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The mesolimbic dopamine (DA) system plays an integral role in incentive motivation and
reward seeking and a growing body of evidence identifies signal transduction at cannabi-
noid receptors as a critical modulator of this system. Indeed, administration of exogenous
cannabinoids results in burst firing of DA neurons of the ventral tegmental area and
increases extracellular DA in the nucleus accumbens (NAcc). Implementation of fast-scan
cyclic voltammetry (FSCV) confirms the ability of cannabinoids to augment DA within the
NAcc on a subsecond timescale. The use of FSCV along with newly developed highly
selective pharmacological compounds advances our understanding of how cannabinoids
influence DA transmission and highlights a role for endocannabinoid-modulated subsecond
DAergic activation in the incentive motivational properties of not only external, but also inter-
nal reward-predictive cues. For example, our laboratory has recently demonstrated that in
mice responding under a fixed-interval (FI) schedule for food reinforcement, fluctuations
in NAcc DA signal the principal cue predictive of reinforcer availability – time. That is, as
the interval progresses, NAcc DA levels decline leading to accelerated food seeking and
the resulting characteristic FI scallop pattern of responding. Importantly, administration of
WIN 55,212-2, a synthetic cannabinoid agonist, or JZL184, an indirect cannabinoid agonist,
increases DA levels during the interval and disrupts this pattern of responding. Along with
a wealth of other reports, these results illustrate the role of cannabinoid receptor activation
in the regulation of DA transmission and the control of temporally guided reward seeking.
The current review will explore the striatal beat frequency model of interval timing as it
pertains to cannabinoid signaling and propose a neurocircuitry through which this system
modulates interoceptive time cues.
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INTRODUCTION
A wealth of psychology research has documented an integral role
for environmental stimuli in guiding reward seeking behavior.
Stimuli that repeatedly occur in conjunction with the presentation
of reinforcers (for the sake of simplicity, “rewards”), themselves
gain incentive value as reward predictors and work to motivate
behavior (1). For example, the neutral auditory stimulus of a can
of cat food being opened, through its repeated pairing with food
delivery, serves as an incentive stimulus to the cat that is predictive
of food-related stimuli (e.g., taste) and energizes the cat’s approach
toward the food bowl. Of course, external motivational cues (e.g.,
sound of the can opener) frequently interact with internal cues
(e.g., hunger) to guide behavior – i.e., if the cat is not hungry the
likelihood that it will approach the food bowl is greatly reduced
(2, 3). Further, through repeated pairing external cues may gain
the ability to elicit internal cues, such as hunger (4) or the initia-
tion of an internal clock that works to predict reward availability
(5). While conditioned environmental cues guide advantageous
instrumental behaviors, they also may support the development of

detrimental behaviors such as drug abuse. Indeed, cues frequently
paired with drug use (e.g., drug paraphernalia) develop incen-
tive value that in turn promotes drug seeking and contributes to
the relapse [see review in Ref. (6)]. Given the formidable influ-
ence of incentive cues on both positive and negative behaviors,
it is important to better understand the neurobiological mech-
anisms subserving cue-driven behaviors. One system repeatedly
implicated in incentive motivational processes is the mesolimbic
dopamine (DA) system (7).

DAergic cell bodies resident to the ventral tegmental area (VTA)
send their diffuse projections to various cortical and limbic regions
such as the prefrontal cortex, amygdala, hippocampus, and the
ventral striatum (nucleus accumbens, NAcc) (8). Together, this
network comprises the mesolimbic DA system, a system that is
highly implicated in the development and maintenance of reward
seeking behaviors. A wide body of evidence supports a role for
mesolimbic DA in reinforcement learning and motivation for
incentive stimuli (9–12). For instance, natural reinforcers such
as food and water, as well as drugs of abuse and brain stimulation
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reward (BSR), support operant behaviors through their ability
to activate the mesolimbic system (13–17). Evidencing this view,
DAergic lesions or antagonism attenuate approaches toward, or
responding for, these reinforcers (18–21).

Single-unit recording data show that VTA DAergic neurons
fire in two distinct modes: low-frequency (1–5 Hz) tonic activity
and high-frequency (≥20 Hz) phasic activity, the latter of which
is characterized by transient rapid bursts (<1 s) of cell firing (22).
In the absence of salient stimuli midbrain DA neurons exhibit
tonic pacemaker activity producing a steady DAergic “tone” on
high-affinity inhibitory D2-like (D2, D3, D4) DA receptors of
the mesolimbic system (23–25). This baseline DAergic tone is
believed to facilitate long-term depression (LTD) at cortico-striatal
synapses and suppress activity of the basal ganglia indirect pathway
(26, 27). The presentation of motivationally relevant stimuli such
as primary rewards, however, results in rapid burst firing of mid-
brain DA cells, which increases terminal DA sufficiently to occupy
low-affinity excitatory D1-like (D1 and D5) receptors (24). D1
receptor activation following reward-related stimuli is proposed
to result in enhanced long-term potentiation (LTP) at excitatory
synapses and activation of the basal ganglia direct pathway, thereby
motivating behavior (28). Therefore distinct patterns of DAergic
cell activity provide a mechanism through which high- and low-
affinity DA receptor populations may be differentially activated
resulting in the conveyance of distinct reward-related information.

