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Major depressive disorder (MDD) is a major public health concern. Despite tremendous
advancement, the pathogenic mechanisms associated with MDD are still unclear. More-
over, a significant number of MDD subjects do not respond to the currently available
medication. MicroRNAs (miRNAs) are a class of small non-coding RNAs that control gene
expression by modulating translation, mRNA degradation or stability of mRNA targets.The
role of miRNAs in disease pathophysiology is emerging rapidly. Recently, we reported that
miRNA expression is down-regulated in frontal cortex of depressed suicide subjects, and
that rats exposed to repeated inescapable shock show differential miRNA changes depend-
ing on whether they exhibited normal adaptive responses or learned helpless (LH) behavior.
Enoxacin, a fluoroquinolone used clinically as an anti-bacterial compound, enhances the
production of miRNAs in vitro and in peripheral tissues in vivo, but has not yet been tested
as an experimental tool to study the relation of miRNA expression to neural functions or
behavior. Treatment of rats with 10 or 25 mg/kg enoxacin for 1 week increased the expres-
sion of miRNAs in frontal cortex and decreased the proportion of rats exhibiting LH behavior
following inescapable shock. Further studies are warranted to learn whether enoxacin may
ameliorate depressive behavior in other rodent paradigms and in human clinical situations,
and if so whether its mechanism is due to upregulation of miRNAs.

Keywords: miRNAs, depression, enoxacin, behavior, rat

INTRODUCTION
Major depressive disorder (MDD) is one of the most prevalent psy-
chiatric disorders. It affects about 17% of Americans during their
lifetime (1) and is associated with psychosocial impairment, poor
quality of life, significant disability (2), morbidity, and mortality
(3–5). MDD is being diagnosed at early ages, and about 25% of
people diagnosed with MDD are below 19 years. Although much
work has been done to characterize MDD, about 40% of MDD
patients do not respond to the currently available medications (6).
This is partially a result of poor understanding of the molecular
pathophysiology underlying MDD.

Compromised neural and structural plasticity has consis-
tently been associated with MDD (7). The cellular mechanisms
that underlie such compromised neural plasticity and structural
impairments in MDD are not clearly understood and no single
mechanism appears to be responsible for MDD etiopathogene-
sis; however, it is becoming increasingly evident that MDD may
result from disruptions across whole cellular networks, leading
to aberrant information processing in the circuits that regulate
mood, cognition, and neurovegetative functions (7). In fact, evi-
dence demonstrating impaired cellular networks that regulate
neural plasticity has reshaped our views about the neurobiological
underpinnings of MDD (8).

In recent years, the emergence of small non-coding RNAs as
coordinated regulators of gene expression that target families of
RNA sequences has gained much attention in neuropsychiatric

disease pathophysiology (9). These small non-coding RNAs
regulate gene expression by several mechanisms including ribo-
somal RNA modifications, repression of mRNA expression by
RNA interference, alternative splicing, and regulatory mecha-
nisms mediated by RNA–RNA interactions. Small non-coding
RNAs include microRNAs (miRNAs), small nucleolar RNAs, small
interfering RNAs, piwi-interacting RNAs, spliceosomal RNAs, and
p/MRP genes. Among them, miRNAs are the most studied and
well characterized and have emerged as major regulators of neural
plasticity and higher brain functioning (10).

The relation between miRNA expression and depressive behav-
ior is not straightforward. On the one hand, we recently reported
that there is a global down-regulation of miRNA expression in
prefrontal cortex of depressed suicide subjects (11), and have repli-
cated this finding in an additional cohort (12). On the other
hand, when rats were exposed to repeated inescapable shock,
those which adapted normally [non-learned helpless (NLH) rats]
showed strong down-regulation of a specific miRNA module
whereas those which exhibited learned helpless behavior (LH rats)
had a blunted miRNA response (13).

