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Motor abnormalities in individuals with schizophrenia and those at-risk for psychosis are
well documented. An accumulating body of work has also highlighted motor abnormalities
related to cerebellar dysfunction in schizophrenia including eye-blink conditioning, timing,
postural control, and motor learning. We have also recently found evidence for motor dys-
function in individuals at ultra high-risk for psychosis (1–3). This is particularly relevant as
the cerebellum is thought to be central to the cognitive dysmetria model of schizophre-
nia, and these overt motor signs may point to more general cerebellar dysfunction in the
etiology of psychotic disorders. While studies have provided evidence indicative of motor
cerebellar dysfunction in at-risk populations and in schizophrenia, findings with respect
to the cerebellum have been mixed. One factor potentially contributing to these mixed
results is the whole-structure approach taken when investigating the cerebellum. In non-
human primates, there are distinct closed-loop circuits between the cerebellum, thalamus,
and brain with motor and non-motor cortical regions. Recent human neuroimaging has sup-
ported this finding and indicates that there is a cerebellar functional topography (4), and this
information is being missed with whole-structure approaches. Here, we review cerebellar-
motor dysfunction in individuals with schizophrenia and those at-risk for psychosis. We
also discuss cerebellar abnormalities in psychosis, and the cerebellar functional topogra-
phy. Because of the segregated functional regions of the cerebellum, we propose that
it is important to look at the structure regionally in order to better understand its role in
motor dysfunction in these populations. This is analogous to approaches taken with the
basal ganglia, where each region is considered separately. Such an approach is necessary
to better understand cerebellar pathophysiology on a macro-structural level with respect
to the pathogenesis of psychosis.

Keywords: cerebellum, schizophrenia, psychosis-risk, motor abnormalities, balance, timing, morphology, motor
learning

INTRODUCTION
Schizophrenia is a devastating mental illness marked by a variety
of symptoms, including positive symptoms (hallucinations and
delusions) and negative symptoms (anhedonia and social with-
drawal) (5). In addition to the classic symptoms, these patients
also exhibit movement abnormalities as well as cognitive and affec-
tive dysfunction. These movement abnormalities are in a variety of
domains and include dyskinesias (6), as well as psychomotor slow-
ing, catatonia, neurological soft signs, extrapyramidal signs, and
motor learning deficits (7–10). Psychosis has been studied as a
spectrum disorder, with investigations of different patient groups
that show some symptoms that are associated with risk. In this
review, we focus on several specific groups in addition to schizo-
phrenia, including those at psychosis-risk, a category that can refer
to genetic risk, as those with a first-degree relative with the disease
are at greater risk for development of schizophrenia. In this cate-
gory, there are also individuals referred to as ultra high-risk (UHR),
where there are recent onset or escalating range of moderate (i.e.,

partially formed/occurring occasionally without full conviction
or related functional impairment) positive attenuated symptoms
(e.g., unusual thoughts, suspiciousness, grandiosity, perceptual
anomalies, and disorganized communication) associated with
decreased functionality in social relationships or day-to-day life.
After a diagnosis of schizophrenia, this period of attenuated symp-
toms is referred to as the prodromal period. However, not all those
that experience these symptoms will go on to develop schizophre-
nia or another psychotic disorder. Finally, there are individuals
diagnosed with schizotypal personality disorder, who show trait
level unusual behaviors, suspiciousness, and ideas of reference.
This group is also at greater than average risk for schizophrenia.
Interestingly, movement abnormalities are present in these at-risk
populations as well [e.g., (1, 2, 6)].

Movement abnormalities are present as early as infancy in indi-
viduals that go on to develop schizophrenia later in life [e.g., (5)],
indicating that such movement abnormalities maybe associated
with the disease or disease process, as opposed to being a side-effect
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of medication (11). Indeed, prior to the onset of schizophre-
nia, and certainly during infancy, individuals are less likely to be
impacted by many of the confounding factors that could also fur-
ther impact movement abnormalities associated with schizophre-
nia (e.g., anti-psychotic medications,drug,and alcohol use/abuse).
These movement abnormalities are typically dyskinetic move-
ments, and are thought to be related to the dopaminergic dysfunc-
tion in the basal ganglia (12), and have been previously reviewed
elsewhere (6). Importantly, these motor abnormalities are present
prior to disease onset, and continue across the disease course. Fur-
ther supporting this, many movement abnormalities are seen in
drug-naïve adults with schizophrenia as well (10).