Interestingly, DA neurons adapt to reward presentations by
signaling the difference in value of “expected” versus “received”
rewards, or a reward prediction error (29, 30). In support of
this theory, the presentation of an unexpected reward, such as
reinforcer delivery in the initial stages of a conditioning para-
digm, results in burst firing of midbrain DA neurons. Following
repeated presentations, however, this phasic DA signal previously
coupled to reward receipt now results from presentation of reward-
predictive stimuli that precede reward delivery (29, 31). The mag-
nitude of burst activity is greater to the reward-predictive cues
when the probability of reward is high, but when the probabil-
ity of reward is low DAergic cell activity is greater during reward
receipt. Conversely, midbrain DA neurons cease their firing when
no reward or an aversive stimulus is delivered, communicating
a negative reward prediction error (30). It should be mentioned
that non-appetitive auditory, tactile, or visual sensory stimuli can
result in burst firing of midbrain DA cells (32–35), however,
these cells appear to fire preferentially to reward-related stimuli
(36). Thus, phasic activation of midbrain DA neurons transmits
information about previous (expectancy) and current reward sit-
uations, making this form of signaling particularly important to
the development of conditioned reward associations (37, 38).
Indeed, Zweifel et al. (39) reported that genetic inactivation of
N -methyl-d-aspartate (NMDA) glutamate receptors on DA neu-
rons, a treatment that blocks the ability of DA neurons to burst
fire, attenuates stimulus-response learning.

MEASUREMENT OF EXTRACELLULAR DOPAMINE
CONCENTRATIONS WITHIN THE NAcc
While electrophysiological recordings provide valuable informa-
tion about DAergic cell activity patterns, the relationship between
DA cell firing and neurotransmitter release at terminal regions is

not linear (40). Therefore, techniques that allow for the measure-
ment of extracellular DA concentrations within discrete structures
are critical to evaluate functional roles of regional DA release.

Tonic DA levels can be measured using in vivo microdialysis
techniques, allowing for neurochemical analysis of brain dialysate
with a temporal resolution of minutes [(41), for review see Ref.
(42)]. A wealth of microdialysis data correlate reward-related phe-
nomena with enhanced DA levels at mesolimbic terminal regions,
such as the NAcc. For example, DA levels are elevated in target
regions of the mesolimbic system following self-administration of
either food (14, 15, 43), water (17), or drugs of abuse (44–50).
However, a sample rate of minutes is insufficient to disentangle
DA release related to reward receipt versus cue-evoked DA. Direct
assessment of subsecond fluctuations in DA concentration due to
phasic firing requires the use of techniques with greater temporal
resolution, such as fast-scan cyclic voltammetry (FSCV). FSCV has
consistently been utilized to measure subsecond transient changes
in DA concentration within distinct brain areas [for review see
Ref. (51)] of both anesthetized (52) and behaving animals (53,
54). However, FSCV cannot readily differentiate between norepi-
nephrine and DA signals. Thus, voltammetric assessment of phasic
DA activity is best suited for regions with low noradrenergic input,
i.e., the NAcc.

Research employing FSCV demonstrates that stimuli promot-
ing burst activity of DA neurons also produce transient increases in
extracellular DA concentration (termed “transients”) at terminal
fields of the mesolimbic system. For example, several studies show
enhanced DA transient activity within the NAcc coincident with
the presentation of a food reward or related reward-predictive cues
(55–59) – stimuli known to result in phasic burst firing of mid-
brain DA neurons (30, 60, 61). Importantly, a wide body of FSCV
data support a role for reward-evoked striatal DA as a reward pre-
diction error signal. Indeed, enhanced phasic DA transmission is
reliably observed following unexpected reward delivery or, after
conditioning, in response to cues that predict reward (40, 55, 57,
59, 62–64). Further, in congruence with electrophysiological data,
reward omission or administration of an aversive stimulus results
in decreased extracellular DA within the ventral striatum (65–67).

Shifts in midbrain DA neuron activation from tonic low-
frequency activity to phasic high-frequency burst firing likely
result from changes in synaptic input from glutamate and gamma-
aminobutyric (GABA) afferents to VTA DA cells. The VTA receives
excitatory afferents from both sensory and cognitive regions,
including glutamatergic afferents from the prefrontal cortex, the
extended amygdala, and the laterodorsal and pedunculopontine
tegmental nuclei (68–70) and inhibitory GABAergic input from
the basal ganglia and rostromedial tegmental nucleus. DAer-
gic neurons in brain slice preparations (i.e., without afferent
input) exhibit pacemaker-like tonic activation but do not fire
in bursts, thus DA cells are “conditional” rather than “intrinsic”
bursters (71, 72). Indeed, burst firing of DA neurons requires
glutamatergic input and the activation of DAergic cell NMDA
glutamate receptors (73, 74). Conversely, GABAergic input to
midbrain DA neurons dampens burst firing and returns the cell
to baseline pacemaker-like activity (75). Thus, the maintenance
of midbrain DAergic firing patterns requires a balance between
excitatory and inhibitory VTA afferent signals. A key signaling
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network implicated in the maintenance of this balance is the
endocannabinoid system.

