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Acetaldehyde (ACD), the first alcohol metabolite, plays a pivotal role in the rewarding,
motivational, and addictive properties of the parental compound. Many studies have inves-
tigated the role of ACD in mediating neurochemical and behavioral effects induced by
alcohol administration, but very little is known about the modulation of neuropeptide sys-
tems following ACD intoxication and withdrawal. Indeed, the neuropeptideY (NPY) system
is altered during alcohol withdrawal in key regions for cerebrocortical excitability and neuro-
plasticity.The primary goal of this research was to investigate the effects of ACD intoxication
and withdrawal by recording rat behavior and by measuring NPY immunoreactivity in hip-
pocampus and NAcc, two brain regions mainly involved in processes which encompass
neuroplasticity in alcohol dependence. Furthermore, on the basis of the involvement of
endocannabinoidergic system in alcohol and ACD reinforcing effects, the role of the selec-
tive CB1 receptor antagonist AM281 in modulating NPY expression during withdrawal was
assessed. Our results indicate that (i) ACD intoxication induced a reduction in NPY expres-
sion in hippocampus and NAcc; (ii) symptoms of physical dependence, similar to alcohol’s,
were scored at 12 h from the last administration of ACD; and (iii) NPY levels increased in
early and prolonged acute withdrawal in both brain regions examined. The administration
of AM281 was able to blunt signs of ACD-induced physical dependence, to modulate NPY
levels, and to further increase NPY expression during ACD withdrawal both in hippocam-
pus and NAcc. In conclusion, the present study shows that complex plastic changes take
place in NPY system during ACD intoxication and subsequent withdrawal in rat hippocam-
pal formation and NAcc. The pharmacological inhibition of CB1 signaling could counteract
the neurochemical imbalance associated with ACD, and alcohol withdrawal, likely boosting
the setting up of homeostatic functional recovery.

Keywords: acetaldehyde withdrawal, neuropeptide Y expression, endocannabinoidergic system, hippocampus,
nucleus accumbens

INTRODUCTION
Acetaldehyde (ACD), the first oxidation product of alcohol, is one
of the mediators of the peripheral and central effects of alco-
hol (1–5), in particular playing a main role in the rewarding,
motivational, and addictive properties of the parental compound
(6–8). Although not fully investigated, ACD reinforcing proper-
ties are likely due to its capability to affect the dopaminergic
and endocannabinoidergic systems. As alcohol, ACD is able to
induce and maintain an operant drinking behavior and relapse
following repeated forced abstinence (6) and to increase the fir-
ing rate, spikes/burst, and burst firing of VTA neurons (9–11);
furthermore, the pharmacological manipulation of dopaminergic
D2 and endocannabinoidergic CB1 receptors decreases its moti-
vational and incentive value (8, 12). As largely described, after
abrupt suspension of long-term repetitive consumption, alcohol
withdrawal syndrome reflects severe neuro-adaptation of mem-
brane and intracellular molecular targets that results in disruption

