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In many studies of the interaction between cognitive control and emotion, the orbitofrontal 
cortex/ventromedial prefrontal cortex (mOFC/vmPFC) has been associated with an inhibitory 
function on limbic areas activated by emotionally arousing stimuli, such as the amygdala. This 
has led to the hypothesis of an inhibitory or regulatory role of mOFC/vmPFC. In studies of 
cognition and executive function, however, this area is deactivated by focused effort, raising 
the issue of the nature of the putative regulatory process associated with mOFC/vmPFC. 
This issue is here revisited in light of findings in the neuroeconomics field demonstrating the 
importance of mOFC/vmPFC to encoding the subjective value of stimuli or their economic 
utility. Many studies show that mOFC/vmPFC activity may affect response by activating 
personal preferences, instead of resorting to effortful control mechanisms typically associated 
with emotion regulation. Based on these findings, I argue that a simple automatic/controlled 
dichotomy is insufficient to describe the data on emotion and control of response adequately. 
Instead, I argue that the notion of subjective value from neuroeconomics studies and the 
notion of attentional orienting may play key roles in integrating emotion and cognition. mOFC/
vmPFC may work together with the inferior parietal lobe, the cortical region associated with 
attentional orienting, to convey information about motivational priorities and facilitate processing 
of inputs that are behaviorally relevant. I also suggest that the dominant mode of function of 
this ventral network may be a distinct type of process with intermediate properties between 
the automatic and the controlled, and which may co-operate with effortful control processes 
in order to steer response.
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IntroductIon
Studies of cognition, especially those concerned with selective attention or cognitive control, have 
exerted a profound influence on models of emotion regulation in functional neuroimaging (fMRI). 
Cognitive approaches originally viewed attention as a means of protecting the cognitive apparatus 
from flooding from external stimuli, an aim achieved by interposing a bottleneck or filter on infor-
mation flow (1). Even if revised to accommodate a rich set of empirical findings, subsequent models 
of attention largely inherited the contrast between the top-down regulatory role of attention on the 
one hand, and stimuli attempting to influence cognition from the bottom-up on the other. These 
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Figure 1 | (A) Left: the dual-process model posits the existence of two 
interacting processes: sensory encoding of emotionally salient stimuli, 
principally in the amygdala (amy, in yellow), and cognitive control centers in the 
prefrontal cortex such as the dorsolateral prefrontal cortex (dlPFC, blue circle). 
In this model, cognitive control centers inhibit or constrain the activity in the 
amygdala elicited by emotionally arousing stimuli. Amygdalar activity 
contributes to the salience of stimuli by influencing visual cortical regions 
directly [yellow arrow, see Ref. (13) for details]. (B) Right: a revised model in 
which subjective valuation areas such as the ventral cingulus/orbitofrontal 

cortex (mOFC/vmPFC/vACC) or the inferior parietal lobule (IPL, pink circles), 
usually deactivated during focussed tasks (in blue), contribute to determining 
response together or in alternative to control centers in the dorsal attentional 
network (blue circles). This contribution is revealed by modulation of 
deactivations or brief “flashes” of activity when attention is refocused (35). In 
the revised model, mOFC/vmPFC provides information about motivational 
priorities of stimuli identified in parietal association areas. This information is 
computed by integrating primary motivational states with representations of 
value and/or contingency.

models include those based on the influential idea of attention as 
a limited resource process (2), as well as contemporary approaches 
that merge attention and executive processes within a comprehen-
sive theory of cognitive control based on attentional allocation 
mechanisms (3–5).

Largely inspired by these models, fMRI studies have demon-
strated the dissociation between the neural substrates associated 
with cognitive control and those associated with the perception of 
emotionally salient stimuli. Working memory and attentional tasks 
of executive nature activate a dorsal network centered on the dorso-
lateral and dorsomedial prefrontal cortex [dlPFC, dACC; (5–9)]. In 
contrast, emotionally arousing stimuli activate the amygdala, a gray 
matter structure on the medial face of the temporal lobe (10–13). 
Emotional stimuli appear to enjoy preferential processing (13–16), 
presumably because of the importance of the information they 
convey on the environment (17, 18). However, this also means that 

they constitute a challenge for attentional control processes when 
emotion is a source of interference, as shown in studies where emo-
tional stimuli used as distractors and executive control are pitted 
against each other [for reviews, see Ref. (19–21)]. This distinctive 
challenge is the hallmark of cognitive control-based models of emo-
tion regulation mechanisms (22–25). According to these models, 
the prefrontal areas associated with cognitive control down-regulate 
activity in the limbic system (Figure 1A). These models have been 
applied to data about individual differences in emotion regulation 
styles (26–30), their possible alteration in pathology (31, 32), and 
data about changes during therapy (33, 34). In the following, this 
psychobiological model will be referred to as the “dual-process 
model” of emotion regulation.