A BRIEF OVERVIEW OF THE ENDOCANNABINOID SYSTEM
The endocannabinoid system, composed of endogenous cannabi-
noids (i.e., endocannabinoids), cannabinoid receptors, and the
enzymes responsible for endocannabinoid synthesis and degra-
dation, is a neuromodulatory network known to play a role in
a number of neural processes, including learning and memory,
motivation, reward, operant behavior, and neuroplasticity (76–
79). Cannabinoid receptors were the first components of this sys-
tem to be discovered. In the early 1990s, ∆9-tetrahydrocannabinol
(THC), the primary psychoactive constituent of the cannabis
plant, was found to produce its characteristic effects as a partial
agonist of a G-protein-coupled receptor (GPCR) (Gi/o) isolated
from neural cell lines and later named cannabinoid receptor type
1 (CB1) (80, 81). A few years after this discovery, a second cannabi-
noid receptor (cannabinoid receptor type 2; CB2) was identified
(82). CB1 and CB2 receptors differ in anatomical distribution as
well as function. Autoradiography studies show that CB1 is the pri-
mary cannabinoid receptor of the central nervous system (CNS)
with a wide distribution throughout the brain and periphery and
the highest concentrations of CB1 binding found in brain regions
implicated in the actions of cannabis (83–85). Conversely, CB2
is more abundant in the periphery and expressed primarily in
immune cells, including microglia of the CNS (86), and is thus
believed to primarily play a role in immune function (87). Recent
evidence, however, also supports a role for CB2 in a variety of neu-
rological processes, such as anxiety, pain, and addiction (88–91). It
is important to note that while this review will focus on activity at
CB receptors, endocannabinoids also interact with various ligand-
gated ion channels (e.g., vanilloid receptor type 1 channels) as well
as other GPCRs, such as GPR55 (92, 93).

The discovery of cannabinoid receptors was followed shortly
after by the identification of their primary endogenous ligands –
N -arachidonylethanolamine (anandamide; AEA), a partial ago-
nist at CB1 receptors, and 2-arachidonylglycerol (2-AG), a full
agonist at both CB1 and CB2 receptors (94–96). The biosyn-
thesis of AEA is not fully understood, although it is gener-
ally agreed that AEA is synthesized from N -arachidonoyl phos-
phatidylethanolamine (NAPE) in a Ca2+-dependent manner via
one of the several possible enzymatic pathways (97, 98). Con-
versely, both Ca2+-dependent and Ca2+-independent synthesis
pathways for 2-AG have been outlined (illustrated in Figure 1).
Following synthesis and release,AEA and 2-AG signaling is quickly
terminated through cellular reuptake and hydrolysis primarily by
the enzymes fatty acid amide hydrolase (FAAH) and monoacyl-
glycerol lipase (MAGL), respectively [FAAH can also hydrolyze
2-AG (99)]. While several additional endocannabinoids have since
been discovered, AEA and 2-AG remain the best characterized.

The most prominent physiological role for endocannabinoids is
as synaptic retrograde messengers – molecules that transmit mes-
sages from post- to presynaptic cells. Indeed, both AEA and 2-AG
signal retrogradely. Like all known endocannabinoids, AEA and
2-AG are lipid molecules, which in contrast to classic neurotrans-
mitters, are synthesized and released from neurons “on demand”
upon stimulation (106, 107). These lipophilic messengers diffuse

through the postsynaptic membrane and interact with cannabi-
noid receptors of nearby cells. Both CB1 and CB2 receptors
are Gi/o-coupled receptors; therefore, their activation results in
a decrease in cAMP activity within the cell and subsequent inhi-
bition of neurotransmitter release, resulting in negative feedback
to presynaptic cells (108–110). When Ca2+-mediated, this process
has been termed depolarization-induced suppression of inhibi-
tion (DSI) or excitation (DSE) depending on the neurotransmitter
system being inhibited (111), and works to modulate synaptic
plasticity. Research on the individual functions of AEA and 2-AG
suggests that 2-AG is the principal endocannabinoid involved in
DSI- and DSE-induced plasticity (109).

ENDOCANNABINOID MODULATION OF DOPAMINE
TRANSMISSION
Like the discovery of the endocannabinoid system, the ability
of endocannabinoids to modulate mesolimbic DA transmission
was uncovered through investigations into the effects of THC.
All drugs of abuse increase DA neurotransmission in the NAcc
(112, 113) and although some early studies exploring a role for
DA in cannabinoid abuse potential yielded incongruent results
[e.g., Ref. (114, 115)], today a large body of evidence suggests that
marijuana is no exception. Indeed, cannabinoid administration
enhances extracellular DA concentrations in the ventral striatum
(116–119). Further, this effect is dependent on CB1 receptor sig-
naling, as pretreatment with the CB1 receptor antagonist/inverse
agonist SR141716A (rimonabant) blocks the ability of THC, or
the synthetic cannabinoid receptor agonist WIN 55,212-2 (WIN),
to enhance striatal DA levels (119). Seminal single-unit record-
ing data from French et al. (120) show that cannabinoids enhance
extracellular DA concentrations in the NAcc through increasing
both the baseline firing rates and burst frequency of midbrain
DA neurons. These enhancements in VTA DA cell firing are also
CB1-dependent as they are attenuated by rimonabant (121).

