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Adenosine A2A receptors (A2AR) are a sub-type of receptors enriched in basal ganglia,
activated by the neuromodulator adenosine, which interact with dopamine D2 receptors.
Although this reciprocal antagonistic interaction is well-established in motor function, the
outcome in dopamine-related behaviors remains uncertain, in particular in depression and
anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic
stress. Furthermore, Alzheimer’s disease patients present A2AR accumulation in cortical
areas together with depressive signs. We now tested the impact of overexpressing A2AR
in forebrain neurons on dopamine-related behavior, namely depression. Adult male rats
overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR)]
and aged-matched wild-types (WT) of the same strain (Sprague-Dawley) were studied.
The forced swimming test (FST), sucrose preference test (SPT), and the open-field test
(OFT) were performed to evaluate behavioral despair, anhedonia, locomotion, and anxiety.
Tg(CaMKII-hA2AR) animals spent more time floating and less time swimming in the FST
and presented a decreased sucrose preference at 48 h in the SPT.They also covered higher
distances in the OFT and spent more time in the central zone than the WT.The results indi-
cate that Tg(CaMKII-hA2AR) rats exhibit depressive-like behavior, hyperlocomotion, and
altered exploratory behavior. This A2AR overexpression may explain the depressive signs
found in aging, chronic stress, and Alzheimer’s disease.

Keywords: adenosine A2A receptors, memory, anxiety, depression, stress, locomotion, dopamine

INTRODUCTION
Adenosine is a purine nucleoside, which acts as neuromodulator
in several brain areas, playing important fine tuning influences
on other neurotransmitters (1). It has an important role in cen-
tral nervous system and its involvement in a wide range of brain
processes and diseases has been researched, namely sleep (2, 3),
epilepsy (4, 5), panic disorder (6), anxiety (7), Alzheimer’s disease
(8), Parkinson’s disease (9), and schizophrenia (10).

So far, four adenosine receptors have been cloned and charac-
terized: A1R, adenosine A2A receptor (A2AR), A2BR, and A3R. A1R
and A3R are coupled to Gi proteins, inhibiting cAMP production;
A2AR is coupled to Gs proteins, stimulating cAMP production;
A2BR is coupled to Gs and to Gq proteins, stimulating cAMP
production, and phosphatidylinositol signal pathway activation,
respectively (11). These receptors are not uniformly distributed
in the central nervous system. A1R is highly expressed in brain
cortex, cerebellum, hippocampus, and dorsal horn of spinal cord
(1, 11, 12). A2AR is highly expressed in the olfactory bulb and
in the GABAergic neurons of caudate–putamen, nucleus accum-
bens, and tuberculum olfactorium (1, 11). A2BR and A3R are also
present in the brain, however, in low levels (11).

Adenosine A2A receptor activation influences the function of
several receptors, but the interaction with dopamine D2 recep-
tor (D2R) is one the most intensively studied (1). Dopamine is a
catecholamine neurotransmitter. It activates five known types of
receptors, D1R–D5R, which may be grouped in D1-like receptors –
D1R and D5R – and D2-like receptors – D2R, D3R, and D4R (13).
Dopaminergic neurons are mostly localized in the arcuate nucleus
of hypothalamus, substantia nigra pars compacta, and ventral
tegmental area. From the substantia nigra–ventral tegmental area
complex, three distinct dopamine projection pathways are formed
(14). In one of them, axons project to cortical areas, particularly
to the frontal cortex, forming the classically described mesocorti-
cal pathway. In another pathway, classically known as mesolimbic
pathway, axons project to the nucleus accumbens, amygdala, and
hippocampus. Due to their functional interrelationships, these two
pathways are commonly referred as a single system – the meso-
corticolimbic system (15). This system is involved in emotional
response, motivation, reward, addiction, and learning. Its role has
been emphasized in the pathophysiology of schizophrenia, depres-
sion, and drug addiction, and it appears also to be implicated in
anxiety disorders (16–20). In the third pathway, axons project
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to the striatum, forming the classically described nigrostriatal
pathway. This pathway integrates the neural circuits of the basal
ganglia responsible for motor control and its malfunctioning is
classically involved in the pathophysiology of Parkinson’s disease
(21), although recent evidence also points to a very important role
in the motor changes associated with severe depression (22).