and perturbation in neurotransmitter and neuropeptide systems
(13–15). Among them, CRH and neuropeptide Y (NPY) have
been mainly evoked as responsible for the affective and somatic
components of alcohol withdrawal (16, 17). In particular, NPY, a
36-amino acid peptide neuromodulator largely distributed in the
central nervous system, is implicated in a wide range of functions
including feeding, anxiety, seizures, circadian rhythms, memory,
and cardiovascular regulation (18–21), besides its involvement
in the neuronal mechanisms of alcohol consumption (22, 23).
Indeed, lower levels of NPY-IR in hippocampus, amygdala, and
frontal cortex have been reported in selectively bred alcohol-
preferring rats compared to non-preferring rats (24), as well as
lower expression in NPY protein in NAcc has been measured in
C57BL/6J mice, that innately consume larger amount of alcohol
(25). On the other hand, intracerebroventricular infusion of NPY
produces electrophysiological effects similar to those of alcohol
in rats (26); consistently, NPY-deficient mice drink more alcohol
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compared with wild-type mice,whereas mice over-expressing NPY
display a lower preference for alcohol (27, 28). Additionally, NPY
plays a central role in the modulation of neuronal excitability
mainly in cortex and hippocampus (29–32), where NPY is mostly
co-localized with γ-aminobutyric acid within interneurons (33–
35). Cerebrocortical excitability is altered during the development
of alcohol tolerance and dependence, and greatly enhanced dur-
ing alcohol withdrawal (36, 37). Notably, intracerebroventricular
administration of NPY attenuates symptoms of alcohol with-
drawal in rats, probably due to presynaptical inhibition of gluta-
mate release (29, 38, 39). Recent data have identified NPY as a pro-
moter of hippocampal neurogenesis since it is able to enhance cell
proliferation and promote neuronal differentiation in adult mice
(40–42). Adult neurogenesis occurs constitutively in the subgranu-
lar zone of the hippocampal dentate gyrus and in the subventricu-
lar zone of the walls of the lateral ventricles, adjacent to the ventral
striatum (43–45). The modulation of NPYergic system seems to
be involved in the regulation of alcohol-induced reactive neuro-
genesis (46, 47). Thus, the assessment of ACD activity on NPY
expression in brain areas closely linked to the neurogenic niches
may be helpful to clarify its role as a mediator of alcohol effects on
brain neuroplasticity. In this study, ACD was administered accord-
ing to a binge model previously characterized to induce tolerance
and physical dependence to alcohol (48–51). The effects of ACD
intoxication and withdrawal were investigated by recording rat
behavior, and by measuring NPY expression in the hippocampus
and ventral striatum, two of the brain regions mainly involved in
processes which encompass neuroplasticity in alcohol dependence
(46). Moreover, since the endocannabinoidergic system plays a rel-
evant role in the reinforcing effects of alcohol (52–55), and also
in the development of alcohol tolerance and withdrawal (56), the
present research aimed at the evaluation of the effect of a selective
CB1 receptor antagonist AM281 on NPY expression during with-
drawal. Indeed, an interplay between endocannabinoidergic sys-
tem and NPY expression and release has been demonstrated in the
hypothalamus (57, 58), but so far, no data exist on a functional cor-
relation between ACD, NPY, and endocannabinoids in the brain.

MATERIALS AND METHODS
ANIMALS
Adult male Wistar rats, weighing 250–300 g, were used in this
study. Animals were housed two per cage and maintained on
a 12 h light/dark cycle, on temperature (22± 2°C) and humid-
ity (55± 5%) controlled conditions, with ad libitum access to
food and water. All efforts were made to minimize suffering and
number of animals used. Experimental procedures were in strict
accordance with Italian legislation dealing with research on exper-
imental animals (D.L. 116/92) and European Council Directive
(2010/63/EU) on animals used for scientific purposes.

DRUGS AND PHARMACOLOGICAL TREATMENT
Acetaldehyde 99.98% (Sigma-Aldrich, Milan, Italy) was daily
diluted with tap water to a final concentration of 8% v/v; each
intragastric ACD administration provided 450 mg/kg. The selec-
tive CB1 receptor antagonist AM281 (Sigma-Aldrich, Milan, Italy)
was suspended in saline solution containing 3% Tween 80 and
administered i.p. at 2.5 mg/kg, in ACD and CTR animals at day

5, 3 and 12 h after the last intragastric administration [modified
from Ref. (59)]. The dose of AM281 used in this study was chosen
to avoid any aspecific effect (60, 61).

BINGE ACD TREATMENT
Rats received intragastric infusions of ACD (450 mg/kg) by gav-
age, five times daily (7 a.m., 11 a.m., 3 p.m., 7 p.m., and 11 p.m.)
for 4 days, in order to induce intoxication and withdrawal syn-
drome (49). The control group received intragastric infusions of
water, according to the time schedule of the protocol. Behavioral
signs of ACD intoxication were observed according to the sever-
ity scale of Majchrowicz (49). During the intoxication paradigm,
ACD treatment was individually adjusted to reach an intoxication
score between 3 and 5 (Ataxia 2–LRR) on each entire day (51)
to avoid lethal toxicity (seven animals died during the protocol,
before the assessments.).

Acetaldehyde-binge treated animals and controls were allocated
in the following experimental groups according to the assigned
procedure: ACD/T1 (n= 6) and CTR/T1 (n= 6) were decap-
itated 1 h after the last intragastric administration; ACD/T16
(n= 6), CTR/T16 (n= 6), ACD+AM281/T16 (n= 6), and
CTR+AM281/T16 (n= 6) were evaluated for the behavioral
signs of withdrawal at T12, and were decapitated at 16 h after
the last intragastric infusion; ACD/T72 (n= 6), CTR/T72 (n= 6),
ACD+AM281/T72 (n= 6), and CTR+AM281/T72 (n= 6) were
decapitated 72 h after the last intragastric administration.

