary, several studies revealed reduced activation of
brain areas typically encoding errors of reward prediction, most
prominently the VS. This was reported consistently across clas-
sical and instrumental conditioning tasks, despite the fact that
most of these studies differ enormously with regard to experimen-
tal designs and analysis strategies. Prediction errors arise when a
reward is delivered and are typically thought to train expected
values of stimuli or associated actions (42). Therefore, functional
neuroimaging studies that studied learning during scanning have
so far helped to elucidate the underlying dynamics of previous
findings derived from studies using the MID or similar tasks. That
is, neuronal teaching signals are not coded in ventral striatal activa-
tion of medicated and unmedicated patients to a similar extent as
in controls. Only five imaging studies have applied reinforcement
learning models to describe this process on a trial-by-trial level and
these vary considerably in terms of the implemented models, infer-
ence of model parameters and the application of model-derived
measures to the imaging data. We will further comment on these
issues in the subsequent section. These studies comprised 78 med-
icated patients and 24 unmedicated patients. Studies in unmed-
icated patients are still rare. Nevertheless, the finding of reduced
prediction error coding in dopaminergic core areas may indeed
build a common ground for impaired learning of stimulus or deci-
sion values. In addition, such impaired coding might be closely
related to the elevated levels of presynaptic dopamine synthesis
capacity in schizophrenia reported in meta-analyses of PET studies
(4, 5, 109). An important question remains how this stable marker
of the dopamine system, probably reflecting tonic or rather stable
aspects of dopaminergic neurotransmission (3), relates to event-
related changes during learning. Studies approaching this question
are discussed in Section “Functional Imaging Studies of Rein-
forcement Learning with Additional Neurochemical Measures or
Pharmacological Challenges of the Dopamine System” of this arti-
cle. Furthermore, it has been proposed that a hyperdopaminergic
state in schizophrenia may result in imprecise and inefficient corti-
cal information processing as a potential mechanism for cognitive
impairments observed in patients as well as their first-degree rela-
tives and in people at-risk mental states (9, 110, 111). This idea is
compatible with the proposal of a deficit in prefrontal value rep-
resentation shown to be related to negative symptoms. However,
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exact cognitive and affective correlates of such deficits remain to
be explored. We will return to this in the final section.

The emerging picture is less clear with regard to evidence
provided in favor of the aberrant salience hypothesis, in partic-
ular regarding the extent to which reduced neural correlates of
prediction errors are linked to processes of aberrant salience attri-
bution. Notably, the idea of aberrant salience may also account
for reduced value-related anticipatory dopaminergic signals, in
patients who exhibit high levels of positive and negative symptoms
(for example). In this case, a lack of activation to cues associ-
ated with monetary as well as, probably, social reward may reflect
reduced motivational or incentive salience in terms of apathy or
other dimensions of negative symptoms, which may be a result
of aberrant salience attribution. However, this requires more sys-
tematic studies along symptom dimensions. Evidence for neural
correlates of aberrant learning was demonstrated in fMRI studies
on classical conditioning that showed elevated striatal activation
to cues indicating the delivery of a neutral event (92, 93, 98) and
in one specific instrumental task design, the “salience attribution
task” (55, 112). Studies using this specifically designed task point
toward a relationship with positive symptoms, particularly delu-
sions. Consequently, symptom and medication states of included
patients may be crucially important. Indeed, a study on reversal
learning in unmedicated patients with more pronounced positive
symptoms showed that a subgroup of patients was not able to infer
the task structure and this was best explained by individual levels of
positive symptoms (77). Therefore, it is important to consider the
amount of variance in symptom ratings and different medication
states to better understand variability related to aberrant aspects
of neural learning signals. Furthermore, when reviewing clinical
data of several studies summarized in this article, it is compelling
that even in medicated patients there is considerable variability in
the extent of positive symptoms across studies varying from high
levels to nearly no positive symptoms. Future studies are needed
to address the question whether blunted learning signals indeed
reflect aberrant salience attribution – and if this is a schizophrenia
specific feature or a dimension of positive psychotic symptoms –
which may then consequently also emerge in other psychiatric
diseases and to some extent even in the at-risk healthy population
or healthy people with some degree of psychotic experience.