Interestingly, while midbrain DA neurons release endocannabi-
noids during phasic activation, they do not express CB1 recep-
tors (83, 109, 122, 123). This suggests that cannabinoids excite
VTA DA cells via an indirect mechanism. Aside from DAer-
gic cell bodies, the VTA also contains GABAergic neurons that
inhibit midbrain DA activity through interaction with GABAA

receptors on DA cells (8). The application of the GABAA ago-
nist bicuculine to VTA-containing slices enhances DAergic cell
activity (124). Thus, cannabinoids may increase DA neuron
burst firing through the inhibition of VTA GABA cells, resulting
in disinhibition of midbrain DA neurons (109, 110). In sup-
port of this explanation, Szabo et al. (125) found that WIN
reduces electrically evoked GABAA-mediated inhibitory postsy-
naptic currents in DA neurons of VTA slices, and these effects
are blocked by rimonabant. These data led Lupica and Riegel
(110, 123) to propose a model of endocannabinoid-dopamine
system interaction wherein enhanced activation of VTA DA neu-
rons promotes release of endocannabinoids, which then acti-
vate presynaptic CB1 receptors on GABA terminals, resulting in
DSI (illustrated in Figure 1). In line with this model, rimona-
bant administration attenuates the typical enhancement of DA
transient concentrations in the NAcc seen following cocaine
administration (64).
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FIGURE 1 | Illustration of 2-arachidonylglycerol (2-AG) synthesis.
(A) Depolarization-induced Ca2+ influx within dopamine (DA) neurons of the
ventral tegmental area (VTA) results in the hydrolysis of 1,2-diacylglycerol
(DAG) by DGL-α and DGL-β lipases to form 2-AG (98, 100). (B) Alternatively,
activation of Gq/11 protein-coupled receptors (e.g., group 1 metabotropic
glutamate receptors) directly stimulate phospholipase-Cβ (PLC), resulting in
the hydrolysis of membrane phosphate phosphatidylinositol 4,5-bisphosphate

(PIP2) to DAG, allowing for subsequent hydrolysis of DAG to 2-AG (101–103).
In addition, Ca2+-dependent and GPCR-dependent 2-AG synthesis can
co-occur to synergistically produce high concentrations of 2-AG (104, 105).
(C) Following on-demand synthesis, 2-AG then diffuses from the postsynaptic
DA neurons and binds with CB1 receptors on presynaptic gamma-
aminobutyric acid (GABA) cells, inhibiting GABA release and thereby
disinhibiting DAergic cell activity.

THE ROLE OF ENDOCANNABINOIDS IN CUE-MOTIVATED
BEHAVIORS
As discussed above, burst firing of DAergic neurons plays an inte-
gral role in stimulus-response learning (39, 55, 58, 59). Therefore,
given the well-documented ability of endocannabinoids to mod-
ulate phasic DA signaling, it stands to reason that endocannabi-
noids are also involved in modulating incentive motivation. Much
research utilizing cue-induced reinstatement of operant behav-
iors illustrates the involvement of the endocannabinoid system
in various aspects of cue-induced responding. In this model,
an established operant behavior is extinguished and then rein-
stated following the presentation of stimuli previously paired with
reinforcer availability. Thus incentive cues work to reinvigorate
reward-seeking in the absence of reward. Utilization of this model
shows that while systemic administration of rimonabant does not
affect operant responding for palatable stimuli (126), it attenuates