BEHAVIORAL OBSERVATIONS OF WITHDRAWAL
At 12 h after the last infusion of ACD (T12), an observer blinded
to the treatment assessed the severity of physical dependence con-
sidering the following signs: general hyperactivity, irritability, tail
tremors, tail stiffness, general tremor, spasticity, wet (dog) shakes,
and spontaneous convulsive seizures (62). Each sign was assigned
a score of 0–3 (0= not present, 1= slight, 2=moderate, and
3= severe). The sum of these scores (0–24) was used as a quanti-
tative measurement of the severity of the withdrawal reaction, the
“total withdrawal score.”

IMMUNOHISTOCHEMICAL DETECTION OF NPY
After decapitation, brains were rapidly removed, frozen on dry
ice, and stored at −80°C. Coronal serial sections (20 µm) from
frozen rat brains were cut on a cryomicrotome from plate 29
to 36, corresponding to dorsal hippocampus, and from plate 10
to 14, equivalent to nucleus accumbens, according to the atlas
of Paxinos and Watson (63). Sections were thaw-mounted onto
Superfrost glass slides, dried on a hotplate, and processed for
NPY immunohistochemical analysis using a commercially avail-
able NPY immunohistochemistry staining kit (D.B.A., Italy). The
total number of NPY-positive neurons in each target brain region
was achieved by counting the number of positive cells of labeled
cell bodies determined with cresyl violet staining. Coronal brain
sections were further divided into different quadrants: hippocam-
pus in CA1, CA2, CA3, and DG, nucleus accumbens in shell and
core. The counterstained sections were placed under the micro-
scope, and the number of positive cells was counted manually in
all quadrants. Each labeled cell was viewed under bright-field illu-
mination using a 100× objective (Meiji Techno, Japan). Real-time
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microscopic images were captured by a video camera, digitized,
and displayed on a monitor. Two repeated measurements by
two different experimenters were performed bilaterally in three
adjacent sections per animal in the brain regions of interest (63).

STATISTICAL ANALYSIS
The differences in total withdrawal score between the groups
were assessed by the Kruskal–Wallis analysis of variance (ANOVA)
followed by the Dunn post hoc test. A two-way ANOVA was con-
ducted on the number of NPY-positive neurons as dependent
variables, with treatment (control, ACD, AM281) as the between-
subjects factor and“time”or“brain Area”as within-subjects factor.
When necessary, simple main effects and post hoc comparison were
calculated with Bonferroni post-test (α= 5). Values were consid-
ered statistically significant when p < 0.05. All data are presented as
mean (S.D.). Statistical analysis was conducted by using a Graph-
Pad Prism software 6.1 (GraphPad Software, San Diego, CA, USA)
on data from all experimental animals used.

RESULTS
BEHAVIORAL OBSERVATIONS OF WITHDRAWAL
In order to investigate spontaneous withdrawal behavior, rats were
observed at 12 h from the last ACD intragastric administration
and scored for general hyperactivity, irritability, tail tremors, tail
stiffness, general tremor, spasticity, wet (dog) shakes, and sponta-
neous convulsive seizures. ACD-treated animals showed discrete
behavioral signs of withdrawal, and among them, general hyper-
activity, irritability, and spasticity were recorded more frequently.
Somatic dependence symptoms persisted until 16 h and were
absent when the animals were observed again at 36 h. Accord-
ing to the score assigned to each behavioral sign, the mean total
withdrawal score in ACD rats was of 11.67± 1.63 (Figure 1).
Results of a Kruskal–Wallis test, performed on each behavioral
score and on total withdrawal score, including “treatment” as the
between-subjects factor, showed significant differences among the
experimental groups (general hyperactivity: p < 0.00; irritability:
p < 0.001; tail tremors: p < 0.01; tail stiffness: p < 0.001; general
tremor: p < 0.01; spasticity: p < 0.001). Dunn’s post hoc analysis,

FIGURE 1 |Total withdrawal score. (�) CTR, (�) CTR+AM281, (©) ACD,
and (•) ACD+AM281.

highlighted a significantly higher presence of individual and total
withdrawal symptoms in ACD group, with respect to CTR, while
individual and total withdrawal score of ACD-AM281 rats was
non-statistically different than controls’. Results of Dunn’s post hoc
analysis are showed in Table 1.