Key concePt 1 | cognitive control
An encompassing term for control processes defined by features of executive 
functions (such as being based on limited resources or being subject to 
interference). Modern research on executive function emphasizes its relationship 
with working memory and endogenous attentional mechanisms. Another term 
associated with cognitive control is “top-down,” as opposed to “bottom-up” 
content attempting to gain access to working memory. In contrast, “control” 
(without the qualification “cognitive”) is used here more generically to denote 
any kind of influence or regulation.

Key concePt 2 | emotion regulation
The process that steers generation of response in the presence of emotional 
stimuli. Most theories of emotion stress the capacity of emotional stimuli to 
grab attention or engender action tendencies (for example, approach or 
avoidance after emotional stimuli of positive or negative tone). Emotion 
regulation refers to mechanism that correct or influence this direct response 
to emotion. The dual-process model of emotion regulation emphasizes the 
role of cognitive control to implement this correction.

Key concePt 4 | Dual-process model
Any model that employs two process types in a psychological explanation. 
Often, but not necessarily, these two processes refer to some version of the 
top-down and bottom-up distinction. In the present review, a dual-process 
model of emotion regulation is considered.

However, there are also reasons to be increasingly critical about 
this research program. One reason is that while the empirical evi-
dence on the regulatory effect of cognitive control on emotion 
is extensive, much less attention has been given to the question 
of how emotion may be regulated through other mechanisms. 

Key concePt 3 | Salience
The capacity of a stimulus to grab attention or, especially in settings where 
attentional effects in laboratory animals are not directly observable, to be 
influential in determining response. This term is often qualified by the quality 
of the stimulus that is thought to be responsible for the attention-grabbing 
effect. Sensory salience, for example, refers to the perceptual intensity of 
stimuli, such as a loud noise, which makes them likely to be attended. In the 
behavioral literature of choice, incentive salience refers to the capacity of 
representations of reinforces to motivate response.
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Furthermore, the unbalance between cognitive control processes 
on the one hand and the tendency of emotional information to 
break through control on the other appears to be present in most 
affective disorders, implying the lack of discriminatory capacity 
of the model. This is a problem for attempts to use clinical neuro-
sciences in a clinical context to refine diagnosis and inform choice 
of treatment (36–38). Another reason is that not all findings on the 
selection of emotional information to generate response appear to 
be attributable to networks associated with cognitive control or to 
be classifiable within a simple dichotomy (39–41).

This focused review will examine questions raised by neuroim-
aging findings and theories on the function of the medial orbito-
frontal and the ventromedial prefrontal cortex (mOFC/vmPFC) 
for the cognitive control of emotion. These questions emerged in 
the original study that occasioned this focused review (42), but are 
present in many fMRI studies concerned with emotion and its regu-
lation. In the study by Benelli et al. (42), we exposed participants 
in the scanner to different versions of short texts describing what 
happens in scenes that may be interpreted as referring to emotional 
issues such as loss, illness, or discord. The different versions of the 
texts, the same in all participants, had the same content, but varied 
in the amount of emotional or abstract terms. After the scan, partici-
pants were asked to recount what happened in the scenes in writing. 
We then looked at individual differences in the use of emotional 
terms in these accounts, and regressed them on the changes in brain 
activation while they were reading the text in the scanner. We con-
sidered this to be a form of emotion regulation, as it was emotional 
material that was being selectively left out. Strikingly, we found that 
the use of emotional words did not correlate with changes in areas 
associated with cognitive control, such as dlPFC. Instead, it was 
significantly associated with modulations of deactivations during 
the reading task, including the mOFC/vmPFC region (BA32). We 
interpreted this finding as evidence that these areas influenced the 
tendency to ignore or encode specific aspects of the texts.