In order to investigate further the relation between miRNA
expression and any type of behavior, it is desirable to have an
experimental tool to manipulate miRNA levels directly and inde-
pendently. Enoxacin is a fluoroquinolone antibiotic that (among
other actions) binds HIV-1 TAR RNA binding protein (TRBP),
stabilizing the dicer–TRBP complex and raising miRNA levels
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globally (14–16). Although enoxacin passes the blood–brain bar-
rier sufficiently to exert anti-bacterial effects in meningitis (17), it
is not known whether enoxacin, administered peripherally in usual
therapeutic doses, will have effects on miRNA levels in brain. Thus,
the present study aims to examine whether enoxacin increases
expression of selected miRNAs, which are enriched in brain and
are involved in synaptic plasticity and neurogenesis (9). We also
tested whether enoxacin is able to produce anti-depressant effects
in a standard rodent paradigm, learned helplessness following
inescapable shock (18).

MATERIALS AND METHODS
ANIMALS
Virus-free male Holtzman (Sprague-Dawley) rats (Harlan Labora-
tories, Inc., Indianapolis, IN, USA) were housed in individual cages
under standard laboratory conditions (temperature 21± 1°C,
humidity 55± 5%, 12-h light/dark cycle). Animals were provided
free access to food and water. Animals were housed for 3 weeks
before the experiment, and the body weight was 325–350 g (11–
12 weeks of age) at the start of the experiment. All the experiments
were performed between 8 and –10 a.m.

ENOXACIN TREATMENT
Experiment 1
Enoxacin treatment is described in Figure 1. Rats were given saline,
10 or 25 mg/kg enoxacin (EMD Millipore Corporation, Billerica,
MA, USA catalog no. 557305) intraperitoneally (i.p.), once daily
for 8 days (n= 12–14 in each group). Rats were decapitated 1 h
after the last dose (Figure 1).

Experiment 2
To test whether enoxacin prevents depressive behavior, 10 rats
were treated with saline, 8 rats were treated with 10 mg/kg of
enoxacin, and 8 rats were treated with 25 mg/kg enoxacin for
6 days prior to subjecting animals to inescapable shock (day
6) and assessing for learned helplessness in the escape latency
test (day 7). Animals were treated with enoxacin 1 h prior to
inescapable shock (day 6) and escape latency test (day 7). The
enoxacin treatment continued on days 7 and 8 (Figure 1). Induc-
tion of LH behavior is described in our earlier publication (18).
Briefly, rats were placed in Plexiglass tubes and shocks were
delivered by means of a computer-controlled constant current
shock generator to electrodes augmented with electrode paste
to the rat’s tail. The inescapable shock consisted of 100 random

shocks delivered for 5 s at the rate of 1.0 mA, with a mean inter-
val of 60 s. Another sham group (four treated with saline, four
treated with enoxacin 10 mg/kg, and four treated with enoxacin
25 mg/kg) was placed in Plexiglass tubes but was not subjected
to shocks. The depressive behavior was tested in a shuttle box
as described earlier (18). Footshock was delivered through the
grid floor by a shock generator. The shuttle escape testing began
with five trials (FR-1) during which a single crossing would ter-
minate the shocks. This was followed by 25 trials (FR-2) in
which a rat had to cross from one side of the shuttle box to
the other and come back to terminate the shocks. Shocks were
terminated automatically after 30 s if there was no response
within that time. The intensity of the shocks was 0.6 mA. The
shocks were presented on a variable schedule. There was a 5-
min interval between FR-1 and FR-2. Shuttle escape latencies were
recorded automatically by a computer attached to the generator
and shuttle box.

Rats were divided into two groups based on the mean latency
observed after FR-2: (1) those rats in which the mean latency was
≥20 s (termed LH) and (2) those in which the mean latency was
<20 s (termed as NLH). The mean latency≥20 s cut-off was cho-
sen based on the previous studies showing that this escape latency
is reliable in determining the LH behavior (19). In our study, we
found that about 50–60% of rats showed LH behavior. This is con-
sistent with our previous studies (9, 13, 20–23). The rats that were
confined to Plexiglass tubes and were not shocked were also tested
and termed as sham rats. Rats were decapitated 24 h after the last
escape testing.