METHODOLOGICAL REMARKS
The combination of model-derived learning signals with func-
tional brain measures is very promising. This mechanistically
informed quantification of signals reflecting learning processes
provides a more fine-grained insight into neural trial-by-trial cor-
relates of learning mechanisms and disease-specific alterations
as compared to standard event-related fMRI analyses which
rather rely on event definitions such as correct responses or
experimenter-defined changes in reward contingencies. In fact,
the latter may not always reflect the way study participants solve
these tasks. On the other hand, a small number of healthy volun-
teers, in most studies, exhibit behavior that cannot be described
better than chance by any reinforcement learning model. This
may indicate the need to extend from standard reinforcement
learning models to other types of models, for example Bayesian
learners (94, 113, 114). Such non-fitters should be reported more
clearly, in particular in clinical between-group studies, because

this may crucially impair the between-group analysis of model
parameters and comparisons of neural correlates based on model-
derived measures between groups: in fact, underlying parameters
of non-fitters are meaningless in terms of the mechanism that
is described by the model [compare Ref. (77)]. Although stud-
ies which actually apply reinforcement learning modeling are the
minority of those reported in this review article (seven studies, for
an overview see Table 1), there is considerable variability on how
these few studies inferred the models’ parameters (some did and
others did not fit parameters) and how (or if any) model selection
was applied.

Further, the generation of trial-by-trial model-derived time-
series for fMRI data analysis is sometimes performed based on
random-effects parameters (individual parameters for each sub-
ject) or based on one set of parameters (fixed-effects). One group
recommends the latter approach for studies in healthy volunteers
by arguing for more robust correlations of BOLD signal with
model-derived regressors (53). On the other hand, this appears
questionable for group studies in which group differences in para-
meters may be causally linked to the disease status. We have the
impression that model comparison techniques are of key impor-
tance (115). Even in the simple case that no alternative models
are fitted, it may be informative to include a report of model fit
based on the likelihood that the observed data is given by the
parameters. To our mind, a situation where the individual model
fit (expressed via the likelihood of the data given by the para-
meters) does not differ between groups exemplifies a desirable
case: even if parameters differ between groups in this case, model-
derived regressors are readily applicable to fMRI data because they
do not differ in terms of the likelihood that the modeled strat-
egy captures important aspects of the observed raw responses.
Based on the sparsely available papers on these issues, the appli-
cation of fixed-effects parameters to fMRI data rather appears as
a workaround based on the observation that noisy parameters
based on maximum-likelihood estimates potentially add further
noise when fitting a hemodynamic model with model-derived
time-series as parametric modulators to the imaging data [com-
pare Ref. (53)]. In the case of clinical between-group studies,
the use of fixed-effects parameters results in a situation where
the observed behavior is relatively well explained by those para-
meters. Consequently, differences in terms of model parameters
will then be expressed via the correlation between the regres-
sor and the signal. This can be minimized by using parameters
that closely match the observed individual’s behavior to generate
regressors. Unfortunately, no systematic studies of these ques-
tions are available involving either healthy volunteers only, or
comparisons between psychiatric patients and healthy controls.
Consequently, it appears to be desirable to develop methodolog-
ical guidelines for these techniques, as it was published for other
modeling approaches, for example for dynamic causal modeling
for fMRI (116).

FUNCTIONAL IMAGING STUDIES OF REINFORCEMENT
LEARNING WITH ADDITIONAL NEUROCHEMICAL MEASURES
OR PHARMACOLOGICAL CHALLENGES OF THE DOPAMINE
SYSTEM
In this last section, we describe research that pharmacologi-
cally manipulated the dopamine system during reinforcement
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learning or acquired an additional molecular measurement (PET)
of dopamine. There are a substantial number of groups research-
ing these questions in healthy volunteers, and this section does
not aim to present a complete picture of all such studies. We will
instead refer to studies that are particularly important for a better
understanding of the above reviewed studies in patients.

