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Severe mental illness (SMI) is a broad category that includes schizophrenia, bipolar disorder,
and severe depression. Both genetic disposition and environmental exposures play impor-
tant roles in the development of SMI. Multiple lines of evidence suggest that the roles of
genetic and environmental factors depend on each other. Gene–environment interactions
may underlie the paradox of strong environmental factors for highly heritable disorders,
the low estimates of shared environmental influences in twin studies of SMI, and the
heritability gap between twin and molecular heritability estimates. Sons and daughters of
parents with SMI are more vulnerable to the effects of prenatal and postnatal environmen-
tal exposures, suggesting that the expression of genetic liability depends on environment.
In the last decade, gene–environment interactions involving specific molecular variants in
candidate genes have been identified. Replicated findings include an interaction between
a polymorphism in the AKT1 gene and cannabis use in the development of psychosis and
an interaction between the length polymorphism of the serotonin transporter gene and
childhood maltreatment in the development of persistent depressive disorder. Bipolar dis-
order has been underinvestigated, with only a single study showing an interaction between
a functional polymorphism in the BDNF gene and stressful life events triggering bipolar
depressive episodes. The first systematic search for gene–environment interactions has
found that a polymorphism in CTNNA3 may sensitize the developing brain to the patho-
genic effect of cytomegalovirus in utero, leading to schizophrenia in adulthood. Strategies
for genome-wide investigations will likely include coordination between epidemiological
and genetic research efforts, systematic assessment of multiple environmental factors in
large samples, and prioritization of genetic variants.

Keywords: gene–environment interactions, genome-wide association studies, schizophrenia, bipolar disorder,
major depressive disorder, severe mental illness

SEVERE MENTAL ILLNESS
Severe mental illness (SMI) includes the most disabling psychi-
atric disorders that typically require inpatient treatment, such as
schizophrenia, bipolar disorder, and severe depression. Family and
molecular genetic studies suggest that schizophrenia, bipolar dis-
order, and major depressive disorder share common etiology and
there may be advantages in studying these disorders jointly (1–4).
This review focuses on these three disorders. Studies of subthresh-
old psychotic and mood symptoms are also included since they
may provide additional information on etiology of SMI.

Both genetic disposition and environmental exposures play
important roles in the development of SMI. The risk of SMI runs
in families and is shared in proportion to the degree of biologi-
cal relatedness (5, 6). The overall contribution of genetic factors
appears to be stronger for SMI than for common mental disorders
(6). Twin studies consistently estimate the heritability of schizo-
phrenia and bipolar disorder in the range of 70–80% (7–9). The
genetic contribution to depression may depend on severity: while
general population-based studies find a relatively low heritability
around 38% (10), the heritability of hospital-ascertained severe
depression was estimated to be between 48 and 75% (11). Mole-
cular genetic studies have recently identified a number of specific

genetic polymorphisms that directly contribute to schizophrenia,
bipolar disorder, or all types of SMI across populations (12–14).
The majority of the genetic variants may confer risk to more than
one type of mental illness (1, 12).

A number of environmental factors contribute to SMI
(Table 1). In utero exposure to infection, lack of nutrients, mater-
nal stress, perinatal complications, social disadvantage, urban
upbringing, ethnic minority status, childhood maltreatment, bul-
lying, traumatic events, and cannabis use have all been found to
contribute to one or more types of SMI. Some of these exposures
appear to be responsible for substantial proportion of cases of
SMI. For example, the availability of vitamin D during the prenatal
development may be responsible for 44% cases of schizophrenia
(15), childhood maltreatment and bullying account for 33% of
cases of schizophrenia (16), urban birth and upbringing may be
responsible for 35% of cases (17), and use of cannabis in adoles-
cence may account for 14% of cases of schizophrenia (18). A quick
addition shows that the above attributable risk percentages sum up
to more than 100%. This suggests that multiple factors are likely to
contribute to each case of schizophrenia. Some risk factors may be
correlated (e.g., a child growing up in urban setting may be more
likely to be maltreated) or they may act in synergy (e.g., a person
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Uher Gene–environment interactions in severe mental illness

Table 1 | Environmental risk factors for severe mental illness.