This interpretation, however, left open the issue of a precise 
characterization of the mechanisms through which material was 
taken in or ignored, and of why this took place in the context of a 
deactivation of the mOFC/vmPFC area. Also, open is the issue of 
the relationship of these mechanisms with cognitive control and its 
neural substrates. This is an important issue given the enormous 
theoretical importance of the notion of cognitive control for the 
theory of emotion regulation (Figure 1A). If there is evidence for 
a form of regulation based on mOFC/vmPFC, does it look like the 
top-down control associated with activation of dorsal attentional 
areas? If not, what is the role of mOFC/vmPFC in the attentional 
architecture of the mind? In this review, I will argue that mOFC/
vmPFC may work together with the inferior parietal lobule (IPL) 
to influence attentional processes on the base of emotional infor-
mation and that this mechanism may underlay the form of control 
attributed to this region.

moFc/vmPFc and control
In many tasks considering the effects of attentional instructions, 
activation of the mOFC/vmPFC has been interpreted as the neural 
correlate of a form of control specifically directed to emotional 
content (43–45), or as the neural correlate of the inhibition of 
areas involved in the detection of emotionally arousing stimuli 

such as the amygdala (46–50). Importantly, the mOFC/vmPFC is 
also specifically involved in reversal learning and the extinction of 
aversively conditioned stimuli (51–55). Structural and functional 
indices of connectivity between mOFC/vmPFC and the amygdala 
are also reported to be associated with genetic determinants of 
vulnerability to affective disorders [(56–59); see, however, Ref. 
(60, 61)]. Furthermore, the disruptive and disinhibitory effects of 
lesions of mOFC/vmPFC on behavior have long been known (62).

However, several findings mark the difference between mOFC/
vmPFC and more dorsal areas associated with cognitive control. 
Extensive neuropsychological evidence shows that deficits follow-
ing OFC damage dissociate from those that follow from damage 
of dorsal prefrontal areas (52, 63–66). Unlike the dorsal network 
of which dlPFC is part, mOFC/vmPFC is deactivated by focused, 
effortful tasks (67–70). This feature is shared by a number of areas 
referred to as the default network system (71), a set of intercon-
nected regions deactivated by executive tasks but showing higher 
activity at rest [hence, the deactivation of mOFC/vmPFC reported 
by Benelli et al. (42) was typical; the originality of the finding con-
cerned the association with the later tendency to recount the emo-
tional attributes of the scene].

Another problematic finding for the emotion regulation view of 
mOFC/vmPFC is its activation in tasks where no control on emo-
tional material is required (72–74). Furthermore, two independent 
studies specifically designed to compare recruitment of prefrontal 
areas when facing neutral and emotional distracters found that the 
same prefrontal dorsal areas were responsible for both (75, 76). Also, 
comparisons of cognitive distraction and emotion regulation tasks 
show considerable overlap of prefrontal activation in the dorsal 
areas (77, 78). These data speak against the view of mOFC/vmPFC 
as a cognitive control area specialized for emotional content [see 
also, Ref. (39, 55, 61, 79)].

In summary, there is ample evidence for a regulatory involve-
ment of mOFC/vmPFC in the generation of response when emotion 
plays a role. However, it is difficult to conclude that the regulatory 
function of this area is of executive nature. The issue is then what 
kind of control function may be associated with mOFC/vmPFC, 
especially if considered with respect to the attentional architecture 
of the mind that defines the notion of cognitive control associated 
with dlPFC and other areas mapped to executive processes.

 neural correlates oF the encodIng oF subjectIve value and 
economIc utIlIty In moFc/vmPFc
Interestingly, activation of mOFC/vmPFC has been reliably detected 
in studies that were apparently unconcerned with issues of emo-
tional control, and were conducted by researchers active in the field 
of neuroeconomics. These studies have shown that mOFC/vmPFC 
is associated with the computation of the subjective value of stimuli 

Key concePt 5 | neuroeconomics
An emerging field that studies the psychobiological mechanisms of choice 
and economic behavior. This field has important antecedents in earlier 
research fields such as mathematical psychology, learning theory, and 
psychophysics.

or outcomes (80–87). This computation may correspond to evalu-
ating an empirical version of “marginal utility,” i.e., the criterion by 
which choices are made according to the desirability or aversiveness 
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of objects or action outcomes while considering internal indica-
tors of needs or satiety (81, 86). These areas are thought to encode 
learned representations of reward and punishment and/or their 
reversal (80, 88). They are, therefore, crucial to understand internal 
representations acquired during long-term interactions with the 
outside world, and the role of these representations in determin-
ing response in relation to the current or long-term motivational 
setup of the individual.