Adenosine A2A receptor and D2R are co-localized in the dorsal
and ventral striatum and are reciprocal inhibitors: on one hand,
A2AR–D2R heteromers are formed and, when the A2AR is acti-
vated, conformational changes are transferred to the D2R – this
leads to a reduction in D2R recognition and signaling (23, 24); on
the other hand, D2R activation inhibits cAMP mediated-effects of
A2AR by inhibiting adenylyl-cyclase (23, 24).

Knowing these possible interactions between A2AR and
dopamine, we investigated the impact of A2AR overexpression
in cortical areas onto dopamine-related behavior. Thus, in the
present work a group of behavioral tests was performed in order to
analyze the effect of A2AR overexpression: (1) sucrose preference
test (SPT), considered for a behavioral evaluation of anhedonia
(25); (2) forced swim test to evaluate motivation and behavioral
despair (26, 27); (3) open-field test (OFT) to study locomotor
activity and anxiety-like behavior (28, 29).

MATERIALS AND METHODS
ANIMALS
Animal procedures were performed in accordance with the
guidelines of the European Community guidelines (Directive
2010/63/EU), Portuguese law on animal care (1005/92), and
approved by the Instituto de Medicina Molecular Internal Com-
mittee and the Portuguese Animal Ethics Committee (Direcção
Geral de Veterinária). Transgenic rats with an overexpression
of the human A2AR under the control of the CaMKII promo-
tor, tg(CaMKII-hA2AR), were generated by microinjection of a
linearized DNA construct into the male pronucleus of Sprague-
Dawley rat zygotes with established methods (30). The construct
contained a full-length human A2A cDNA cloned into an expres-
sion vector with the 8.5 kb mouse CaMKIIα promoter (31) and a
polyadenylation cassette of bovine growth hormone (see Figure 1,
top panel). Sprague-Dawley wild-type (WT) rats were used as
controls. Genotyping : transgenic rats were identified by PCR
(30 cycles, 58°C annealing temperature) of their genomic DNA
isolated from ear biopsies by the use of the transgene-specific
primers CaMKII-hA2A and rat β-actin primers as an internal
control (Invitrogen). According to the performed RNase protec-
tion assay, these animals expressed A2AR pre-dominantly in the
brain. qPCR and Western blotting showed that the overexpression
was mostly in hippocampus and cortex; there was also overex-
pression in striatum, however at a lesser extent (Figure 1). Nine
week-old WT and transgenic Sprague-Dawley (CaMKII-hA2AR)
male rats were used. They were maintained in groups of three in
appropriate cages with food and water ad libitum, temperature
of 21± 0.5°C, humidity of 60± 10%, and 12 h light/dark cycles
beginning at 8 a.m.

BEHAVIORAL TESTING
The behavioral testing was performed as before (32), during the
light period of the cycle, in a silent room, under dim light. From

FIGURE 1 | Neuronal overexpression of adenosine A2A receptor (A2AR)
inTg(CaMII-hA2AR) rats. A2AR overexpression in the striatum of
Tg(CaMKII-hA2AR) rats compared to WT animals was confirmed by western
blotting.

the first to the third day of experiments, the animals were han-
dled for approximately 1 min each. On the fourth day, at 2.30 p.m.
the OFT was done. On the fifth day, at 1 p.m. the SPT was initi-
ated. This test was concluded on the seventh day at 9 a.m. On the
seventh and eighth day, both at 2 p.m., the forced swim test was
executed.

Open-field test
The rats were placed in a designated corner of a square appa-
ratus, surrounded by vertical walls (66 cm× 66 cm× 66 cm) –
open-field arena. They freely explored the maze for 5 min. Their
movements were recorded and analyzed using the video-tracking
software – SMART®. The reference point used by the software to
determine the position of the animal was the center of the rat’s dor-
sum (also true for the other experiments). Three different zones
were defined for analysis (29): (1) the area adjacent to the wall
(1896 cm2); (2) the central area of the arena (552 cm2); (3) the
intermediary area between the two previous ones (1908 cm2). The
percentage of time spent in each zone, the total distance traveled,
the average speed (calculated after the elimination of the resting
time), and the number of rearings and defecations were deter-
mined. At the end of the 5 min test, the rat was removed from the
open-field arena and placed into its home cage.