Exposure Schizophrenia Bipolar disorder Major depressive disorder

Prenatal Season of birth +++ (17) ++ (19) + (19)

Inadequate nutrition ++ (20) ++ (21) + (21)

Vitamin D levels +++ (15)

Lead + (22)

Herpes simplex virus-2 ++ (23)

Rubella + (24)

Prenatal stress + (25) + (25)

Perinatal Preterm birth ++ (26) +++ (26) + (26)

Obstetric complications + (27) − (28)

Hypoxia

Childhood Cytomegalovirus + (29)

Maltreatment +++ (16) + (30–32) +++ (33, 34)

Loss of a parent ++ (35)

Social disadvantage +++ (36, 37) − (36) +++ (36, 38)

Bullying ++ (39) + (40)

Urbanicity +++ (71)

Minority status +++ (41) ++ (42)

Adolescence Cannabis +++ (18) + (30) + (18)

Adulthood Stressful life events + (43) ++ (44) +++ (45)

Toxoplasma + (46)

The number of plus signs indicates the strength of evidence for association: +++, consistent evidence from multiple studies or a meta-analysis; ++, evidence from

several studies or a strong association in a high-quality study; +, evidence from a single study or multiple low quality studies; −, evidence for no association; blank

fields reflect lack of evidence for or against association. The list is limited to environmental factors and excludes risk factors that reflect condition of the individual

(e.g., birth weight).

whose early brain development was affected by a lack of vitamin
D may be less resilient to the effects of cannabis in adolescence).
Nonetheless, the high attributable risks strongly suggest that a sig-
nificant proportion of cases of SMI may be preventable through
modification of environment.

GENE–ENVIRONMENT INTERACTIONS
Gene–environment interactions reflect a causal mechanism where
one or more genetic variants and one or more environmental
factors contribute to the causation of a condition in the same
individual with the genetic factors influencing the sensitivity to
environmental exposures (47, 48). They should be distinguished
from gene–environment correlations, where genetic factors influ-
ence the probability of environmental exposures. Statistically, the
likelihood of a gene–environment interaction being present is usu-
ally inferred from a significant interaction term between genetic
and environmental factor in a multiple regression. Since statisti-
cal inference and power depend on the distribution of both the
environmental factor and the genetic variant in a particular sam-
ple, statistical results often do not correspond to actual biological
interaction (49, 50). Therefore, multiple methods of inquiry are
required to establish whether a gene–environment interaction is
involved (51).

While there are strong environmental risk factors that con-
tribute to a large proportion of cases of SMI, there is also significant
evidence of resilience and major individual differences in the

impact of environmental exposures (52, 53). Several strong indi-
cators suggest that the marked individual differences in sensitivity
to potentially pathogenic exposures are, at least partially, due to
genetic factors (54, 55). The combination of very high heritability
and strong environmental factors suggests that a large propor-
tion of cases of SMI must be due to a synergy between genetic
and environmental causes. If a single environmental factor can
explain 30 or 40% of cases of a disease that is 80% heritable,
then some of the heritability must be due to joint causation by
genes and environment. The way heritability is estimated in twin
studies means that gene–environment interactions involving envi-
ronmental factors that are shared within a family are attributed to
the genetic component and contribute to heritability estimates
(55–57). This misattribution of gene–environment mechanisms
to heritability may account for two ostensibly paradoxical obser-
vations. First, while some of the strongest known environmental
factors (e.g., urbanicity and social disadvantage) are shared within
families, twin studies typically estimate no or very small contribu-
tion of shared environment (58–60). Second, since it has recently
become possible to quantify the genetic contribution using molec-
ular genetic data, it became apparent that genetic variants account
for much smaller proportion of variance than the twin-based her-
itability estimates suggested (Figure 1). One of the most likely
explanations for the heritability gap is that gene–environment
interactions involving shared environmental factors are part of the
twin heritability estimates but do not contribute to the molecular
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Uher Gene–environment interactions in severe mental illness

FIGURE 1 |The heritability gap. Heritability estimates from twin and
molecular genetic studies for schizophrenia (SCHZ), bipolar disorder (BPD),
and major depressive disorder (MDD) are based on review of twin studies
and the results from the Cross-disorder Group of the Psychiatric Genetic
Consortium (1, 55). Heritability gap is marked by a blue capped line and
quantified as the proportion of total variance in the presence of each
disorder. Possible explanations for the heritability gap include
gene–environment interactions, inherited rare genetic variants, and
overestimation of heritability in twin studies.

heritability estimates that are based on unrelated individuals (4,
55). The large“heritability gaps”for schizophrenia and bipolar dis-
order suggest that gene–environment interactions may potentially
explain a large proportion of cases of SMI.