QUANTIFICATION OF NPY-POSITIVE NEURONS
Hippocampus
The number of NPY-positive neurons was evaluated in the hip-
pocampus as a whole. The results of a two-way ANOVA includ-
ing “ACD treatment” as the between-subjects factor and “time”
as within-subjects factor showed a significant effect of time,
treatment, and their interaction [F (2, 66)= 223.65, p < 0.0001;
F (1, 66)= 204.16, p < 0.0001; F (2, 66)= 220.28, p < 0.0001]. Bon-
ferroni post hoc analysis showed a significant reduction in NPY-
positive neurons in ACD group at T1 (t = 6.729, p < 0.001)
and an increase in NPY-positive neurons at T16 (t = 8.526,
p < 0.001) and T72 (t = 22.95, p < 0.001) when compared to
CTR group. NPY expression was also analyzed within ACD
group in order to reveal time-related differences in relative NPY-
positive neurons expression during withdrawal (Figure 2). The
results of a two-way ANOVA showed a significant effect of time,
treatment, and their interaction [F (2, 66)= 233.09, p < 0.0001;
F (1,66)= 212.78, p < 0.0001; F (2, 66)= 229.57, p < 0.0001]. Bon-
ferroni post hoc analysis showed that NPY expression increased
at T16 (t = 15.41, p < 0.001), with respect toT1, and at T72
(t = 15.01, p < 0.001) compared to T16 (Figure 3). A detailed
analysis of NPY expression in the hippocampal sub-regions was
also carried out. The results of a two-way ANOVA performed,
respectively, at T1, at T16, and at T72, including “ACD treat-
ment” as the between-subjects factor and “sub-regional NPY
expression” as within-subjects factor showed a significant effect
of sub-regional NPY expression [F (3, 88)= 1768.82, p < 0.0001;
F (3,88)= 233.30, p < 0.0001; F (3, 88)= 24.30, p < 0.0001], treat-
ment [F (1, 88)= 1284.10, p < 0.0001; F (1,88)= 160.9, p < 0.0001;
F (1,88)= 636.3, p < 0.0001] and their interaction [F (3,88)= 298.08,
p < 0.0001; F (3,88)= 23.75,p < 0.0001; F (2,88)= 54.12,p < 0.0001).
Bonferroni post hoc analysis showed a decrease in the number of
NPY-positive cells at T1 in ACD group in all the hippocampal sub-
regions, while an increase in NPY expression was observed at T16
and T72, compared to controls (Table 2).

Effects of AM281 on hippocampal NPY expression
In order to assess the involvement of CB1 signaling on the mod-
ulation of NPY-positive neurons expression in hippocampus, sta-
tistical analysis by a two-way ANOVA was performed on the effect
of the CB1 antagonist AM281 both in ACD group and in con-
trols. Our results showed significant effects of time, treatment,
and their interaction in ACD rats [F (1, 44)= 422.31, p < 0.0001;
F (1,44)= 34.86, p < 0.0001; F (1, 44)= 15.29, p < 0.0001]. Bonfer-
roni post hoc analysis showed that AM281 was able to induce
an increase in the number of NPY-positive neurons at 16 h
(t= 6.940, p < 0.001) in ACD group compared to respective
controls (Figure 4A). In control animals, a two-way ANOVA
including “AM281 treatment” as the between-subjects factor and
“time” as within-subjects factor revealed a significant effect of
time, treatment, and their interaction [F (1, 44)= 9.24, p < 0.0040;
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Table 1 | Behavioral observations of withdrawal.

Withdrawal behaviors CTR CTR +AM281 ACD ACD +AM281

General hyperactivity 0.17±0.41 0.33±0.52 2.55±0.55** 1.67±0.52

Irritability 0 0.17±0.41 2.83±0.41** 1.17±1.17

Tail tremors 0 0 1.00±0.63* 0.50±0.84

Tail stiffness 0 0 1.67±0.51** 1.00±0.89

General tremor 0 0 1.50±1.05** 0.33±0.52

Spasticity 0 0 2.17±0.75** 0.67±0.82

Wet (dog) shakes 0 0 0 0

Spontaneous convulsive seizures 0 0 0 0

Total withdrawal score 0.17±0.41 0.5±0.55 11.67±1.63*** 5.33±1.75

Each sign was assigned a score of 0–3 (0=not present, 1= slight, 2=moderate, 3= severe). The sum of these scores was used as a quantitative measurement of

the severity of the withdrawal reaction, the “total withdrawal score.” *p < 0.05; **p < 0.01; ***p < 0.001 vs CTR.