Elevated plus maze
The maze is shaped like a plus sign and consists of two “open” (no
walls, 5 cm× 29 cm) and two“closed”122 (5 cm× 29 cm× 15 cm)
arms, arranged perpendicularly, and elevated 50 cm above the
floor. Each animal was placed on the center of the equipment, fac-
ing an open arm. Each test lasted 5 min and all testing sessions were
performed between 10:00 a.m. and 17:00 p.m. in a sound atten-
uated room. The maze was cleaned with a 70% ethanol solution
between each animal. The total time spent in the open arms and
the total arms entries (number of entries in open+ closed arms)
were used as anxiety and locomotor parameters as before (32).

Sucrose preference test
Rats were given two previously weighed bottles: with 1% (w/v)
sucrose solution (33). The bottles had the same characteristics
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and approximately the same volume of liquid and were positioned
side-by-side at the rear of the cage. The rats had free access to
both bottles. The position of the bottles in the cage is switched
halfway through this period. There was no food or water depri-
vation before the test. The bottles were weighed again at 48 h and
the consumed weight of each liquid was determined. The sucrose
preference was calculated according to Bekris et al. (34):

SP =
sucrose solution intake

(
g
)

sucrose solution intake
(
g
)
+ water intake

(
g
) × 100.

Forced swim test
On the first of the two test days, all animals were gently placed indi-
vidually in a vertical Plexiglas cylinder (height: 45 cm, diameter:
19 cm) filled with 23°C tap water at a depth that made it impossible
for rats to reach the bottom with hind paws (28–30 cm). The ani-
mals were removed from the water after 10 min, and dried before
being returned to their home cages. The water was changed after
each session. On the next day, the procedure was repeated with two
differences: the animals were removed from the water after 5 min,
instead of 10 min; the session was video-recorded. An observer
blinded to the animal group analyzed the videos. Three different
behaviors were considered: (1) immobility – according to the cri-
teria of Porsolt et al. (35), a rat is judged to be immobile when it
floated passively, making only small movements to keep its nose
above the surface; (2) climbing (or thrashing) – upward-directed
movements with its forepaws, in and out of the water, along the
side of the swim chamber; (3) swimming – active movements
(usually horizontal) more than necessary to merely maintain its
head above the water (36, 37). Diving and face shaking behaviors
were not considered.

The time (t ) spent in immobility and climbing was measured;
the time spent swimming was calculated: t swimming= 5− (t
climbing+ t immobility). Additionally, the latency to the first bout
of immobility was determined (38): period of time since the begin-
ning of the rat mobilization in the water until the first episode (at
least 1 s) of immobility.

Western blotting
The animals were killed by decapitation after anesthesia under
halothane atmosphere. After decapitation the brain was rapidly
removed and the striata were dissected rapidly frozen in liquid
nitrogen for further analysis. Samples were denatured by heat-
ing at 70°C for 30 min for A2AR. Samples and molecular weight
marker were resolved by SDS-PAGE (8 or 10% for resolving and
a 5% for stacking gels) in denaturing conditions and electro-
transferred to PVDF membranes (Millipore). Membranes were
blocked with 5% non-fat dry milk in TBS-T (Tris buffer saline
with 0.1% Tween-20, 200 nM Tris, 1.5 M NaCl). After washing
with TBS-T, membranes were incubated with primary antibody
in TBS-T with 3% BSA. Secondary antibody incubation was in
5% non-fat dry milk in TBS-T. Primary antibody was mouse
anti-A2AR (1:2000, Upstate/Millipore – 05-717, Darmstadt, Ger-
many), secondary antibodies conjugated with horseradish peroxi-
dase were goat anti-mouse (Santa Cruz Biotechnology, Heidelberg,
Germany). Chemoluminescent detection was performed with

ECL-PLUS western blotting detection reagent (GE Healthcare)
using X-Ray films (Fujifilm).

STATISTICAL ANALYSIS
The software used to perform the statistical analysis was Prism
5 – GraphPad software®. Unpaired t test with Welch’s correction
was applied to compare the differences between groups. p < 0.05
was considered as statistical significant. Data are expressed as
means± SEM.