The neuroeconomic perspective on the orbitofrontal cortex is 
consistent with previous studies on the anatomical organization 
and function of this region. The OFC is connected with sensory 
cortical areas of all modalities [for review, see Ref. (89, 90)]. Studies 
in laboratory animals have shown this cortex to be activated by the 
identity of rewards or aversive stimuli, irrespective of their spatial 
location or sensory features [for reviews, see Ref. (79, 91)].

For the theory of emotion regulation, the crucial issue is whether 
“utility” or its neural counterpart “subjective value” may override 
stimulus salience in the generation of response without recourse to 
effortful mechanisms associated with cognitive control. Two exam-
ples are resisting the impulse to acquire a smaller sum immediately 
rather than a larger sum later (92), and the selection of optimistic 
thoughts in the presence of salient negative stimuli (60).

Kable and Glimcher (92) tested the hypothesis that individuals 
who resisted the impulse to cash in a smaller sum immediately 
instead of a larger sum at a later point in time would recruit cognitive 
control areas (93). This hypothesis was not confirmed by the data, 
which showed subjective valuation areas such as the mOFC/vmPFC 
to be directly involved in computing the desirability of choosing 
the immediate or delayed option, without recruiting dorsal areas 
associated with cognitive control. Note that in this situation, as well 
as in more prototypical emotion regulation paradigms, cognitive 
control and the related dorsal prefrontal areas may be recruited in 
appropriate circumstances to increase selection of the more “con-
trolled” option (94–96), as predicted by the model that attributes 
inhibition of impulse to executive processes. This is not surprising 
in view of the data mentioned above, which show recruitment of 
the same dorsal prefrontal areas when controlling emotional and 
non-emotional distractors (75, 76). The key finding, however, is that 
in other circumstances these areas may not be recruited, suggesting 
that the form of control mapped to dorsal attentional areas may not 
be the only determinant of “controlled” choice, and that different 
strategies may be available to produce similar responses.

The study by Viviani et al. (60) is a perfusion imaging study 
in which participants were asked to assemble one of two possible 
sentences from a set of scrambled words. This task uncovers the 
propensity to favor positive thoughts when the alternative sentences 
have an emotional connotation (for example, the set “is bleak the 
future bright” can be reassembled into either “the future is bright” 

or “the future is bleak”). Healthy individuals avoid the negative 
alternative, forming only 20–30% negative sentences. Individual 
variability in this propensity correlates with depressiveness, and in 
certain circumstances is predictive of relapse in remitted depressives 
(97). This task originated within a model positing that cognitive 
control processes are responsible for the avoidance of the negative 
alternative in individuals with vulnerability to depression (98). 
Because negative words are generally more salient than positive 
words, the dual-process model predicts that control processes be 
recruited to exclude negative words in order to achieve a desired 
mental state (99). In contrast to the prediction of this model, the 
vmPFC and other ventral prefrontal and parietal areas were found 
in this study to be more active when producing spontaneous sen-
tences, while dorsal prefrontal areas were less active. Furthermore, 
the number of sentences used, but not the propensity to avoid 
the negative alternative, was associated with individual differences 
in working memory capacity. Dorsal prefrontal areas, however, 
were active if avoidance of negative sentences followed an explicit 
instruction of the experimenter.

A possible explanation of the findings of these two studies is that 
response may be influenced by preferences represented in ventral 
areas such as OFC and vmPFC, which may override the salience of 
emotionally arousing stimuli or the impulse to collect an immediate 
reward directly instead of requiring the intervention of cognitive 
control. In the example on the choice of sentences, this means that 
we choose “the future is bright” more often because we prefer this 
thought, not because “bright” is more salient than “bleak.” While 
perhaps intuitively plausible, this possible explanation raises ques-
tions on the organization of the mind that makes this form of 
regulation of response possible. The dual-process model of emo-
tion regulation is grounded in a solid theoretical and empirical 
framework that documents the importance of cognitive control in 
the cognitive architecture of the mind. To move in this direction, a 
characterization of the kind of process that may be responsible for 
regulating response to emotional stimuli through the expression 
of preferences is required.