FIGURE 2 | Microphotographs of neuropeptideY (NPY)-positive
neurons in rat hippocampus (dentate gyrus); (A) controls; (B) ACD rats
atT1; (C) ACD rats atT16; and (D) ACD rats atT72. The specific labeling is
observed under bright-field illumination using a 100× objective.

F (1,44)= 106.99, p < 0.0001; F (1, 44)= 6.32, p < 0.0156]. Bonfer-
roni post hoc analysis showed that AM281 was able to induce
an increase in the number of NPY-positive neurons at T16
(t = 5.536, p < 0.001) and T72 (t = 9.092, p < 0.001) in CTR
group (Figure 4B).

Nucleus accumbens
Results from a two-way ANOVA including “ACD treatment” as
the between-subjects factor and “time” as within-subjects factor
performed on the number of NPY-positive neurons in NAcc,
at different time points, showed a significant effect of time,
treatment, and their interaction [F (2, 66)= 185.97, p < 0.0001;
F (1,66)= 139.60, p < 0.0001; F (2, 66)= 176.71, p < 0.0001]. Bon-
ferroni post hoc analysis showed a significant reduction in NPY-
positive neurons in ACD group at T1 (t = 5.036, p < 0.001) and
an increase in NPY-positive neurons at T16 (t = 3.995, p < 0.001)
and T72 (t = 21.14, p < 0.001), when compared to CTR group
(Figure 5). NPY expression was also analyzed within ACD group

FIGURE 3 | Average number of neuropeptideY (NPY)-positive neurons
in the hippocampus of ACD and control rats at different times
following the last intragastric infusion. Each value represents the
mean±S.D. of 12 sections for each experimental condition. (�) CTR,
(�) ACD. *p < 0.001 vs CTR, �p < 0.001 vs T1, ©p < 0.001 vs T16.

in order to reveal time-related differences in relative NPY-positive
neurons during withdrawal. The results of a two-way ANOVA
showed a significant effect of time, treatment, and their inter-
action [F (2, 66)= 195.97, p < 0.0001; F (1,66)= 134.59, p < 0.0001;
F (2, 66)= 176.57, p < 0.0001]. Bonferroni post hoc analysis showed
that NPY expression increased at T16 (t = 8.788, p < 0.001), with
respect to T1, and at T72 (t = 17.65, p < 0.001) compared to
T16 (Figure 6). When NPY expression was evaluated in accum-
bal sub-regions shell and core, a two-way ANOVA performed,
respectively, at T1, at T16, and at T72, including “ACD treat-
ment” as the between-subjects factor and “sub-regional NPY
expression” as within-subjects factor showed a significant effect
of sub-regional NPY expression [F (1, 44)= 199.59, p < 0.0001;
F (1,44)= 16.67, p < 0.0002; F (1, 44)= 5.11, p < 0.028], treat-
ment [F (1, 44)= 353.82, p < 0.0001; F (1,44)= 156.94, p < 0.0001;
F (1,44)= 257.57, p < 0.0001] and their interaction [F (1,44)= 7.10,
p < 0.0001; F (1,44)= 57.90,p < 0.0001; F (1,44)= 24.45,p < 0.0001].
Bonferroni post hoc analysis showed a decrease in the number of
NPY-positive cells at T1 in ACD group in shell and core, while
an increase in NPY expression was observed at T16 and T72,
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compared to controls (Table 3). In order to evaluate whether ACD
treatment could differentially affect NPY expression in the shell of
the NAcc, with respect to core, a two-way ANOVA performed on
“sub-regional NPY expression”as the between-subjects factor”and
“time” as within-subjects factor, displayed a significant effect of
sub-regional NPY expression [F (2,66)= 1475.13, p < 0.0001], time
[F (1,66)= 23.86, p < 0.0001] and their interaction [F (2,66)= 37.10,
p < 0.0001]. Bonferroni post hoc analysis showed that NPY expres-
sion decreased at T1 (t = 4.036, p < 0.001) and increase at T16
(t = 4.890, p < 0.001) and T72 (t = 7.606, p < 0.001) in shell when
compared to core in ACD-treated rats.

Effects of AM281 on accumbal NPY expression
In order to assess the involvement of CB1 signaling in the mod-
ulation of NPY-positive neurons expression in NAcc, statistical

Table 2 | Number of NPY-positive neurons in different sub-regions of

the hippocampus, in ACD and in control rats, at different times

following the last intragastric infusion (T1,T16,T72).