RESULTS
WEIGHT
The weight of transgenic CaMKII-hA2AR rats was significantly
lower than WT rats (283± 11 vs. 400± 5 g; p < 0.001) (Figure 2).

OPEN-FIELD TEST
The total distance covered in the open-field arena was signifi-
cantly higher in Tg(CaMKII-hA2AR) rats [WT: 2956± 160 cm;
Tg(CaMKII-hA2AR): 3644± 64 cm; p= 0.0013], and was accom-
panied by a significant increase in the number of rearings
[WT: 5.9± 0.7; Tg(CaMKII-hA2AR): 10.8± 1.4; p= 0.0390], sug-
gesting that Tg(CaMKII-hA2AR) rats display hyperlocomotion,
Figure 3.

Transgenic (CaMKII-hA2AR) rats spent less time at the wall
zone [WT: 73.97± 1.6%; Tg(CaMKII-hA2AR): 61.59± 1.94%;
p < 0.0001] and more time in the central zone of the open-
field box [WT: 3.36± 0.48%; Tg(CaMKII-hA2AR): 5.21± 0.40%;
p= 0.0083, Figure 4] suggesting that Tg(CaMKII-hA2AR) rats
have increased exploratory behavior. We could not detect sig-
nificant changes in the anxious behavior evaluated by EPM
(Figure 4C). There were no statistical significant differences
regarding the number of defecations and the average speed
between the two groups (data not shown).

FIGURE 2 | Weight control ofTg(CaMKII-hA2AR) animals. Results are
expressed as mean±SEM. ***p < 0.001 WT: n=12; Tg(CaMKII-hA2AR):
n=4.
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SUCROSE PREFERENCE AT 48 H
At 48 h, the preference index for sucrose was significantly higher
in WT than in Tg(CaMKII-hA2AR) rats [WT: 91.88± 1.4%;
Tg(CaMKII-hA2AR): 44.85± 23.78%, p= 0.0081, Figure 5], sug-
gesting that Tg(CaMKII-hA2AR) rats have an anhedonic-like
phenotype.

FORCED SWIM TEST
Transgenic (CaMKII-hA2AR) rats spent significantly more time
floating than WT rats (2.47± 0.18 vs. 3.04± 0.16 min, p= 0.0452,
Figure 6A) indicating that transgenic animals have increased
behavioral despair. No significant changes were apparent in

FIGURE 3 | Open-field test. (A) Distance covered in centimeter.
(B) Number of rearings – results are expressed as mean±SEM.
**p < 0.01; ***p < 0.001. WT: n=12; Tg(CAMKII-hA2AR): n=4.

both swimming and climbing times, despite a tendency to
lower performance in Tg(CaMKII-hA2AR) animals (Climb-
ing: 0.63± 0.08 vs. 0.50± 0.02 min, p= 0.1486; swimming:
1.88± 0.16 vs. 1.46± 0.17 min, p= 0.1060).

The latency to the first period of immobility was not dif-
ferent between WT and transgenic animals [WT: 25.2± 5.6 s;
Tg(CaMKII-hA2AR): 26.6± 3.8 s; p= 0.8304, Figure 6B].

DISCUSSION
We now report that rats overexpressing A2AR in the hippocampus,
cortex and striatum, display depressive-like behavior, increased
locomotor activity, and altered exploratory behavior.

DEPRESSIVE-LIKE BEHAVIOR
The SPT is considered a behavioral test for anhedonia, defined as
the inability to feel pleasure from usually enjoyable activities, a
core symptom of depression. Decreased sucrose solution intake,
resulting from chronic mild stress, is used as a model of depression
in rats, and can reversed by the administration of antidepressants
(25, 39, 40). Thus, a decreased sucrose preference is associated to
depressive-like behavior, specifically anhedonia. In our study, rats
overexpressing A2AR, had a decrease in the preference index for
sucrose solution at 48 h.