 are the encodIng oF subjectIve value or other 
Processes maPPed to moFc/vmPFc automatIc?
Particularly relevant to evaluating the possible role of mOFC/
vmPFC as the neural correlate of a control process are claims in 
the decision-making literature that the valuation signal detected in 
this cortical region is computed automatically, and is detectable 
even in the absence of choice tasks (100, 101). Rushworth et al. (85) 
marshal data that may not be consistent with this view. They note 
that the signal in mOFC/vmPFC is not observed in all studies where 
subjective value may be computed. However, one rarely finds that 

Key concePt 6 | Subjective value
In neuroeconomics, the criterion of desirability on the basis of which a choice 
is made. A related or equivalent term is “preference.” The notion of subjective 
value is the neuroeconomic equivalent of “utility” in economic theory. Economic 
utility differs from subjective value because it is considered an unobservable 
entity, inferred indirectly from an axiomatic theory of choice. The present review 
considers the possibility that preferences may shape response to emotional 
stimuli without resorting to cognitive control.

Key concePt 7 | Automatic
In the present review, the term automaticity refers to processes evoked by the 
stimulus and running without monitoring, whose initiation is not necessarily 
deliberate, and that are not subject to strong capacity limitations. The perceptual 
encoding of emotional stimuli, including their arousal properties, is an example 
of an automatic process. However, the literature contains several different 
approaches to the definition of automaticity, including notions such as emerging 
from repeated practice, or of running largely beyond subject control. A related 
characterization of an automatic process, referring to the flow of information, 
is “bottom-up,” as opposed to “top-down.”

Viviani Emotion regulation and subjective value

Frontiers in Psychiatry www.frontiersin.org September 2014 | Volume 5 | Article 123 | 4

http://www.frontiersin.org/Psychiatry
http://www.frontiersin.org/
http://www.frontiersin.org/Psychiatry/archive


all defining features of automaticity are satisfied simultaneously 
(102); obligatory processing, in particular, is seldom absolute, nor 
is the absence of interactions with attentional processes (103–105). 
The signal in the amygdala observed in concomitance with emo-
tionally arousing stimuli, for example, is widely considered to arise 
pre-attentively (13, 106, 107), but is nevertheless modulated by the 
task set (108, 109).

The mOFC/vmPFC value signal has other characteristics that 
suggest its association with a complex computation, rather than 
a simple assessment of the properties of the stimulus as may be 
expected by an automatic perceptual process. In some studies, for 
example, the signal reflected the difference in value of the chosen 
and the unchosen options (110, 111), or the discount due to delays 
in obtaining a reward (92, 94). While the complexity of the com-
putations attributed to a process does not suffice in itself to classify 
it as effortful or resource-limited, it does suggest that it may be 
influenced by several factors.

An interesting perspective on this issue is given by the notion of 
appraisal from appraisal theories of emotion (112–114). In these 
theories, appraisal is the assessment of the significance of the envi-
ronment and of interactions with the environment for the goals and 
concerns of the individual, i.e., for everything one cares about. This 
process is thought of as setting the value of one or more “appraisal 
variables” that categorize aspects of the environment that carry 
information about one’s goals and concerns. The valence of an 
emotional episode depends on the outcome of this computation.

There are obvious parallelisms between the notions of appraisal 
and computation of subjective value [it has also been noted that 
the data collected from mOFC/vmPFC in neuroimaging studies of 
affect are consistent with a role as a “generator of affective mean-
ing”; see Ref. (115)]. Notwithstanding its complexity, the appraisal 
process has been shown by emotion researchers to present many 
features of automaticity (116) or lack of intentionality [in the sense 
of not being deliberate (117)]. This strongly suggests that, even 
if not completely automatic, value-setting operations in human 
beings do not require controlled processes.

 how does InFormatIon on value aFFect resPonse?
Studies of reinforcement in rodents have shown that information 
on potential rewards influences behavior through the interaction 
of two dissociable processes, one controlling habitual and the other 
goal-directed actions (80, 118). Habitual actions, or simply “hab-
its,” are those that, as in classic theories of reinforcement, link a 
stimulus to a response. Once established, responses are triggered 
reflexively by the appearance of the stimulus. Habits emerge by 
overlearning stimulus-response associations, and may therefore 
present all features of automaticity that are shown to follow from 
repeated practice (119). Goal-directed actions, in contrast, are 
undertaken using information about what their outcome would 
be, and about the current utility of this outcome. This is accom-
plished through representations of the causal dependency of action 
and outcome (referred to as “contingencies”) and the utility of 
the outcome (“incentive value”). These representations allow goal-
directed actions to be flexibly modulated by changes or reversals 
of contingencies between action and outcomes and by changes in 
the utility of the outcome. Importantly, representations of utili-
ties are in turn modulated by motivational factors shaped by the 

previous experience with the environment (120). Another type of 
mechanisms affecting response involves the evaluation of cues. Cues 
associated with specific rewards may motivate the choice of the 
course of action leading to the reward evoked by the cue (80, 121).