Time Hippocampus

sub-regions

CTR ACD Statistic

t p

T1 CA1 184±4.3 109±11.0 23.05 <0.001

CA2 236±6.2 106±9.3 39.82 <0.001

CA3 53±3.4 48±4.8 1.56 <0.05

DG 45±13.0 21±6.2 7.35 <0.001

T16 CA1 182±36.0 406±80.0 12.14 <0.001

CA2 233±46.0 381±76.0 8.023 <0.001

CA3 52±10.3 66±12.3 1.02 >0.05

DG 24±4.2 103±22.0 4.445 <0.001

T72 CA1 185±36.0 460±72.0 12.07 <0.001

CA2 237±49.3 313±53.0 3.511 <0.01

CA3 56±10.2 331±69.3 12.07 <0.001

DG 25±2.9 491±77.1 21.53 <0.001

Values are mean±S.D. of 12 sections for each experimental condition. CTR, con-

trols; ACD, acetaldehyde; DG, dentate gyrus.

analysis by a two-way ANOVA was performed on the effects exerted
by the CB1 antagonist AM281 both in ACD group and in con-
trols. Our results showed significant effects of time, treatment,
and their interaction [F (1, 44)= 489.21, p < 0.0001; F (1,44)= 6.24,
p < 0.0163; F (1, 44)= 4.46, p < 0.043]. Bonferroni post hoc analy-
sis displayed that AM281 was able to induce an increase in the
number of NPY-positive neurons at T72 (t = 3.260, p < 0.01) in
ACD group compared to respective controls (Figure 7A). Fur-
thermore, when CTR animals received the selective cannabinoid
antagonist, statistical analysis performed by a two-way ANOVA
including “AM281 treatment” as the between-subjects factor and
“time” as within-subjects factor revealed a significant effect of
time, treatment, and their interaction [F (1, 44)= 25.74, p < 0.0001;
F (1,44)= 41.33, p < 0.0001; F (1, 44)= 20.69, p < 0.0001]. Bonfer-
roni post hoc analysis showed that AM281 was able to induce
an increase in the number of NPY-positive neurons at T72
(t = 7.762, p < 0.001) in CTR group, compared to respective
controls (Figure 7B).

DISCUSSION
In the current study, the primary goal was to verify if ACD, the first
metabolite of alcohol, is able to produce alterations in NPY protein
levels in hippocampus and ventral striatum neurons, as already
shown for alcohol (51, 64–66). The major result is that a 4-day
long ACD binge treatment modulates NPY expression as a result of
ACD intoxication but also as a consequence of early and prolonged,
acute withdrawal. In particular, a significant decrease in NPY-
positive neurons was observed 1 h after the last ACD infusion both
in hippocampus and in NAcc; moreover, 16 and 72 h following the
last ACD administration,a relevant increase in NPY expression was
reported in the same areas. As recorded following alcohol binge
treatment, ACD intoxication produced somatic withdrawal fea-
tures that were observed at 12 h from the last ACD administration,
started to decline at 16 h, and disappeared at 36 h abstinence. ACD-
induced physical dependence did not display all the classical signs
observed in alcohol withdrawal; indeed, general hyperactivity, irri-
tability, tail tremors, tail stiffness, general tremor, and spasticity
were recorded and scored, but they reached a lower severity than
in alcohol withdrawal (49, 50, 62); wet dog shakes and spontaneous
convulsive seizures were not observed in these experimental

FIGURE 4 | Effect of AM281 treatment on the number of hippocampus neuropeptideY (NPY)-positive neurons in ACD rats (A) and in controls (B). Each
value represents the mean±S.D. of 12 sections for each experimental condition. *p < 0.001 vs respective controls.
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FIGURE 5 | Microphotographs of neuropeptideY (NPY)-positive
neurons in rat nucleus accumbens (shell); (A) controls; (B) ACD rats at
T1; (C) ACD rats atT16; and (D) ACD rats atT72. The specific labeling is
observed under bright-field illumination using a 100× objective.