GENE–ENVIRONMENT INTERACTIONS BY PROXY
Several studies have attempted to estimate gene–environment
interactions using the familial loading of risk for mental illness
as a proxy for genetic factors. A Finnish study has shown that
family history of schizophrenia interacts with low birth weight in
their effect on educational achievement (61). The link between low
birth weight and low educational achievement was much stronger
among offspring of biological parents with schizophrenia than
in children with no family history of SMI. Since low educational
achievement is an antecedent to schizophrenia and major depres-
sive disorder (62), this study may be interpreted as suggesting
that gene–environment interactions operate in the early processes
on the neurodevelopmental pathway to SMI. This interpretation
depends on the assumption that low birth weight is a reflection of
environmental factors during pregnancy. However, since a genetic
contribution to birth weight is likely (63), the interpretation may
become more complex. Several other studies have explored simi-
lar proxy gene–environment interactions leading to schizophrenia
and other psychotic disorders. A longitudinal Finnish adoption
study has shown that excellent parenting and clear communica-
tion can substantially reduce the risk of schizophrenia and related
conditions among adopted offspring of biological mothers with
schizophrenia while no effect of parenting was seen in adopted off-
spring of biological mothers without SMI (64). Another Finnish

study derived data from a population-based registry and showed
that serious infection during pregnancy increased the risk of psy-
chosis in offspring who had a family history of psychotic illness
(65). A large-scale Swedish adoption study has shown that socio-
economic disadvantage during upbringing increased the risk of
psychosis in adoptees with a family history of SMI in biologi-
cal relatives (66). Yet, the pattern is not uniform: a recent study
has found a correlation between family history of psychosis and
childhood maltreatment (with sons and daughters of parents with
psychosis being more often maltreated by their parents), but no
interaction between family history of psychosis and childhood
maltreatment in the causation of psychotic disorders (67). A twin
study of depression found that genetic disposition, indexed by
depression in monozygotic and dizygotic co-twins, significantly
interacted with environmental triggers (stressful life events) in
leading to depressive episodes (68). Taken together, these studies
show that pathogenic effects of many but not all environmen-
tal risk factors depend on the familial disposition to SMI. Since
several of the studies were adoption or twin studies, the familial
disposition was separated from the environmental factors and it
can be interpreted as a proxy of genetic effects. However, even
in adoption studies, there is a residual sharing of environment in
the early life and in twin studies monozygotic twins may share
more of their environment than dizygotic twins. Consequently,
the interpretation of gene–environment studies using proxy mea-
sures is limited because familial relatedness cannot be equaled to
genetic contribution and because specific environmental factors
may interact with specific genetic variants rather than with the
multitude of risk alleles that may constitute familial disposition.
Therefore, investigation of gene–environment interactions involv-
ing specific molecular genetic variants is necessary to advance our
knowledge of causal mechanisms leading to SMI.

GENE–ENVIRONMENT INTERACTIONS INVOLVING SPECIFIC
MOLECULAR GENETIC VARIANTS
Molecular genetic variants can be measured with high accuracy
and their identification may help the development or novel indica-
tions for therapeutics. Gene–environment interactions with spe-
cific molecular genetic variants have started to be identified in
the last decade. Most of the findings have concerned community-
ascertained depression or other relatively common mental dis-
orders (69). More recently, several groups of researchers have also
investigated and identified specific gene–environment interactions
that play a role in the causation of schizophrenia and related
conditions (Table 2).

The first reported specific gene–environment interaction for a
psychotic disorder included a functional polymorphism in the
catechol-O-methyltransferase (COMT ) gene. COMT codes an
enzyme that metabolizes dopamine, the principal neuromediator
involved in the positive symptoms of psychosis. A single nucleotide
polymorphism (SNP) (rs4680, Val158Met) substitutes valine by
methionine (Met) at position 158, leading to the production of
an enzyme that is much less efficient than the native Val variant.
Caspi and colleagues found that use of cannabis in adolescence led
to psychotic symptoms and disorders specifically in individuals
carrying the more efficient Val alleles at the functional Val158Met
COMT polymorphism (82). While the choice of candidate gene
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Uher Gene–environment interactions in severe mental illness

Table 2 | Molecular gene–environment interactions in severe mental illness.