Studies of reinforcement implicate mOFC/vmPFC in the repre-
sentation of both incentive value and contingencies (121–123) and 
in the use of cues to select response (121, 124). In human beings, 
fMRI studies of reinforcement have confirmed the involvement of 
mOFC/vmPFC in the representation of outcome values in goal-
directed action [for reviews, see Ref. (81, 85, 123)] and of contin-
gencies (125–127). Furthermore, data in non-human primates and 
in human beings demonstrate the modulation of mOFC/vmPFC 
by primary motivational states (128–130).

Within this framework, the representation of contingencies in 
mOFC/vmPFC provides an explanation of the involvement of this 
structure in reversal learning. Characterized as inhibition in stud-
ies adopting dual-process models of emotion regulation, reversal 
learning involves updating contingencies stored in mOFC/vmPFC 
[see Ref. (131) and the discussion in Ref. (121)]. Likewise, differ-
ences in discounting delayed rewards (92) may be implemented by 
modulating mOFC/vmPFC representations of value. Hence, the 
flexibility of goal-directed processes and their role in determining 
behavioral choices may explain the finding of an association of 
behavioral control with mOFC/vmPFC function, especially when 
emotion or rewards are involved.

A distinctive quality of human mOFC/vmPFC is its activation 
in fMRI studies in which rewarding or aversive outcomes play no 
nominal role (132–134). In a review of these data, Elliott et al. 
(132) have shown how these activations are elicited in tasks involv-
ing feedback or guesswork, where selection of stimuli on the basis 
of familiarity or responses on the basis of a feeling of “rightness” 
may constitute generalizations of reward value. They were also able 
to show the dissociation of response between mOFC and dlPFC 
in studies where guesswork and difficulty of the task related to 
the instruction were varied independently (135). This model may 
explain the ventral/dorsal dissociation of substrates in participants 
choosing sentences spontaneously or following an instruction in 
the study by Viviani et al. (60). More recent models of the compu-
tational role of mOFC/vmPFC see it as tracking outcome expectan-
cies especially in situations in which these outcomes are uncertain, 
or when information about outcomes needs to be disambiguated 
using internally stored information (136, 137).

The flexibility afforded by representations of outcomes and 
contingencies has motivated many researchers of reinforcement 
to refer to goal-directed processes as executive, in contrast with the 
automatic quality of habits. However, several arguments may be 
formulated against identifying goal-directed processes with execu-
tive control. One is that goal-directed processes are sensitive to 
motivational factors (120). In contrast, executive function may be 
recruited to steer response in disregard of motivation. Situations in 
which motivation and executive control dissociate may be difficult 
to devise in experimental settings such as reinforcement in rodents, 
but are common in emotion regulation research, where they are 
an important reason to associate executive function with emotion 
regulation. It is not clear that the flexibility of goal-directed pro-
cesses observed in rodents may provide a good model of executive 
function in human beings, since choices based on motivational 
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influence of utility representations, this model can be extended 
by having mOFC/vmPFC provide additional sources of salience 
related to utility [such as representations of potential “incentive 
salience” of stimuli or outcomes (120, 143)]. As a result, it may be 
possible to override sensory salience by following one’s motiva-
tional bias without invoking executive processes. These latter may 
override both sensory and incentive salience in some cases, and 
bolster up incentive salience in others. In this extended model, 
however, executive function and motivational biases are distinct 
sources of control.

There is direct support for this model in human studies showing 
the modulation of attention by orienting to previously rewarded 
targets or distractors [reviewed by Anderson (144); see also Ref. 
(145)]. Importantly, these researchers were able to show the exist-
ence of attentional capture by rewarded distractors independently 
from sensory salience of stimuli and top-down bias [“value-driven 
attentional capture” (146, 147)].