A highly influential study was conducted by Pessiglione et al.
(117). An instrumental learning task with a reward-approach (win
or no win) and a punishment–avoidance (loss or no loss) condition
was used (117). A similar design was recently applied in a behav-
ioral study of medicated schizophrenia patients (64). Pessiglione
et al. (117) demonstrated that dopamine medication, l-DOPA,
and haloperidol, have opposing effects on behavior and neural
correlates of model-derived prediction errors, and that these
effects are selective for the reward-approach condition: l-DOPA
administration enhanced reward-approaching behavior and asso-
ciated ventral striatal reward prediction errors whereas haloperidol
reduced such effects (117). The same direction of medication
effects was reported in a study using aversive Pavlovian condition-
ing under amphetamine, haloperidol, or placebo (118). In addi-
tion, ventral striatal reward anticipation as in the MID task appears
to be conveyed by reward-induced dopamine release (27) and can
be blunted by massive dopamine release, based on dose-dependent
effects of psychostimulants (26, 28). In line with this, a recent study
applied the same reward-approach task as in Murray et al. (43)
and found that methamphetamine blunts both reward prediction
errors in VS and expected value representation in ventro-medial
PFC (119). The strength of the disruption of value representa-
tion in ventro-medial PFC was correlated with amphetamine-
induced psychotic symptoms. A third condition, amisulpride-
pretreatment, did not affect amphetamine-induced blunting of
learning signals. It is important to note that the reducing effects
of haloperidol on striatal reward prediction error encoding can
explain reduced prediction error related activation in medicated
schizophrenia patients, whereas the blunting effects of amphet-
amine may potentially mirror a subcortical hyperdopaminergic
state, as was demonstrated in unmedicated schizophrenia patients
(2, 3). Therefore studies in unmedicated patients are crucially
important to remove this confound. FGAs and SGAs strongly dif-
fer in their dopamine receptor affinity, and, based on two MID
studies, it was shown that they also affect reward anticipation dif-
ferently. These results point toward the idea that SGAs may help
to remediate reward-related anticipatory brain activation (20–22)
which nevertheless requires random assignment in a clinical-trial-
type design. Such studies have not yet been conducted with learn-
ing tasks. In unmedicated patients, a reduction of ventral-striatal
prediction error coding was recently demonstrated during reversal
learning (77). Elevated presynaptic dopamine levels may account
for this reduced activation, similar to that observed for Parkin-
son patients on l-DOPA medication, affecting the VS (early in the
illness less degenerated) in an overdosing manner (120). Here,
a long-lasting increase of presynaptic dopamine function may
“drown” value-related and error-related phasic learning signals.
Multimodal imaging studies combining fMRI with PET radiotrac-
ers that assess presynaptic dopamine function can link individual
differences in neurochemical parameters with functional activa-
tion. For example, PET with FDOPA may be an important target