Gene Exposure Outcome Original report Replication

Reference Result Reference

BDNF Stressful life events Depression Kim et al. (70) Yes Brown et al. (71)

CRHR1 Childhood maltreatment Depression Bradley et al. (72) Yes Polanczyk et al. (73)

HTR2A Parenting Depression Jokela et al. (74)

MAOA Childhood adversity Depression Cicchetti et al. (75) Yes Melas et al. (76)

NR3C1 Childhood adversity Depression Bet et al. (77)

SLC6A4 Childhood maltreatment Depression Caspi et al. (78) Yes Karg (79)

SLC6A4 Stressful life events Depression Caspi et al. (78) Y/N Karg et al. (79),

Brown et al. (80)

BDNF Stressful life events Bipolar depressive episodes Hosang et al. (81)

COMT Cannabis Schizophrenia/psychosis Caspi et al. (82) No Zammit et al. (83)

COMT Cannabis+ childhood

maltreatment

Schizophrenia/psychosis Alemany et al. (84) Yes Vinkers et al. (85)

AKT1 Cannabis Schizophrenia/psychosis van Winkel and Genetic Risk and Outcome

of Psychosis (GROUP) Investigators (86)

Yes di Forti et al. (87)

BDNF Childhood maltreatment Schizophrenia/psychosis Alemany et al. (88) No Ramsay et al. (89)

FKBP5 Childhood maltreatment Psychotic symptoms Collip et al. (90)

SLC6A4 Childhood maltreatment Cognition in psychosis Aas et al. (91)

GRIN2B Herpes simplex virus-2 in utero Schizophrenia/psychosis Demontis et al. (92)

CTNNA3 Cytomegalovirus in utero Schizophrenia/psychosis Borglum et al. (93)

BDNF, brain-derived neurotrophic factor; CRHR1, corticotropine receptor; HTR2A, serotonin receptor 2A; MAOA, monoamine oxidase A; NR3C1, glucocorticoid

receptor; SLC6A4, serotonin transporter; COMT, catechol-O-methyl transferase; AKT1, serine/threonine-protein kinase; FKBP5, glucocorticoid receptor co-chaperone;

GRIN2B, glutamate NMDA receptor subunit; CTNNA3, catenin, cadherin-associated protein.

and polymorphism was well justified, the direction of the effect
might have been surprising: the more efficient Val allele was asso-
ciated with sensitivity whilst the less efficient Met allele conferred
protection. This finding might have had major implications for
personalized prevention of psychosis: a sensitizing genetic vari-
ant that explains why many young people remain well even after
smoking large amounts of cannabis may help deliver a credible per-
sonalized message to those at the highest risk. However, this finding
proved difficult to replicate. While initial experimental data sup-
ported the interaction (94), several independent studies reported
non-replications (83,95–97) or even findings in the opposite direc-
tion (98). It appeared that this gene–environment interaction must
have been a false-positive finding. However, recent data suggest
that there may be a genuine interaction involving COMT and
cannabis. Supportive data have been reported from the genetic
and psychosis (GAP) study of first onset psychosis together with
an explanation why some previous studies might not have found
the expected results: the pathogenic effects of cannabis depends
on the proportion of tetrahydrocannabinol and cannabidiol (99,
100). When this is taken into account, the gene–environment
interaction as reported by Caspi and colleagues was replicated for
adolescent exposure to cannabis with high tetrahydrocannabinol
to cannabidiol ratio (101). Another refinement has been reported
by taking account of childhood maltreatment in addition to the

use of cannabis in adolescence: Alemany and colleagues reported
a three-way interaction between the COMT genotype Val alleles,
childhood maltreatment, and adolescent cannabis use in the etiol-
ogy of psychotic experiences (84). Most remarkably, this complex
three-way interaction was independently replicated by the GROUP
investigators: in their sample of Dutch young adults, combina-
tion of two COMT Val alleles childhood maltreatment and use
of cannabis in adolescence was associated with the highest risk of
psychotic experiences (85). While the recent refinements are await-
ing further tests, the interim conclusion can be made that COMT
and cannabis are likely to be part of a complex causal mechanism
leading to psychotic symptoms and schizophrenia.