Additionally, when rats are placed in an inescapable cylinder of
water – forced swim test – following initial escape-directed move-
ments, they develop an immobile posture (27, 36). Immobility
indicates either a failure in the persistence to escape (behavioral
despair) or the act of giving up an active form of coping with the
stressful stimuli (36). The immobility period and the latency to the
first bout of immobility both decrease with the administration of
antidepressants (38, 41, 42). Thus, an increased period of immo-
bility and reduced latency to immobility represent depressive-like
behavior. A2AR overexpressing animals spent more time floating,
while no significant differences were observed in the time spent
swimming, climbing, or latency to immobility. These behaviors,
again, suggest a depressive-like phenotype.

FIGURE 4 | Open-field test. Percentage of time spent (A) at the wall zone and (B) in the central zone. (C) Percentage time in the open arms of the elevated
plus maze (EPM). Results are expressed as mean±SEM. **p < 0.01; ***p < 0.001. WT: n=12; Tg(CaMKII-hA2AR): n=4.
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FIGURE 5 | Sucrose preference test. (A) Preference index at 48 h and
(B) control of amount of solution intake. Results are expressed as
mean±SEM. p < 0.05 WT: n= 8; Tg(CaMKII-hA2AR): n=4.

FIGURE 6 | Forced swim test. (A) Time spent floating, swimming, and
climbing; (B) latency to the first period of immobility – results are
expressed as means±SEM. p < 0.05 WT: n=12; Tg(CaMKII-hA2AR): n= 4.

Genetic inactivation and pharmacological blockade of A2AR
have antidepressant-like effects (43). However, selective A2AR ago-
nists are also able to decrease the immobility time in the forced
swim test (44, 45). Our observations indicate that A2AR overex-
pression in neurons results in a depressive-like phenotype. Inter-
estingly, depressive symptoms are found in Alzheimer’s disease
patients,which have an abnormal accumulation of A2AR in cortical
areas (8).

LOCOMOTOR ACTIVITY
The increase in locomotor activity displayed by the Tg(CaMKII-
hA2AR) rats is in accordance with the hypolocomotor phenotype
of mice with genetic deletion of A2AR (46, 47). However, this
genetic manipulation does not reflect the effect of acutely admin-
istered A2AR agonists that reduce locomotor activity (48, 49). The
A2AR–D2R interaction hypothesis of reciprocal inhibition is not
suitable to explain the obtained result: with increased amounts
of A2AR, we would expect a decreased activation of D2R, which
results in hypo-locomotion; and it is known that D2R antagonists
suppress locomotion (50, 51).

ANXIOUS-LIKE BEHAVIOR
Since rat is a gregarious animal, which usually lives in small spaces,
its separation from its social group and placing in a large arena trig-
ger an anxious behavior. In these situations, they naturally display
a propensity to walk close to the walls and to avoid open spaces,
a behavior called thigmotaxis. Based on this, it is considered that
increased time spent on the central zone of the OFT represents
a less anxious behavior (29, 52). Similarly, rats display a pre-
disposition toward protected, enclosed areas, which is in conflict
with their innate motivation to explore new environments. The
Tg(CaMKII-hA2AR)rats spent more time on the central zone and
less time on the wall zone of the OFT. This increase in exploratory
behavior is not a consequence of an anxious-like phenotype of rats
overexpressing A2AR and is in line is in line with previous studies
of the other known model of rats overexpressing A2AR receptors in
which no difference was found concerning anxiety-like behavior
(53). This could also be due to the postulated differences in the
cellular origin of A2AR, which has been highlighted recently in a
study showing that inactivation of striatal A2AR s facilitates Pavlov-
ian fear conditioning, whereas inactivation of extrastriatal A2ARs
in the forebrain inhibits fear conditioning and also affects anxiety-
related behavior (54). Also, there is no evidence for anxiogenic or
anxiolytic effects of A2AR agonists or antagonists (49, 55).

The A2AR–D2R interaction hypothesis of reciprocal inhibition
does not again provide an explanation for our findings: D2R ago-
nists have anxiolytic properties, which are blocked by D2R antago-
nists (56, 57); consequently, we would expect an increased anxious
state in animals overexpressing A2AR. Similar results obtained with
animals overexpressing A2AR but controlled by the widespread
neuronal promoter enolase (NSE) (53), seem to indicate that the
striatal overexpression is not as disturbing as one cortical and
hippocampal, dominant in these CaMKII A2A rats.