miRNA EXPRESSION
Total RNA was isolated in samples of frontal cortex using a mod-
ified protocol designed to optimize recovery of small RNAs (11,
24). Total RNA was isolated with Trizol reagent (Invitrogen Life
Technologies, USA) according to the manufacturer’s directions.
GlycoBlue 20 µg (Ambion) was added to the RNA precipita-
tion step, which was allowed to proceed overnight at −20°C.
The RNA pellet was centrifuged at 20,000× g for 25 min at 4°C,
rinsed with 80% ethanol in DEPC-treated water (Invitrogen Life
Technologies, Carlsbad, CA, USA), resuspended and treated with
RNAsecure (Ambion, Grand Island, NY, USA), and treated with
DNase I using DNA-free TURBO kit (Ambion, Grand Island, NY,
USA). RNA was treated with DNAse I and checked for purity by
OD 260:280 ratio (NanoDrop 1000 Spectrophotometer, Thermo
Scientific, Wilmington, DE, USA).

FIGURE 1 | Experimental design. In experiment 1, rats were given
i.p. injections of enoxacin (10 or 25 mg/kg) or saline for 8 days. One
hour after the last enoxacin injection on day 8, rats were decapitated
(D). In experiment 2, rats were given i.p. injections of enoxacin

(10 or 25 mg/kg) or saline for 8 days. On the sixth day, rats were given
inescapable shock (IS) and tested for escape latency (EL) on day 7.
One hour after the last enoxacin injection on day 8, rats were
decapitated.
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Expression levels of four selected miRNAs (mir-124, mir-125a,
mir-132, and let-7a) were measured in the frontal cortex by real-
time PCR using TaqMan primers and probes as described earlier
(11, 24).

Briefly, 1 µg of total RNA was reverse transcribed using
50 ng random hexamers, 2 mM dNTP mix, 10 µm ribonuclease
inhibitor, and 200 µm MMLV-reverse transcriptase enzyme in a
final reaction volume of 20 µl. The primer/probe sets for all tar-
get genes and endogenous controls were obtained from Applied
Biosystems (Foster City, CA, USA) as the TaqMan Gene Expres-
sion Assay kit. To determine the linear range and sensitivity of
the kits, a standard curve was generated using serial 10-fold dilu-
tions. Only PCR reactions showing efficiencies above 95% were
considered acceptable. All miRNAs tested had efficiencies sim-
ilar to the endogenous controls and were run in parallel with
the endogenous controls. The PCR reaction was carried out in
a final volume of 20 µl, containing 5 µl of cDNA diluted 1:10
with DEPC water, 1× of TaqMan primer/probe mix (20×), and
1× TaqMan® Universal PCR Master Mix (Applied Biosystems,
Foster City, CA, USA). For each primer/probe tested, the PCR
reaction also included a non-reverse transcription negative con-
trol to confirm the absence of genomic DNA, and a non-template
negative control to check for primer–dimer. All experiments
were performed in duplicate as follows: denaturation at 95°C for
10 min followed by 40 cycles of a two-step program [denatura-
tion at 95°C for 15 s and annealing/extension at 60°C for 1 min
on the Mx3005p (Agilent Technologies, Santa Clara, CA, USA).
All samples were run on a 2% agarose gel to confirm speci-
ficity. The amounts of target genes expressed were normalized
to GAPDH and showed no significant variation in our sample set,
Table 2]. Fold changes between groups were measured using the
2−∆∆Ct method,where∆∆CT= (CT target−CT normalizer)sample−

(CT target−CT endogenous gene)control.

RESULTS
As shown in Table 1, enoxacin (10 mg/kg) increased miRNA abun-
dance levels of the selected miRNAs by 3- to 12-fold, and 25 mg/kg
pretreatment increased miRNA levels by 4- to 22-fold above
the levels observed in saline-treated rats. This demonstrates that
“usual” therapeutic doses of enoxacin are quite effective in raising
miRNA levels in the cortical area of the brain in a dose-dependent
manner.

When rats were pretreated with enoxacin and subjected to
inescapable shock, the LH phenotype was suppressed at both doses
(Table 2). Mean escape latency for the saline group was 19.16 s,
whereas for the 10 mg/kg group, it was 9.85 s, and for 25 mg/kg, it
was 7.73 s. Non-parametric statistics (two-tailed Mann–Whitney
U test) showed statistically significant differences between groups:
saline vs. 10 mg/kg, p= 0.0409; saline vs. 25 mg/kg, p= 0.0505;
and saline vs. combined enoxacin group, p= 0.0177.