In the meantime, another genetic polymorphism has been iden-
tified that may moderate the effects of cannabis use in development
of psychosis. This started with an investigation of 152 genetic
variants in 42 selected candidate genes (86). A polymorphism
(rs2494732) in the AKT1 gene was identified that interacted with
the use of cannabis in the pathogenesis of psychosis: carriers of the
C/C genotype on rs2494732 were most likely to develop psychotic
illness after smoking cannabis. This interaction is not just highly
plausible (AKT1 codes a serine/threonine kinase that relays signal
from the cannabinoid receptors), but it appears remarkably robust:
the gene–environment interaction between AKT1 rs2494732 and
cannabis replicated across three analyses in the primary report
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Uher Gene–environment interactions in severe mental illness

(86). Soon after, an independent replication with the same direc-
tion of effect was reported in the GAP study of first-episode
psychosis patients and healthy controls (87). This effect was driven
by daily use of cannabis increasing the risk of psychosis sevenfold
in rs2494732 C allele homozygotes, suggesting that avoidance of
heavy use of cannabis is highly advisable for individuals carrying
this genotype.

A group of Danish researchers focused on another established
environmental risk factor for SMI: exposure to virus infection
in utero (102–104). In one study, they tested 124 SNPs in five genes
encoding components of the NMDA glutamatergic receptor, using
365 cases of schizophrenia and 365 matched healthy controls from
the Danish population registry (92). They identified two poly-
morphisms (rs1805539 and rs1806205) in the GRIN2B gene that
significantly interacted with maternal positivity for the herpes sim-
plex virus-2 (92). This promising finding is awaiting a replication
test.

Additional single candidate gene studies investigated genetic
variants with known gene–environment interactions in common
mental disorders. The FKBP5 gene coding a co-chaperone of the
glucocorticoid receptor was reported to sensitize individuals to
developing post-traumatic stress disorder after being exposed to
childhood maltreatment (105). Collip and colleagues found a sim-
ilar gene–environment interaction involving the same SNPs in
FKBP5 and childhood maltreatment in increasing the risk of expe-
riencing psychotic symptoms in young adults (90). Perhaps the
most investigated gene in relationship to environment is SLC6A4,
which encodes the serotonin transporter. A functional length
polymorphism in the promoter of SLC6A4, known as 5-hydroxy
tryptamine transporter-linked polymorphic region (5-HTTLPR),
has been shown to moderate the effects of childhood maltreatment
on depression: individuals carrying the short alleles of 5-HTTLPR
are prone to develop persistent depressive disorder if they experi-
ence maltreatment in childhood (78, 80, 106). Aas and colleagues
investigated the interplay between 5-HTTLPR and childhood mal-
treatment in psychosis and found that the combination of the short
5-HTTLPR alleles and history of childhood maltreatment was
associated with cognitive impairment among patients with psy-
chotic disorders (91). This effect was only seen for physical abuse
and physical neglect and it did not hold when all types of childhood
maltreatment were combined. This finding is waiting for indepen-
dent replication. A functional polymorphism (Val66Met) in the
brain-derived neurotrophic factor (BDNF) gene has been reported
to interact with stressful life events and childhood maltreatment
in the development of depression, with Met allele carriers being
more likely to develop depression after exposure to adversity (71,
107, 108). From a convenience predominantly student sample,
Alemany and colleagues have reported that BDNF Met allele car-
riers with a history of childhood abuse were also more likely to
develop psychotic-like experiences (88); this gene–environment
interaction has not been replicated in a general population sample
of adolescents (89).

Compared to both major depressive disorder and schizo-
phrenia, gene–environment interactions in bipolar disorder have
been understudied. Only a single published study has reported
that people with bipolar disorder who carried Met alleles at
the BDNF Val66Met polymorphism were more likely to develop

depressive episodes following stressful life events than Val allele
homozygotes (81).

SYSTEMATIC SEARCH FOR GENE–ENVIRONMENT
INTERACTIONS
All the studies reviewed above were restricted to the exploration
of one or more polymorphisms in one or more genes that were
selected based on their presumed functionality in relation to the
disorder or the exposure of interest, i.e., they were candidate gene
studies. The study of genetic associations across phenotypes has
demonstrated that researchers had not been able to select the right
candidate genes: most strong genetic associations turned out to be
in genes that no one suspected to be involved (109). In addition,
most genetic associations reported from candidate gene studies
have proven to be false-positive findings perpetuated through pub-
lication bias but not replicated in large-scale systematic studies
(110). While candidate gene–environment interactions have had
better replicability record (Table 2) (69), the fact that study of
gene–environment interactions remains largely limited to func-
tional candidate genes is worrying. It is likely that more cases of
SMI can be explained by gene–environment interactions involv-
ing genetic variants that no one had suspected than those few
polymorphisms explored in the above reviewed studies. There-
fore, a systematic search for gene–environment interactions across
the genome is the essential next step in establishing the etiology
of SMI.