In addition to the striatally mediated dyskinesias seen in schiz-
ophrenia and psychosis-risk groups (3, 6, 13–22) and the psy-
chomotor slowing, catatonia, and parkinsonism (7–10), there is
also evidence of cerebellar dysfunction in both schizophrenia,
and psychosis-risk populations [e.g., Ref. (1–3, 17–21)]. The most
prominent evidence of cerebellar dysfunction is with respect to
its role in cognitive dysmetria (23–25). Andreasen and colleagues
have demonstrated that there is abnormal functional activation in
the cerebellum, thalamus, and cortex in patients with schizophre-
nia (23, 24), and more recently, there has been increased interest
in the study of the cerebellum in these patients, particularly with
respect to cerebello-thalamic connections (26). Cerebellar activa-
tion deficits exists across functional domains (27), and we refer
readers to the review by Picard and colleagues for a detailed dis-
cussion of the cerebellum in schizophrenia, as it is beyond the
scope of our review here (25).

The cerebellum is classically thought of as a brain structure
that is important for motor control; however, there is a robust
literature to indicate that the structure is also heavily involved in
cognitive and affective processing (4, 28–33). As such, though the
cerebellum and cerebello-thalamo-cortical circuit were first dis-
cussed in schizophrenia with respect to cognitive dysmetria, there
is also a great deal of evidence to indicate that there are motor cere-
bellar deficits in schizophrenia in addition to the aforementioned
dyskinesias, psychomotor slowing, catatonia, and parkinsonism.
Indeed, there is also an emerging literature indicating that as with
dyskinesias, cerebellar-motor abnormalities are also present in
psychosis-risk populations [e.g., (1, 2)]. Thus, it may be that more
overt cerebellar-motor dysfunction may also serve as a marker of
disease and disease progression, such as has been proposed for
striatal-mediated dyskinesias (6). This is particularly exciting, as
the cerebellar–thalamic network represents a distinct mechanism,
and may hold the potential to explain/predict heretofore poorly
understood processes across the psychosis spectrum. Here, our
goal is twofold. First, we provide a review of cerebellar–motor dys-
function in patients with schizophrenia as well as in psychosis-risk
groups including genetic risk, UHR populations, and schizotypal
individuals. Second, we provide a detailed overview of the cere-
bellar functional topography and weigh evidence in support of a
targeted regional approach for cerebellar investigations. We sug-
gest that more specific topographically informed approaches to
investigating the cerebellum (particularly with respect to cere-
bellar morphology and cerebello-cortical networks) across the
psychosis spectrum will yield informative results with respect to
the involvement of the cerebellum in psychosis.

MOTOR CEREBELLAR DYSFUNCTION IN SCHIZOPHRENIA
AND PSYCHOSIS-RISK
The cerebellum is important for motor function generally in that
it is important for online monitoring of movements (34, 35). Eye-
blink conditioning and postural control are both especially reliant
upon the cerebellum, but it is also strongly engaged during motor
learning, and it has been suggested that one of the primary func-
tions of the cerebellum is in the precise timing of movements (36,
37). While the cerebellum is likely to be involved in many motor
behaviors, several domains have been studied in greater depth in
patients across the psychosis spectrum. We will discuss in turn eye-
blink conditioning, postural control, timing, and motor learning.
For each motor task paradigm, we will review the existing evidence
indicating impairments across the psychosis spectrum, as well as
any evidence that directly links these behaviors to the cerebellum
[either structure or function as measured using functional mag-
netic resonance imaging (fMRI)] in these populations. A summary
of performance for each task domain for both patients with schizo-
phrenia and at-risk/psychosis spectrum populations is provided in
Table 1. Finally, future directions for research in each domain will
be discussed, particularly with respect to the study of psychosis.