FIGURE 6 | Average number of neuropeptideY (NPY)-positive neurons
detected in the nucleus accumbens (NAcc) during acetaldehyde
intoxication and withdrawal. Each value represents the mean±S.D. of
12 sections for each experimental condition. (�) CTR, (�) ACD. *p < 0.001
vs CTR, �p < 0.001 vs T1, ©p < 0.001 vs T16.

conditions. Several factors can contribute to the explanation of this
evidence that, as far as we know, has never been reported before. As
alcohol, peripherally administered ACD does reach the brain, due
to its capability of overwhelming the metabolic barrier constituted
by epithelial aldehyde dehydrogenase, a low Km ACD-oxidizing
enzyme expressed in the gastrointestinal tract (67, 68). Moreover,
high blood ACD concentration can saturate the moderate aldehyde
dehydrogenase activity of the BBB capillaries, enter the brain and
exert central activity (69–72). Indeed, ACD itself is able to inter-
act with channels and receptors producing relevant alterations in
discrete neurotransmitter systems (9, 73–75). Therefore, although
ACD does not share the same pharmacodynamic and pharma-
cokinetic properties of alcohol, its involvement as a mediator of
alcohol-induced dependence cannot be ruled out. ACD-induced

Table 3 | Number of NPY-positive neurons expression in nucleus

accumbens shell and core, in ACD and in control rats at different

times following the last intragastric infusion (T1,T16,T72).

Time Nucleus

accumbens

sub-regions

CTR ACD Statistic

t p

T1 Shell 265±26.5 158±13.0* 15.18 <0.001

Core 336±21.0 236±23 11.42 <0.001

T16 Shell 262±30.0 479±47.0* 14.24 <0.001

Core 300±41.0 278±28.0 3.478 <0.01

T72 Shell 270±96.0 841±103.0* 14.844 <0.001

Core 343±78.0 645±98.0 7.851 <0.001

Values are mean±S.D. of 12 sections for each experimental condition. *p < 0.001

vs core.

reduction in NPY expression was observed in all the hippocampal
sub-regions, with a prominent effect in DG and CA1 where NPY is
expressed in the basket and the granule cells (64). NPY is known to
inhibit excitatory transmission by reducing glutamate release (29);
indeed, mice lacking NPY are more susceptible to the epileptogenic
effect exerted by pentylenetetrazole and kainate (76, 77). In accor-
dance, the reduction in NPY levels observed in this study in the
hippocampus, as a consequence of the effect of ACD binge treat-
ment, could be associated to a dampened inhibitory transmission
that contributes to the hyperexcitable state that follows physical
dependence. The reduction in NPY levels in NAcc following ACD
intoxication is consistent with data showing that excessive alcohol
drinking behavior is related to lower expression in NPY protein in
NAcc in C57BL/6J mice, which innately consume larger amount
of alcohol. Conversely, mice showing lower intake of alcohol dis-
play higher expression of NPY neurons in the same area. Alcohol
drinking behavior has been related to profound modifications in
the transductional processes in NAcc neurons that are correlated
to lower expression of NPY gene (25). Our data fall into agreement
with these findings pointing to a prominent role of NPY in mod-
ulating the rewarding, reinforcing, and motivational responses in
the mesolimbic system (78, 79). Notably, a dramatic, and time
dependent, increase in NPY levels was observed at 16 and 72 h of
withdrawal in all the hippocampal sub-regions, primarily in DG
and CA1, as well as in NAcc. Alcohol withdrawal is characterized by
a great perturbation of the homeostatic systems that in fact leads to
the appearance of profound signs of physical dependence. There-
fore, it is reasonable to hypothesize that the increase in NPY protein
levels in hippocampus, in particular in CA1 and DG, primarily rep-
resents a compensatory mechanism, which allows the organism to
limit the intensity and duration of hippocampal hyperexcitability.
Accordingly, intracerebroventricular administration of NPY has
been shown to reduce alcohol withdrawal seizures, after a 4-day
alcohol treatment similar to our ACD binge protocol (38). Inter-
estingly, DG is one of the brain regions where neurogenesis of
adult neurons occurs, together with the subventricular zone of the
lateral ventricles, that in human beings supplies new interneurons
to the adjacent striatum (80).
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FIGURE 7 | Effect of AM281 treatment on the number of nucleus accumbens neuropeptideY (NPY)-positive neurons in ACD rats (A) and in
controls (B). Each value represents the mean±S.D. of 12 sections for each experimental condition. *p < 0.001; �p < 0.01 vs respective controls.