cue-induced reinstatement of food-seeking behavior (127–129).
Given that rimonabant also blocks the development of condi-
tioned place preference for food (130), these data suggest that
endocannabinoid signaling at CB1 receptors modulates the incen-
tive value of food-associated stimuli. Indeed, the CB1 receptor
antagonist AM251 attenuates cue-maintained responding for food
under a second-order schedule of reinforcement (131). These
effects do not seem to be reinforcer specific as endocannabi-
noid signaling is critical for cue-induced reinstatement of drug-
seeking behavior. Systemic rimonabant attenuates cue-induced
reinstatement of cocaine (126), heroin (132), methamphetamine
(133), alcohol (134), nicotine (127), and THC (135). Further, the
effects of CB1 antagonism on cue-induced reinstatement of reward
seeking may be dependent on DAergic mechanisms, as DA antag-
onism also blocks cue-induced reinstatement of reward seeking
behavior (136, 137).
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In recent research from our laboratory, Oleson et al. (138)
employed an intracranial self-stimulation (ICSS) task along with
FSCV to investigate endocannabinoid-mediated disinhibition of
cue-evoked DA. In this procedure, a light and tone cue sig-
naled reinforcer availability and each operant lever press resulted
in the delivery of electrical BSR to the VTA. This work repli-
cated previous findings showing that over the course of operant
training as task performance improves, NAcc DA transients time
lock to cues that predicted reward (in this case BSR) availabil-
ity (139). However, either intravenous (i.v.) or intra-VTA delivery
of rimonabant dose-dependently increased response latency while
simultaneously disrupting cue-evoked DA transients within the
ventral striatum, supporting a role for specifically midbrain DAer-
gic activity in the encoding of reward-related cues. Further, similar
results were found in rats responding for food reward, suggesting
that the involvement of endocannabinoids in cued responding
is not reinforcer specific. Next, URB597, a FAAH inhibitor, and
JZL184, an inhibitor of MAGL, were utilized to increase levels
of either AEA or 2-AG, respectively. While pretreatment with
URB597 (i.v.) had no effect on cued ICSS responding, both i.v. and
intra-VTA administration of JZL184 decreased response latency
and enhanced cue-evoked accumbal DA transmission. Further,
the effects of JZL184 on ICSS responding and DAergic transmis-
sion were blocked by pretreatment with a sub-threshold dose of
rimonabant, suggesting efficacy through a CB1-dependent mech-
anism. Taken together, these data indicate that endocannabinoids,
specifically 2-AG, modulate DAergic encoding of environmental
cues to control reinforcement-directed behaviors.

ENDOCANNABINOIDS AND TIME AS A DISCRIMINATIVE CUE
While the perception and processing of external environmen-
tal stimuli directs reward-seeking behaviors, organisms also rely
on interoceptive cues (e.g., hunger or thirst) in deciding how to
interact with their environment. One such internal signal, which
has recently received a great deal of attention, is time estima-
tion. Indeed, organisms rely on internal “biological clocks” to
coordinate behaviors from the microsecond processing of fluid
movements to the daily rhythms of the sleep–wake cycle. Of par-
ticular relevance to reward-motivated behaviors is the timing of
intervals in the seconds-to-minutes range involved in a number
of fundamental behaviors such as reward seeking and decision
making (140). Like the processing of external reward-predictive
stimuli, internal processing of temporal information is medi-
ated by DAergic systems. Disorders that result in disruption of
DA function, such as Parkinson’s disease (141, 142) or Hunting-
ton’s disease (140), or the administration of DA antagonists (e.g.,
haloperidol) slows the internal clock resulting in the perception
that time is passing much faster (in comparison to internal tem-
poral representations) and consequent overestimation of interval
time (143–145). Conversely, disorders associated with augmented
DA levels [e.g., schizophrenia (146)], or the administration of
drugs that agonize DAergic signaling (e.g., cocaine and ampheta-
mine) speeds up the internal clock leading to the perception that
time is passing more slowly and resulting in underestimation of
interval time (147–149). Similarly, cannabis users report a slow-
ing of the subjective experience of time (150, 151), presumably
related to the ability of cannabinoids to enhance DA transmission.

These findings have been replicated in animals with both THC and
WIN administration decreasing time sensitivity in both tempo-
ral discrimination (152) and estimation (153) tasks. Importantly,
Han and Robinson (153) found that administration of rimona-
bant disrupts interval estimation and delays operant responding,
suggesting a role for endocannabinoids in interval timing.

Oleson et al. (154) utilized a fixed-interval (FI) schedule of food
reinforcement to uncover the role of endocannabinoid modula-
tion of phasic DA signaling in interval timing. In FI schedules,
operant behaviors are reinforced on the basis of time (155). These
schedules are known to produce a behavioral pattern known as
an FI “scallop,” wherein rates of responding accelerate over the
course of the interval until reaching a peak response rate just
before reward delivery (155). In this investigation, Oleson et al.
(154) showed that phasic DA release in the mouse NAcc is inversely
related to interval time; i.e., the start of the interval is character-
ized by a high frequency of phasic DA release events (resulting
in enhanced DA concentration) which then gradually decrease in
frequency as the interval continues, finally reaching a DA concen-
tration minimum at interval terminus. These data thus support
a role for DA in encoding of the principal cue predicting rein-
forcer availability during FI schedules – time. The endocannabi-
noid system was subsequently shown to modulate these effects
as systemic administration of WIN dose-dependently increased
the pattern of DA release and accelerated the temporal pattern
of responding. These results were mimicked by intraperitoneal
(i.p.) administration of JZL184, but not by i.p. URB597. Fur-
ther, the effects of JZL184 were CB1-dependent as pretreatment
with AM251 blocked 2-AG-induced increases in DA concentra-
tion as well as elevations in response rate and thus normalized
behavior to the typical FI scallop response pattern. Although both
DAergic and endocannabinoid systems have been independently
implicated in the temporal control of behavior (153, 156, 157),
these data represent the first report showing how phasic striatal
DA may work to signal interval duration and the crucial role for
endocannabinoid signaling in the encoding of this interoceptive
time cue.