for application in multimodal imaging studies, since this mea-
sure has been demonstrated in meta-analyses to best characterize
the subcortical hyperdopaminergic state of patients [for meta-
analyses see: Ref. (4, 5)]. Supporting this idea, another study
demonstrated that ventral-striatal prediction errors are indeed
negatively correlated with dopamine synthesis capacity in healthy
controls (121). This negative correlation suggests that long-lasting
increases in presynaptic dopamine function, as observed in schiz-
ophrenia patients, may reduce phasic learning signals, hypotheti-
cally via presynaptic D2-autoreceptors which regulate presynaptic
activity of DOPA-decarboxylase activity to ensure homeostasis
within the dopaminergic system (46, 121). Animal studies (122,
123) and other functional human imaging studies (36, 124, 125)
also support the idea of this interplay of differential aspects of
dopamine neurotransmission. In line with this, it has also been
shown that behavioral effects of a dopamine-enhancing drug dur-
ing reversal learning indeed depend on baseline levels of dopamine
synthesis capacity (126): Participants with lower dopamine syn-
thesis capacity benefit behaviorally from a dopamine agonist,while
the same drug dose seemed to be disadvantageous for participants
with rather high levels of dopamine synthesis capacity. There-
fore, dopamine effects in learning and cognition appear to be
a fine-tuned and optimized non-linear system where rather low
and rather high levels result in inefficient neural processing (127,
128). This view is also supported by one of the few clinical multi-
modal imaging studies using FDOPA PET in combination with
a working memory task during fMRI in controls and in peo-
ple with an at-risk mental state for psychosis (129). At the same
working memory load, they found a positive linear relationship of
dopamine synthesis capacity and working memory related activa-
tion in dorsolateral PFC of healthy controls, while this relationship
was negative in people with an at-risk mental state, indicating
that potentially “too” high levels of dopamine synthesis may pro-
mote lower dorsolateral PFC activation during the same working
memory load at which both groups coped with comparable per-
formance. This observation can be reconciled with the observation
of prefrontal efficiency during working memory when examining
cognitive performance and dorsolateral PFC activation (130, 131):
different dorsolateral PFC activation may primarily reflect differ-
ent performance. Patients are assumed to reach maximum limits of
dorsolateral PFC activation earlier reflecting a general impairment
in this cognitive domain [see also: Ref. (108)]. A step further, there
is also evidence that a reduction of working-memory-dependent
effective connectivity from dorsolateral PFC to parietal cortex may
be the potential mechanism underlying this inefficiency (108).
Connectivity may indeed be an important target and it has also
been demonstrated that functional connectivity during aversive
conditioning is shifted differently by a dopamine agonist versus a
dopamine antagonist (132).

CONCLUSION, REMARKS, OUTLOOK
In this review article we summarized studies that provide evi-
dence for behavioral and neural correlates of impaired reinforce-
ment learning in schizophrenia. Two main hypotheses guided
this review: (1) Aberrant prediction errors drive learning of
otherwise irrelevant stimuli and actions in schizophrenia, and
that there is a potentially close link between this mechanism
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and the emergence of positive psychotic symptoms, in particu-
lar delusions. (2) A deficit of expected value representation may
characterize patients suffering from schizophrenia, and this may
fundamentally contribute to the formation of negative symptoms.

There is evidence for aberrant learning with most specific find-
ings derived from the salience attribution task (54, 55). Although
there is still limited evidence and future studies are needed for clar-
ification, it seems conceivable that aberrant learning is involved
in the formation of delusions and can therefore be observed in
patients with prominent positive symptoms. Whether this sensiti-
zation to otherwise neutral stimuli is indeed dopamine mediated
and actually blunts learning signals elicited by regularly salient
cues remains to be further explored (9).

Our summary of fMRI studies during reinforcement learning
clearly demonstrates that a reduction of these learning signals,
namely blunted coding of ventral-striatal prediction errors, was
consistently observed across studies. This deficit may actually
be involved in aberrant learning as well as in a failure of value
representation depending on fluctuating symptom states. Dur-
ing acute psychotic clinical states this may provide a conduit for
aberrant learning, while the persistence of a noisy learning signals
may provide the ground for a failure of building value expecta-
tions, ultimately contributing to the development and progress
of detrimental negative symptoms. A large body of evidence from
behavioral studies supports the hypothesis of a deficit in value rep-
resentation and that this impairment is pronounced in patients
with high levels of negative symptoms (11, 64). Nevertheless,
antipsychotic medication was shown to contribute to the severity
of negative symptoms based on the degree of striatal D2-receptor
blockade (133) and may therefore also exacerbate impairments in
value representation.