EYE-BLINK CONDITIONING
Eye-blink conditioning is one of the simplest learning paradigms,
and performance of this task is dependent upon the cerebellum
(38–40). The circuits involved in eye-blink conditioning have been
carefully mapped using animal models, but have also been exten-
sively investigated in humans primarily in lesion studies, and both
the deep cerebellar nuclei (particularly the interposed nuclei) and
cerebellar cortex seemed to be important for task performance
(38–40). In these paradigms, a puff of air is delivered to the eye,
resulting in a blink response. During the conditioning phases, a
tone precedes and typically co-terminates with the air-puff, result-
ing in conditioned responses (CRs). That is, individuals that learn
the association between the tone and the air-puff that follows it
blink their eyes at the sound of the tone. Because this is so heavily
dependent upon the cerebellum, it is often used as an indicator of
cerebellar function. In schizophrenia, there is a growing literature
investigating performance on this task in patients.

Across the literature investigating patients with schizophrenia,
the general finding is that patients are impaired in eye-blink con-
ditioning, and show fewer CRs to the tone alone when compared
with controls (40–47). During the paradigm, the percentage of
CRs is significantly lower than that in controls. However, though
this seems to be a relatively robust finding, there have been several
studies that provide evidence to the contrary (48–51). Reasons for
the mixed findings are unclear, but may be due to the heterogeneity
of the patients included in these samples particularly with respect
to medication, as well as differences in task design. Importantly, a
recent investigation of neuroleptic naïve patients or patients that
have been off medication for 3 weeks demonstrated eye-blink con-
ditioning deficits suggesting that this impairment is not solely a
function of medication status (46).

In addition to the lower percentage of CRs, there is also evi-
dence in patients with schizophrenia to indicate that the timing
of these responses is negatively impacted (41, 42, 45) (timing will
also be discussed in further detail below). During the conditioning
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Table 1 | Summary of findings across the reviewed motor domains for both patients with schizophrenia and high-risk groups.

Task domain Schizophrenia deficits High-risk deficits

Eye-blink

conditioning

Poor conditioning: fewer conditioned responses to the presentation

of a tone, which is followed by an aversive puff of air to the eye

Fewer and earlier conditioned responses in SPD

Altered timing of responses so that eye does not close in time with

the air-puff

Genetic risk populations also show fewer conditioned

responses

Postural

control

Greater postural sway indicative of poor postural control, associated

with symptom severity

Increased postural sway in UHR individuals that is

specifically associated with negative symptom severity

Presence of the Romberg sign more common in patients

Timing Impairments in temporal bisection (time perception) No evidence indicating sub-second cerebellar timing deficits

Increased variability during temporal production

(synchronization–continuation tasks)

Sub-second timing correlated with dimensions of schizotypy

Motor learning Implicit and explicit sequence learning deficits such that patients

learn, but to a lesser degree than controls

Deficits in pursuit rotor performance in UHR

Relationships also seen with the cerebellum No deficits on sequence learning in SPD

SPD, schizotypal personality disorder; UHR, ultra high-risk.

paradigms, the tone typically co-terminates with the onset of
the air-puff to the eye. The optimal response is such that the
anticipatory eye-blink that occurs as a result of the tone (CR)
is timed so that the eye is closed upon the delivery of the air-puff.
Brown and colleagues found that the timing of the CRs was more
variable in patients with schizophrenia (42) while Bolbecker and
colleagues reported less adaptive CRs as they occurred significantly
earlier in patients when compared to controls (41). A similar trend
level finding of earlier CRs in patients was found by Forsyth and
colleagues (45).

Across the psychosis spectrum, there is also evidence to indicate
impairments in eye-blink conditioning. Individuals with schizo-
typal personality disorder have deficits similar to patients with
schizophrenia in that they show fewer CRs, and there is also a trend
indicating altered (earlier) CR timing in this population (45). Most
recently, Bolbecker and colleagues investigated eye-blink condi-
tioning in a group of patients with schizophrenia, those at genetic
risk, and healthy controls (52). Both the patient and genetic risk
groups showed impaired associative learning as measured with
CRs. The authors suggest that cerebellar abnormalities may be a
marker of risk for schizophrenia (52). Furthermore, this provides
additional support to indicate that these deficits are not an artifact
of medication, as they are present in genetic risk groups.