Oleson et al. (154) posit that the high DA concentrations seen at
the start of the interval and the low DA concentrations observed
at interval terminus, promote reinforcement-driven motivation
resulting in the initiation of regulated operant responding and
increased lever pressing, respectively. Conversely, moderate lev-
els of DA, characteristic of the middle of the interval, promote
engagement in adjunctive behaviors – behaviors that do not
result in reinforcement delivery, measured as inactive lever presses.
Their data align well with current theories on basal ganglia func-
tion (158). These theories suggest that high concentration DA
surges arriving in the NAcc activate D1 receptors on medium
spiny neurons (MSNs) comprising the direct pathway and pro-
mote action sequences (e.g., lever pressing). Baseline moderate
concentration DA signals, however, are believed to activate the
indirect pathway through interaction with D2 receptors on MSNs
and work to inhibit primary reward-directed action sequences
in favor of alternative, perhaps exploratory, adjunctive behaviors
(24, 159). Thus, fluctuations in NAcc DA concentration direct
reward-related behavior, likely through the modulation of stri-
atal afferent inputs (160, 161). Enhancement of CB1 activation
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through administration of WIN or JZL184 increased both NAcc
DA concentration and response rate, suggesting that activation
of the endocannabinoid system drives direct pathway activation
and primary reward seeking. Interestingly, both enhancement of
2-AG transmission (with JZL184) and disruption of CB1 activa-
tion (with AM251) attenuated adjunctive behaviors, supporting
a role for the endocannabinoid system, not only in the direction
of primary-reward driven behaviors governed by environmental
cues but also the directions of adjunctive behaviors when envi-
ronmental cues dictate that reward is not available. However, in
opposition to this view, a recent report by Cui et al. (162) sug-
gests a departure from the classical interpretation of basal ganglia
function and supports a role for MSNs of both the direct and
indirect pathway in action initiation. In this investigation, Cui
et al. (162) utilized Cre-dependent viral expression of geneti-
cally encoded calcium indicators in transgenic mice along with
time-correlated single photon counting to individually quantify
D1-expressing and D2-expressing striatal MSN activation during
an operant lever pressing task for food. They found that MSNs
of both pathways were transiently activated just prior to the ini-
tiation of contralateral movements and quiescent during periods
when the animal was not moving, suggesting that activation of
both the direct and the indirect pathway promote behavioral
output. Therefore, it may be that over a fixed time interval,
fluctuation in extracellular DA preferentially excites individual
cells within both pathways, which work together to coordinate
either primary reward seeking or adjunctive behaviors during FI
schedules.

THE STRIATAL BEAT FREQUENCY MODEL AND
ENDOCANNABINOID MODULATION OF TIMING
The question remains, however, how does the DAergic system sig-
nal the occurrence of a distinct temporal window in order to
represent an interoceptive time cue? One convincing model on
the neurobiology of interval timing is the striatal beat frequency
(SBF) model (148, 163). SBF postulates that cortico-striatal cir-
cuits encode interval durations of seconds to minutes, and these
circuits are coordinated by midbrain DAergic input. Within the
frontal cortex, neurons oscillating in the alpha range (8–13 Hz)
act as an internal clock (164). At interval onset, the presenta-
tion of a distinct conditioned stimulus results in phasic firing
of midbrain DA neurons and these transient surges of extracel-
lular DA synchronize oscillating neurons in the frontal cortex,
likely through inhibition of desynchronized cells (163). How-
ever, briefly after synchronization, cortical neurons begin to fall
out of phase with one another, returning to their inherent indi-
vidual periodicities. Thus, distinct interval durations are marked
by unique patterns of neuronal ensembles firing in-phase. These
cortical oscillators synapse onto MSNs of the striatum that func-
tion as “coincidence detectors” – connecting distinct patterns of
oscillator activity with the occurrence of external stimuli (e.g.,
reward delivery). Striatal MSNs are uniquely situated to detect
coincident neuronal activity with each MSN receiving input from
10,000 to 30,000 different thalamic and cortical neurons (165).
Further, striatal MSNs exhibit both highly polarized “down” states
(−90 mV) and less polarized “up” states (approximately−60 mV)
(166) with transitions from down to up states requiring either

VTA DA input (26, 167) or excitatory glutamatergic input from
other cortical or subcortical structures (166, 168). High levels
of DAergic input to the striatum at interval onset are hypoth-
esized to “clear out” irrelevant information within the coinci-
dence detector by hyperpolarizing striatal cells into their down
state (148). Conversely, phasic surges of extracellular DA within
the striatum at reward delivery bring striatal cells into their up
state and promote LTP at active cortico-striatal synapses (27,
163, 169). Therefore, the pattern of cortical inputs spiking at
the time of reinforcement, which represents a unique population
code for the time elapsed since interval initiation, will undergo
Hebbian strengthening. LTP at these striatal synapses allows the
organism to learn specific interval durations and initiate reward
seeking when a matching pattern of cortical efferent activity is
encountered.