An important insight emerging from these studies is that the 
influence of utility representations on cognition may take place 
through attentional orienting. Modern characterizations of atten-
tion see it as resulting from the interaction of distinct processes 
(35). A first process, located in dorsal attentional areas (frontal eye 
fields and superior parietal lobule), is responsible for maintain-
ing the focus of attention. A second process, mapped to ventral 
areas (the inferior parietal lobule and adjacent temporal cortex, 
IPL), provides information of “behaviorally relevant” changes to 
promote reorienting to stimuli shat should receive high priority 
in complex environments (148–150). Orienting processes associ-
ated with ventral parietal areas are stimulus-bound, i.e., respond to 
external stimuli. However, this response differs from the automatic 
attending of sensory salient stimuli, as IPL responds to “behavio-
rally relevant” stimuli even when less sensory salient. At the same 
time, they also react to stimuli that correspond to the task set (35), 
thus presenting features that are neither automatic nor executive, 
or a mixture of both [for a detailed discussion, see Ref. (40)].

factors may be more appropriately characterized as following one’s 
inclination or preferences rather than exerting effortful control. As 
we have seen, there is ample evidence that human appraisal of value 
is largely automatic (116). Another group of arguments is based 
on data, already mentioned above briefly, showing that lesions of 
the human orbitofrontal cortex affect decision taking, but leave 
working memory intact (65, 138, 139). Furthermore, fMRI stud-
ies associate working memory with dorsal parts of the prefrontal 
cortex, not with mOFC/vmPFC (6). These arguments suggest that 
goal-directed action as characterized by studies of reinforcement 
may be neither fully automatic nor executive, like encoding of sub-
jective value in mOFC/vmPFC, even if it contributes to steering 
response.

 subjectIve value as a Factor In attentIonal 
orIentIng
If representations of utilities in mOFC/vmPFC can influence 
response without resorting to effortful executive processes, how 
is this accomplished in terms of an attentional account? In stud-
ies of non-human primates where choice is mapped to saccadic 
movements coded in the frontoparietal attentional network, activity 
in the parietal map mirrors activity in the mOFC/vmPFC where 
subjective value is computed (86). Hence, an influential neuroeco-
nomic model treats mOFC/vmPFC and parietal areas as a unitary 
network for the computation of choice, suggesting that functional 
connectivity between mOFC/vmPFC and attentional areas in the 
parietal cortex must convey information on utilities (88, 140).

Based on these data, it is straightforward to formulate a mecha-
nism of influence of utility representations on attention in terms 
of the biased competition model. In this model, top-down control 
exerts its influence by biasing the competition between incoming 
stimuli vying for inclusion into working memory (141) or between 
activated input–output associations (142). In the absence of top-
down control, the outcome of this competition is determined by 
stimulus salience (such as sensory salience). To account for the 

table 1 | commonalities between moFc/vmPFc and ventral parietal areas associated with orienting.

moFc/vmPFc Ventral parietal orienting areas

Lesions cause disregard for outcomes of behavior with relatively preserved 

executive function (138)

Lesions cause attentional deficit (neglect) with relatively preserved executive 

function (151)

Modulated by subjective value and preference in choice (see main text for 

references)

Modulated by “behavioral relevance” in spatial attention (35)

Involved in suppressing irrelevant memories, but separately from executive 

function (152)

Activated by spontaneously evoked memories (153, 154)

Deactivated by focused cognitive tasks, in contrast to dorsal counterpart (67) Deactivated by focused cognitive tasks, in contrast to dorsal portion (35)

Commonly modulated by emotional material (115, 155, 156) Often modulated by emotional material [evidence reviewed in Ref. (40)]

Philogenetically evolved as secondary olfactory cortex (157) Secondary/semantic association areas (158)

Functionally interoperating with ventral parietal areas in neuroeconomic  

studies of choice (92, 159)

Functionally interoperating with mOFC/vmPFC in neuroeconomic studies of 

choice (92)

 Functionally opposed (155, 156, 160), but interoperating with an adjacent 

dorsal area (50)

Functionally opposed, but interoperating with an adjacent dorsal area  

(35, 161) 

Not clearly associable with either completely automatic or controlled  

processes (argument presented here)

Associated with processes with intermediate characteristics between 

automatic and controlled [evidence reviewed in Ref. (40)]
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of dual-process models may introduce unappealing complexities, 
but may reward us with more accurate accounts of the interac-
tion between motivation and cognition. In the future, these more 
complex accounts may be important to fully capture the variety of 
the phenomenology and psychopathology of affect.
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