The psychosis spectrum has been characterized by impre-
cise and inefficient cortical information processing as a potential
mechanism for cognitive impairments observed in patients and
their first-degree relatives as well as in at-risk mental states. As
a potential mechanism behind this, a disrupted cortico-cortical
synaptic plasticity was suggested by a comprehensive biologi-
cal hypothesis of schizophrenia, the “dysconnectivity” hypothesis
(100, 101). This hypothesis focuses on aberrant experience-driven
control of synaptic plasticity via N -methyl-d-aspartate receptors
(NMDAR). Abnormal modulation of NMDAR-induced plasticity
by neurotransmitter systems such as dopamine, acetylcholine, or
serotonin are at the heart of this idea. In the present article, we have
described a close link between reinforcement learning, symptom
dimensions of schizophrenia and dopamine, which acts as a neuro-
modulator of NMDAR-function: Animal research demonstrated
that D1-receptor agonists and D2-receptor antagonists facilitate
NMDAR-dependent long-term plasticity while D2-receptor ago-
nist suppress it (134, 135). Earlier in the manuscript, we have dis-
cussed the role of these receptors during reward and punishment
as well as go-nogo learning (87, 88). Further, these receptors are
targets of current antipsychotic treatment strategies. Stephan and
colleagues conclude “. . . it is not plasticity per se that is abnormal
but its modulation during reinforcement and perceptual learn-
ing.” (100) These modulatory influences of NMDAR-function
are thought to contribute to cortical representations of environ-
mental states (136) and the consistently described reduction of

ventral-striatal prediction errors could be crucially involved in
a deficient shaping of such cortical representations (137, 138).
Here, it is important to underline that aberrant neuromodu-
lation can indeed be formulated via computational models of
learning-induced plasticity.

So far, there is converging evidence that dysconnectivity may
indeed account for the repeatedly described prefrontal inefficiency
observed in schizophrenia during the performance of cognitive
tasks: Using models of effective connectivity for fMRI, reduced
working-memory-dependent prefrontal-parietal connectivity was
reported, initially in medicated patients (108) and subsequently
replicated in medication-naïve first-episode patients and in peo-
ple with an at-risk mental state (139). Based on parameters of
these models, a clustering analysis was able to identify three mech-
anistically informed subgroups of patients (91). These subgroups
were found to be biologically distinct in terms of connectivity pro-
files and mapped on different levels of negative symptom severity
(91). This observation also appears to be in accordance with the
proposal of a deficit in value representation, which was demon-
strated to be pronounced at high levels of negative symptoms (64).
Therefore, it appears desirable to study the effect of neural learn-
ing signals at various levels in neural networks. It is important to
note that studying the interaction of model-free learning signals
and model-based neural representations of cognitive processes on
the level of neural networks in a computational framework clearly
has the potential to move beyond the evidence provided by stan-
dard cognitive tasks, such as working memory, even if some of the
identified deficits overlap. The contribution of such an approach
can be to gain more mechanistic information when studying these
processes by applying detailed computational modeling to behav-
ioral and neurobiological data. The focus of this idea is that
different types of computational processes described in terms of
different models may help us to improve our understanding of
how patients actually solve certain tasks beyond the observation
of being impaired or not. This may offer a unique source for
mechanistically informed subtyping based on how patient sub-
groups deal differently with challenging tasks and in particular
how these abilities are implemented in neural networks. Such
subgroups require clinical validation in terms of longitudinal pre-
dictions (e.g., treatment responses). Promising future research in
this field may strongly benefit from an integration of different
modeling techniques for reinforcement as well as perceptual learn-
ing and brain connectivity [e.g., dynamic causal modeling; (140)].
It has been demonstrated in healthy volunteers that such an exper-
imental approach is feasible (94, 141, 142) and therefore presents
a highly promising venue for schizophrenia research. Finally, this
may result in a dissection of the heterogeneous clinical entity of
schizophrenia into biologically informed subgroups, thereby pro-
viding a framework for a better understanding of cognitive deficits,
where a deficit of learning expectations about sensory inputs and
future actions may constitute a potential key mechanism of the
disorder.
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