While the SBF model represents a neurobiologically plausible
framework within which to examine interval timing, there are
inconsistencies in this model. For example: how does phasic DA
at cue onset hyperpolarize striatal cells given that D1 stimulation
is excitatory (i.e., Gs-coupled)? One possibility is through collat-
eral inhibition wherein D1-mediated excitation in specific MSNs
leads to a net inhibition of striatal cells through a lateral inhibitory
feedback network (170–172); however, this has yet to be explored
within interval timing tasks. Further, there has been no direct
voltammetric assessment of striatal DA levels and consequent
induction of striatal LTP mechanisms.

The voltammetric data presented by Oleson et al. (154) lend
support to the SBF model. In their investigation, extracellular
DA is high at the start of the interval, providing a mecha-
nism through which NAcc cells may be hyperpolarized (perhaps
through collateral-driven lateral inhibition) and the coincidence
detector reset. As the interval progresses DA levels gradually
decrease, likely releasing striatal cells from collateral feedback inhi-
bition and allowing for DA transient-induced cortico-striatal LTP.
It remains unclear, however, how DA levels gradually decrease as
the interval continues. This may occur through striatal cell ramp-
ing activity. Indeed, a subset of NAcc neurons display a ramping
activity pattern during interval estimation wherein firing rates lin-
early increase from CS presentation and peak at the time of reward
expectation (173, 174). The accumbens sends direct inhibitory
input to the VTA (175), thus ramping activity may result in pro-
gressive DA decline from CS presentation (176). Data from Oleson
et al. (154), however, do not determine if NAcc DA activity is
integral for interval estimation, but, rather, provide evidence for a
correlation between accumbal phasic DA activity and interval esti-
mation. Future investigations are required to determine if phasic
NAcc DA release is required for interval estimation.

The SBF model suggests a specific role for the dorsal stria-
tum in temporal processing, citing the ability of dorsal, but not
ventral, striatal lesions to impair temporal control (177, 178).
However, lesions of the NAcc core disrupt timing of Pavlovian
responses, as evidenced by decreased approach to a food receptacle
at CS+ presentation (179). Further, while Galtress and Kirkpatrick
(180) found that accumbal lesions do not disrupt the tracking of
temporal windows in a peak-interval (PI) timing procedure, ani-
mals do exhibit a decreased ability to modify behavior when an
expected reward is not delivered at interval terminus. PI is an
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extension of an FI schedule with the addition of non-reinforced
probe trials which result in Gaussian response curves character-
ized by increased operant responding up to the point of expected
reward followed by a gradual decrease in responding. Thus, the
NAcc core likely functions to integrate temporal cues specifically
with reward value and availability. Given that responding dur-
ing an FI combines both temporal estimation and expectations
regarding reinforcer value, the role of the NAcc core in operant
responding during FI schedules of reinforcement merits more
examination. Finally, it should be noted that while recordings of
phasic NAcc DA activity support the SBF model, no voltammet-
ric recordings during FI responding have been taken in the frontal
cortex due to the high levels of cortical noradrenergic innervation.
However, recent optogenetic investigations show that disruption
of D1 receptor transmission within the prefrontal cortex impairs
performance on an FI task (157), supporting an integral role for
phasic DA within the frontal cortex in interval timing.

The ability of cannabinoids, as well as other drugs that aug-
ment DAergic signaling, to enhance internal clock speed has
been well documented (181–184), however, the neurobiological
mechanisms underlying this effect remains unclear. Within the
framework of the SBF model, enhancement of phasic DA following
cannabinoid administration may affect time perception through
agonizing DA transmission within the striatum. Indeed, selective
manipulation of DA levels within the ventral striatum disrupts
performance in timing-dependent operant tasks (185–187). Fur-
ther, direct administration of DA into the NAcc enhances internal
clock speed (188). Increased phasic DAergic activity in the NAcc
core, as seen following WIN administration (154), may result in
induction of LTP at cortico-striatal synapses that are active much
earlier in the interval than those active at reinforcer delivery. This
abnormal “stamping in” of premature interval estimations would
thus promote reward seeking prior to interval terminus, likely
through activation of the basal ganglia’s direct pathway [but see
Ref. (162)] (Figure 2). However, future investigations are neces-
sary to determine if cortico-striatal LTP adheres to specific patterns
during interval estimation tasks, and examine how these patterns
are changed following DAergic agonist administration.

A greater understanding of the role of phasic DA in interval
timing is integral to the study of drug addiction. Individuals that
are more sensitive to the time-altering effects of drug administra-
tion are also more sensitive to the experience of stimulant-induced
euphoria, suggesting that similar brain pathways maintain inter-
nal clock speed and drug reward (189). Indeed, drugs of abuse
increase extracellular DA within the ventral striatum and have
the ability to hasten internal clock speed. Therefore, augmenta-
tion of internal clock representation may underlie a path through
which drugs alter stimulus-reward associations and promote inap-
propriate reward seeking, such as that seen in delay discounting
paradigms. Delay discounting is a maladaptive decision-making
strategy characteristic to addiction wherein individuals show a
preference for smaller/immediate over larger/delayed rewards.
This temporal shift in reward seeking is generally considered
an indication of impulsivity, but one could also imagine delay
discounting to result from augmentation of internal clock rep-
resentations. Certainly, a number of human studies indicate a
positive correlation between substance abuse, including marijuana