We repeated the enoxacin effects on behavioral outcome for a
second time. The rats were treated with enoxacin (10 or 25 mg/kg
doses) for 8 days as discussed in experiment 2. A total of 26
rats were examined (n= 8 for sham saline-treated rats, n= 9 for
10 mg/kg enoxacin, and n= 9 for 25 mg/kg enoxacin). We found
that enoxacin produced similar results as in Table 1 such that
only two animals out of nine showed LH behavior at 10 mg/kg Ta
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Table 2 | Escape latency of individual rats when given no shock or inescapable shock and simultaneously treated with saline or enoxacin (10 or

25 mg/kg).

Treatment Escape

latency (s)

Response

to shock

Enoxacin

(mg/kg)

Escape

latency (s)

Response

to shock

Enoxacin

(mg/kg)

Escape

latency (s)

Response

to shock

Sham (no shock) Saline 3.27 10 2.76 25 4.22

Sham (no shock) Saline 4.41 10 3.15 25 3.29

Sham (no shock) Saline 4.63 10 5.22 25 4.37

Sham (no shock) Saline 2.68 10 3.17 25 5.82

Shock Saline 26.13 LH 10 21.36 LH 25 17.19 NLH

Shock Saline 26.53 LH 10 23.78 LH 25 3.91 NLH

Shock Saline 27.15 LH 10 8.62 NLH 25 8.66 NLH

Shock Saline 30.46 LH 10 4.47 NLH 25 2.83 NLH

Shock Saline 28.22 LH 10 1.68 NLH 25 3.96 NLH

Shock Saline 27.34 LH 10 12.27 NLH 25 5.32 NLH

Shock Saline 11.9 NLH 10 2.78 NLH 25 7.14 NLH

Shock Saline 3.9 NLH 10 3.82 NLH 25 12.86 NLH

Shock Saline 6.18 NLH

Shock Saline 4.19 NLH

For rats exposed to shock, escape latency <20 s= non-learned helpless (NLH); ≥20 s= learned helpless (LH). As a baseline control, sham rats were given no shock

on day 6 but were tested for escape latency on day 7.

enoxacin and two animals out of nine showed LH behavior at
25 mg/kg (Table A1 in Appendix).

DISCUSSION
Enoxacin belongs to a family of synthetic anti-bacterial com-
pounds, the fluoroquinolones, which function as bacterial type
II topoisomerase inhibitors (25). Shan et al. (14) showed that
enoxacin and some of its analogs promote the biogenesis of
endogenous miRNAs in mammalian cells by binding to TRBP,
stabilizing the complex between dicer and TRBP, and enhancing
dicer-mediated precursor processing and/or loading onto RNA
silencing complex (RISCs). This is further confirmed by a recent
study, which shows that enoxacin enhances the production of miR-
NAs with tumor suppressor functions by binding to the miRNA
biosynthesis protein TRBP2 (15).

In the present study, we examined the effect of enoxacin on
the expression of select miRNAs. These include: let-7a, miR-124,
miR-125a-5p, and miR-132. Although we expect that enoxacin will
increase the expression of miRNAs globally, these miRNAs were
chosen because of their importance in neuronal cell biology. miR-
124 is involved in neurogenesis and is associated with the differen-
tiation status of neuronal cells in mouse brain (26). By targeting
glypican-4, miR-125 regulates cell growth (27). MicroRNA-125
also promotes neuronal differentiation in human cells by repress-
ing multiple targets (28) and in mammalian neurons, miR-125 is
associated with regulation of dendritic spine length (29). Let-7 is
involved in neurogenesis (30) as well as neuronal development and
function (31). BDNF regulates protein synthesis via let-7. BDNF
stimulation upregulates Lin28, an RNA binding protein that can
bind precursors of let-7, preventing them from being processed
by the Dicer–TRBP machinery. The resulting diminished levels
of mature let-7 miRNAs relieve repression of mRNAs with let-
7 binding sites and permit their translation (32). In addition,