There could be a mutual influence between anxiety and loco-
motor activity behaviors. On one hand, the anxiety state can
change locomotor activity (58). On the other hand, the anxiety-
related tests depend on motor activity (59). However, there is
evidence that locomotion and anxiety are differentially regulated
by adenosine A2AR: studies using A2AR knockout mice showed
that the hypo-locomotion pattern was equal in homozygous and
heterozygous mice, as well as in forebrain selective vs. striatal KO,
irrespectively of the effects on anxiety (54, 60).

ADDITIONAL AND INTEGRATIVE EXPLANATIONS FOR THE OBSERVED
PHENOTYPE
As previously mentioned, the A2AR–D2R interaction hypothesis of
reciprocal inhibition is not enough to explain the hyperlocomo-
tor and the less anxious-like phenotype of Tg(CaMKII-hA2AR)
rats. These findings can be explained by two possibilities: (a)
these behaviors are regulated by other neurotransmitters influ-
enced by A2AR, whose actions are pre-dominant over dopamine
action; (b) there are alternative interactions between A2AR and
dopamine receptors, as some studies about rewarding and habit
formation have suggested (46, 61–63). A2AR interacts with several
G protein-coupled (besides D2R), ionotropic, and receptors for
neurotrophic factors (1). In this group of interactions, there are
some, which can explain the hyperlocomotor and/or the decreased
anxious-like behaviors: CB1 (56); delta-opioid (56, 64, 65); NMDA
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(66, 67); nAch (56, 68); GDNF (69), BDNF (56), or GABAA (70,
71) receptors. Additionally, A2AR receptors interact either syner-
gistically or antagonistically with A1R receptors (72–74), which,
per se, influence several other receptors, increasing the complex-
ity of the above mentioned neuromodulation. Furthermore, A2AR
are also located at glutamatergic synapses (75) and in astrocytes
(76), allowing A2AR to directly control synaptic transmission and
plasticity (77), which we have shown before to be directly involved
in adaptive brain behaviors, namely to early-life stress (32). One
hypothesis than cannot be ruled out is the possibility that these
animals may have adaptive dopamine receptor alterations, which
still needs to be determined.

In what concerns to the second hypothesis, two possibilities can
be taken into consideration: (1) a single alternative interaction
between A2AR and dopamine receptors is suitable to explain all
behavioral results; (2) different interactions occur in distinct neu-
ronal populations, which control different behavioral processes. In
what regards the first possibility, just one of alternative interactions
is able to explain all behavioral results – antagonistic interaction
between A2AR and D1R occurring at a network level, considering
their scarce co-expression, (23, 61, 78). D1R antagonists increase
locomotion when administered chronically (51), whereas D1R
agonists have anxiogenic and antidepressive-like effects (56, 79–
81). Therefore, with the A2AR overexpression and the associated
decrease in D1R action, there would be a hyperlocomotor, less anx-
ious, and more depressive-like behavior – which perfectly matches
the results we obtained.

If we consider that different interactions control different
processes, then, three alternative interactions can explain the
increased locomotion and the decreased anxious-like behaviors –
particular synergism between A2AR and D2R mediated by G
protein beta/gamma dimers (61, 82), a supposed functional hyper-
dopaminergic state in Tg(CaMKII-hA2AR) rats (61, 83); and a
presumed increased level of DARPP-32 (a downstream effector
molecule of D2-like receptors) in CaMKII-hA2AR rats (62, 84) –
whereas one alternative interaction is able to explain the increased
depressive-like behavior – synergism between A2AR and mGluR5
(46, 85, 86), which were found to be decreased in the NSE A2A

overexpressing rats (53).

CONCLUSION
We conclude that Tg(CaMKII-hA2AR) rats overexpressing A2AR
in hippocampus, cortex, and striatum, have depressive-like behav-
ior and increased locomotor activity. Additionally, we found that
the A2AR–D2R interaction hypothesis of reciprocal inhibition is
not sufficient to explain all the observed behavioral outcomes.
Finally, we conclude that and A2AR overexpression in forebrain is
associated with depression, which may explain the depressive signs
seen in aging, chronic stress, and Alzheimer’s disease.
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