abuse, and measures of delay discounting (190–196). Investi-
gations into the neurobiology of this phenomenon implicate
alterations in striatal DA activity (197, 198), suggesting a link
between drug-induced enhancement of phasic DA signaling and
temporally biased reward seeking. Ostlund et al. (199) showed
that repeated cocaine exposure enhances phasic DA transmission
and increases cue-evoked food seeking. Thus, enhanced accum-
bal DA in response to reward-predictive cues following drug use,
may, through interaction with the proposed SBF timing neuro-
circuitry, accelerate the internal clock and promote the choice of
immediate over delayed rewards. Importantly, Hernandez et al.
(198) showed that systemic pretreatment with rimonabant atten-
uates cocaine-induced delay discounting. These findings support a
role for endocannabinoid-modulated enhancement of phasic DA
transmission following drug use and subsequent temporal shifts
in reward seeking resulting from an enhancement of internal clock
speed. However, it remains unclear if decision making during delay
discounting paradigms occurs within the same timescale as that
of interval estimation, or relies on strategies adopted prior to task
onset.

CONCLUSION
A wide body of evidence supports a role for endocannabinoid
modulation of phasic midbrain DAergic activity. Phasic burst
activation of DA neurons can be measured as transient fluctu-
ations of extracellular DA in terminal regions of the mesolim-
bic system (e.g., the NAcc) using FSCV. In congruence with
reward prediction error, following repeated stimulus-reward pair-
ings, reward-predictive cues result in burst firing of mesolimbic
DA neurons and transient increases in NAcc DA levels. This
transient burst of striatal DA likely promotes maintenance of
reward-seeking behaviors through activation of the basal gan-
glia pathways. In addition to tracking of external reward-related
cues, phasic changes in striatal DA encode interoceptive cues, such
as interval time that allow for the coordination of goal-directed
responding. In support of this view, drugs that enhance striatal
DA levels also increase individuals’ internal clock thereby result-
ing in the perception that time is passing more slowly. Further,
animal studies show that administration of the CB1/CB2 agonist
WIN or the 2-AG degradation inhibitor JZL184 enhances NAcc
core DA levels and promotes premature reward seeking in a FI
task. The precise neurobiological mechanism(s) through which
these effects occur, however, remains unknown. The SBF model
of interval timing provides a unique framework with which to
examine the role of phasic DA in interval timing. SBF posits that
striatal DA fluctuations mediate interval timing through selec-
tively promoting LTP at cortico-striatal synapses active at specific
interval durations. Thus, DAergic disruption of interval timing
may occur through aberrant induction of LTP at cortico-striatal
synapses representative of premature interval lengths. Given the
ability of drugs of abuse to potently augment NAcc DA levels,
it is not surprising that drug administration also disrupts inter-
val estimation. Alterations in interval timing may also underlie
addiction-related behaviors such as delay discounting, which is
enhanced by endocannabinoid-mediated increases in striatal DA.
A conserved mechanism in interval timing and impulsive choice
suggests that following drug use, enhanced delayed discounting
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FIGURE 2 | Based on the striatal beat frequency model of interval
timing – a schematic representation of the neurobiology underlying
interval timing during a typical 30 s fixed interval (A,B) and during a 30 s
fixed interval following administration of the synthetic cannabinoid WIN
55,212-2 (WIN) (C,D). (A) At interval onset, phasic dopamine (DA)
transmission resets the internal clock through synchronization of frontal
cortical oscillators [depicted in (A) as simultaneously firing cells and illustrated
as red cell bodies] and clears out the coincidence detector (ventral striatum).
These phasic signals arise through burst firing of ventral tegmental area (VTA)
DA cells, which is facilitated by endocannabinoid (2-AG)-mediated
suppression of GABA release onto VTA DA neurons. As the 30 s interval
progresses (illustrated in the three panels to the right depicting time points at
10, 20, and 30 s), the once synchronized cortical oscillators fall out of phase
with one another at a reliable rate. Reward delivery at interval terminus

results in phasic DA transmission within the ventral striatum that enhances
LTP at active cortico-striatal synapses. (B) Later when the same (in this case
auditory) stimulus signals interval onset, cortical oscillators exhibit
characteristic periodicities and when the previously strengthened synaptic
pattern active at interval terminus is encountered again (30 s after interval
onset) its activation will promote reward seeking. (C) WIN administration
results in phasic activation of VTA DA neurons through binding to CB1
receptors on VTA GABAergic neurons and thereby disinhibiting VTA DA
transmission. Drug-induced aberrant DAergic activation throughout the
interval induces LTP at cortico-striatal synapses active prior to reward delivery
(illustrated in the three panels to the right depicting time points at 10, 20, and
30 s). (D) This Hebbian strengthening of synaptic activity characteristic of
earlier time points within the interval promotes premature reward seeking
following subsequent cue presentation.

is consequential to augmentation of one’s internal clock, which
results in temporal-biasing of reward-seeking at the presentation
of reward-related cues.
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