Neurogenesis is a neuronal activity driven process involved in
stress-mediated behavioral responses, mood control, and certain
forms of learning and memory; NPY has been reported to be a
promoter of this form of neuronal plasticity in terms of enhanced
proliferation and differentiation in DG neurons in adult mice (40,
41). Hence, the increase in NPY levels, following acute withdrawal
observed in this study, could induce hippocampal and subven-
tricular neurogenesis and neural homeostasis as a compensatory
mechanism toward ACD-induced loss of inhibitory control and
neuronal damage, as also reported following alcohol intoxication
(51, 81, 82). Moreover, NPY enhancement in NAcc suggests a direct
interaction between dopamine and NPY and in particular the set
up of a recovery process in the mesolimbic dopaminergic trans-
mission, so that an increase in NPY levels could boost the activity of
TH-positive neurons and increase extracellular dopamine release
(83). These findings lead to focus on NPY as a crucial player
in the modulation of accumbal dopamine transmission. On the
other hand, reports on nigrostriatal regulation in human brain
with Parkinson’s disease show that NPY mRNA expression rises
as a consequence of a dampened dopaminergic tone (84). The
hypodopaminergic state is a neurochemical and functional fea-
ture of withdrawal after the chronic exposure to several drugs
of abuse, including alcohol (85). Therefore, we hypothesize that
the rise in NPY levels in the ventral striatum during early and
prolonged acute withdrawal, besides a putative role in promoting
neuroplasticity, could contribute to the slow, long transition phase
that takes to the reinstatement of the dopaminergic tone, which is
compromised during ACD treatment. A very few reports examine
the expression of NPY in the striatum following alcohol intoxi-
cation, and most of them describe a modulation of NPY in Nacc
shell (86). In this study, we observed a modulation of NPY expres-
sion in both the accumbal sub-regions, although the increase in
NPY levels was prominent in NAcc shell, the accumbal sub-region
primarily involved in adaptive neuromechanisms underlying the
onset of addiction.

The second major finding of this study is the evidence of
an interplay between NPY expression and CB1 signaling in rat
hippocampus and NAcc. Endocannabinoids can be released in

NAcc (87) and VTA, where they modulate the excitatory and
inhibitory inputs that control mesolimbic pathways by acting as
retrograde messengers on CB1 receptors (88–92). In this study,
the administration of AM281, a selective CB1 antagonist, avoid
of aspecific effects, or partial agonist activity produced a signif-
icant increase in NPY-positive neurons both in ACD group and
in controls. Indeed, injected before the onset of the withdrawal
syndrome, AM281 was able to reduce the behavioral signs that
follow ACD treatment suspension. This was accompanied by a
further increase in the number of NPY-positive neurons both in
hippocampus and in NAcc, measured, respectively, at early and
prolonged acute withdrawal. Little is known about the functional
role of endocannabinoids on NPY system. It has been reported that
anandamide and 2-arachidonoylglycerol, through CB1 receptor
signaling, dose dependently downregulate NPY mRNA levels (58).
The activation of the CB1 signal is associated with the inhibition
of PKA and CREB phosphorylation (93). Indeed, the reduction in
pCREB could explain the decrease in NPY levels observed, in that
NPY gene is a cAMP-inducible element. Moreover, during a binge
alcohol treatment, an increase in CREB mRNA and pCREB-IR
has been reported at 24 and 72 h withdrawal, when higher NPY
expression was also found in the basket cells of the hippocampus
(64); this is consistent with our finding and prompts to suggest an
inverse correlation between endocannabinoids and NPY expres-
sion in the area analyzed. The modulation by AM281 appears to
be region- and time-dependent; NPY expression in ACD binge
treated rats is increased in NAcc at 3 days of withdrawal, while in
the hippocampus it rises at 16 h of withdrawal. At present, this
different pattern of expression is difficult to explain; however, a
peculiar sensitivity of NPY system to CB1 signaling in NAcc, along
with the impact of intracellular and molecular disarrangements
linked to withdrawal and the onset of the processes of recov-
ery, cannot be ruled out. In conclusion, the present study shows
that complex plastic changes take place in NPY system during
ACD binge treatment and subsequent withdrawal in the rat hip-
pocampal formation and NAcc; we hypothesize that ACD binge
treatment increases endocannabinoidergic transmission, similar
to alcohol (94), thus resulting in a downregulation of NPY system
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that plays a role in physical dependence and in the onset of with-
drawal syndrome. During early and prolonged acute withdrawal,
NPY expression progressively rises, likely as a consequence of the
decreased endocannabinoidergic tone, thus contributing to the
control of neuronal hyperexcitability and of the disarrangement
in the mesolimbic system. The pharmacological inhibition of CB1
signaling could be effective in counteracting the neurochemical
imbalance associated with ACD and alcohol withdrawal, likely
boosting the setting up of homeostatic functional recovery.
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