let-7 regulates dendritic spine density along the length of neurons
(33). Expression of miR-132 enhances neurite outgrowth, den-
dritic morphogenesis, and spine formation (34–37),and is induced
by BDNF via CREB. It has been shown that CREB- and activity-
regulated miR-132 is necessary and sufficient for hippocampal
spine formation. Expression of the miR-132 target, p250GAP, is
inversely correlated with miR-132 levels and spinogenesis. Fur-
thermore, knockdown of p250GAP increases spine formation
while introduction of a p250GAP mutant unresponsive to miR-
132 attenuates this activity. Inhibition of miR-132 decreases both
mEPSC frequency and the number of GluR1-positive spines, while
knockdown of p250GAP has the opposite effect. Additionally,
miR-132/p250GAP circuit regulates Rac1 activity and spine for-
mation by modulating synapse-specific Kalirin7–Rac1 signaling.
These results suggest that neuronal activity regulates spine forma-
tion, in part, by increasing miR-132 transcription, which in turn
activates a Rac1–Pak actin remodeling pathway. All of these miR-
NAs are processed by dicer and, in other systems, have been shown
to respond to enoxacin (14–16).

To our knowledge, the present report is the first report to show
that enoxacin increases expression of miRNAs in brain and that
enoxacin affects behavioral responses of any kind. Furthermore,
enoxacin given at doses within the usual anti-bacterial thera-
peutic range suppressed learned helplessness in rats, a standard
model of depressive behavior. Further work is needed to learn
the exact mechanism by which enoxacin prevented LH behavior,
and whether lower doses of enoxacin that produce more modest
changes in miRNA expression will also be behaviorally signifi-
cant. It will also be interesting to test enoxacin in other types of
behavior and in other models of depression and post-traumatic
disorder. For example, using a repeated LH paradigm that pro-
duces a prolonged depressive phenotype (18), one may be able to
learn whether enoxacin treatment can reverse learned helplessness
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after it has already been established. Enoxacin (and some of its
fluoroquinolone analogs that also have effects on miRNA levels)
is FDA-approved and widely used, making it an attractive reagent
for study as way to modulate miRNAs in animals, and as a possible
new therapeutic approach to human neuropsychiatric diseases.
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APPENDIX

Table A1 | Confirmation experiment in a separate group of rats showing escape latency of individual rats when given no shock or inescapable

shock and simultaneously treated with saline or enoxacin (10 or 25 mg/kg).

Shock or no shocka Treatment Escape

latency (s)

Response to

shockb

Sham (no shock) Saline 9.684

Sham (no shock) Saline 5.324

Sham (no shock) Saline 9.216

Sham (no shock) Saline 3.496

Sham (no shock) Saline 3.732

Sham (no shock) Saline 4.152

Sham (no shock) Saline 3.19

Sham (no shock) Saline 6.36

Shock Enoxacin (10 mg/kg) 4.316 NLH

Shock Enoxacin (10 mg/kg) 3.952 NLH

Shock Enoxacin (10 mg/kg) 4.312 NLH

Shock Enoxacin (10 mg/kg) 25.776 LH

Shock Enoxacin (10 mg/kg) 9.656 NLH

Shock Enoxacin (10 mg/kg) 9.26 NLH

Shock Enoxacin (10 mg/kg) 26.968 LH

Shock Enoxacin (10 mg/kg) 6.872 NLH

Shock Enoxacin (10 mg/kg) 5.944 NLH

Shock Enoxacin (25 mg/kg) 3.776 NLH

Shock Enoxacin (25 mg/kg) 26.3 LH

Shock Enoxacin (25 mg/kg) 7.088 NLH

Shock Enoxacin (25 mg/kg) 2.512 NLH

Shock Enoxacin (25 mg/kg) 4.444 NLH

Shock Enoxacin (25 mg/kg) 3.244 NLH

Shock Enoxacin (25 mg/kg) 29.476 LH

Shock Enoxacin (25 mg/kg) 13.924 NLH

Shock Enoxacin (25 mg/kg) 8.632 NLH

aSham rats were given no shock on day 6 but were tested for escape latency on day 7.
bFor rats exposed to shock, escape latency <20 s=non-learned helpless (NLH); ≥20 s= learned helpless (LH).
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