To date,only one systematic search for gene–environment inter-
actions in SMI has been carried out. A group of Danish researchers
have searched the genome for genetic variants that may sensi-
tize individuals to developing schizophrenia after being exposed
to cytomegalovirus in utero (93). In 488 cases of schizophrenia
and 488 healthy controls from the Danish population registry,
they measured antibodies to cytomegalovirus in dried blood spots
taken from infants at birth (to carry out the Guthrie test for
phenylketonuria) and archived. Since the fetus does not produce
its own antibodies, these antibodies are of maternal origin and
a proxy of maternal infection with cytomegalovirus during preg-
nancy. From the same dried blood spots, they also extracted DNA
and genotyped over half a million SNPs. They did not test interac-
tion with maternal cytomegalovirus infection for all the genotyped
SNPs, because of concerns about statistical power. Instead, they
carried out a prioritization step and selected 29,000 polymor-
phisms that were significantly associated with cytomegalovirus
infection in the combined case–control sample. This prioritization
was based on a proposal that associations between polymorphisms
and an exposure in a case–control sample may be induced by a
gene–environment interaction (111) (this reasoning is only applic-
able to case–control samples, and only makes sense for relatively
rare disorders). Among the 29,000 SNPs, the rs7902091 in the
CTNNA3 gene was found to significantly interact with maternal
cytomegalovirus infection in causing schizophrenia after correct-
ing for the number of tests performed. It did not reach the accepted
genome-wide level of significance. CTNNA3 encodes a cadherin-
associated protein that had been liked to cardiomyopathy, but
not suspected to be involved in SMI. It remains to be established
whether this gene–environment interaction will prove to be robust
in replication.
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FUTURE OUTLOOK FOR GENES AND ENVIRONMENT
Adequately powered genome-wide searches for gene–environment
interactions should be a priority for the next decade of research.
Since the statistical power for detecting gene–environment inter-
actions is lower than statistical power for detecting direct gene-
disorder associations (112, 113), large samples will be needed.
Paradoxically, these efforts are held back by the unavailability of
reliably assessed environmental exposures rather than genome-
wide genotyping. The latest genome-wide analyses of schizo-
phrenia, bipolar disorder, and major depressive disorder involved
several tens of thousands of cases and tens of thousands of controls
each. Yet the largest investigation of gene–environment interac-
tions in schizophrenia involved fewer than 1000 cases. The situa-
tion for bipolar disorder is even more striking, with a near absence
of gene–environment studies in spite of substantial shared etiol-
ogy with both depression and schizophrenia and a large heritability
gap left to be explained.

The move to systematic genome-wide gene–environment stud-
ies will have to overcome major challenges in addition to sample
size (69). Several lines of evidence have shown that the qual-
ity of assessment of environmental variables is essential. The
replicability of interaction between 5-HTTLPR and childhood
maltreatment in leading to persistent depression depends on
high-quality assessment of childhood maltreatment with detailed
interviews or historically recorded variables (114), the replicabil-
ity of interactions between COMT and cannabis use may depend
on how well the exposure to cannabis is characterized, includ-
ing age and frequency of use as well as the type of cannabis
used (101, 115). In the past, large sample collection studies often
discounted on the assessment quality, leading to a negative rela-
tionship between study size and quality and non-replications in
large samples (116, 117). Therefore, when obtaining environ-
mental variables from large samples, substantial efforts will be
required to maintain the quality of assessment of environmental
variables.

Another challenge lies in the selection of environmental vari-
ables to be assessed. A potentially large number of environmental
exposures might be contributing to SMI (Table 1). Yet, with each
environmental variable added, the number of potential gene–
environment tests increases by the number of genetic variables
(which is effectively in the range of 500,000–1,000,000 after tak-
ing into account linkage disequilibrium between polymorphisms)
and the sample size requirements increase accordingly.

Several initiatives have been launched with the aim to col-
lect a systematic selection of environmental variables in addi-
tion to genetic material from moderately large samples (118–
120). Obtaining even larger samples would require a degree of
coordination between genetic and epidemiological studies. For
example, a funding agency may prioritize funding genotyping
only for completely assessed samples with high-quality data on
environmental exposures or support genetic sample collections
in high-quality epidemiological studies of important environ-
mental exposures. Obtaining genetic and environment data from
the same rather than separate samples would create significant
opportunities without increasing the total cost of research carried
out. With some of these initiatives taking place, our understanding
of SMI may substantially evolve over the next decade.
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