Finally, it is of note that there have been several investigations
of the cerebellum more directly with respect to eye-blink condi-
tioning. First, Edwards and colleagues measured the volume of the
anterior and posterior aspects of the cerebellum and investigated
these volumes with respect to conditioning (43) in patients with
schizophrenia and controls. Volume of the anterior cerebellum
in patients was smaller than that of controls and the patients also
showed impaired conditioning. However, there were no significant
correlations between cerebellar volume and conditioning perfor-
mance in patients with schizophrenia. In fact, the non-significant
relationship in the patient group was in the opposite direction as
that seen in the controls (43). The authors suggest that there are

perhaps altered structure–function relationships in the cerebellum
in patients with schizophrenia (43). However, further confirma-
tion of these findings is necessary, particularly as only very large
regions of the cerebellum were investigated.

Using positron emission tomography (PET), medication free
patients with schizophrenia and controls were scanned during the
eye-blink conditioning paradigm (46). Not only did the patient
group show impaired associative learning, but they also showed
decreased blood flow in the cerebellum and the thalamus. This
indicates cerebellar dysfunction in the patient group along with
the behavioral impairments (46). While this investigation and that
of Edwards and colleagues are important first steps in linking cere-
bellar morphology and function to this overt motor impairment,
it is also clear that more work is needed.

There are several key future directions for eye-blink-
conditioning research. Most interestingly is the use of functional
neuroimaging. While Parker and colleagues took advantage of PET
imaging (46), recent advances in the technology used to deliver the
air-puff and monitor the eye-blinks have allowed for investiga-
tions of this task using fMRI (53, 54). This approach has provided
important insights into the cerebellum and eye-blink conditioning
in normative development (54). Linking eye-blink conditioning
to additional cognitive measures as well as symptomatology in
disease populations is important. Several groups have started to
investigate eye-blink conditioning with respect to cognition with
mixed results (41, 45), and to our knowledge there have not yet
been any investigations linking CRs with symptom severity. Such
future work is important for our understanding of cerebellar con-
tributions to disease and cognition, and will help us to better
understand whether or not this motor measure is a reasonable
marker of disease state. Lastly, investigations in UHR populations
would also be especially informative. The work by Bolbecker and
colleagues in genetic risk is an important first step (52), and the
field would benefit from a replication and extension of this work
in UHR individuals.
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POSTURAL CONTROL
Postural control relies upon sensorimotor integration and vestibu-
lar function. The cerebellum has long been implicated in postural
control (55). Patient studies in those with ataxia or cerebellar
lesions show increased postural sway (poor postural control) (56),
and the measurement of regional cerebral blood flow using PET
imaging has also shown increases in blood flow in the cerebellum
(57). Much like eye-blink conditioning, postural control can also
be used as a potential indicator of cerebellar function. Indeed in
healthy adults, balance has been linked to regional cerebellar vol-
ume (58), and similar associations between cerebellar volume and
balance have been seen in alcoholism where cerebellar volume is
negatively effected by the disease (59, 60).

Investigations of postural control in schizophrenia were initi-
ated as far back as the 1940s. Using vestibular stimulation Angyl
and Sherman (61) found deficits related to postural control in
patients with schizophrenia. Though the methods to investigate
postural control vary greatly in their sensitivity, the general finding
is that patients with schizophrenia have impaired postural control.
Earlier work in this domain relied primarily upon behavioral mea-
sures and assessments of balance such as judgment of the presence
of the Romberg sign (loss of balance when the eyes are closed, arms
are outstretched, and feet are in a heel-to-toe tandem position), or
assessing the ability to stand heel-to-toe, or on one foot (62, 63).
Presence of the Romberg sign is significantly more common in
patients with schizophrenia as compared to healthy controls (62)
and patients are also impaired at standing on one foot, and heel-to-
toe standing, though this is further compounded in patients with
schizophrenia that also have a history of alcoholism (63). Thus, in
schizophrenia, these postural control deficits are present, and can
increase in severity in cases of alcohol abuse.

More recent investigations have used instrumental measures
of balance and quantify body sway. Such measures have a much
higher degree of sensitivity in their ability to detect postural
abnormalities. Postural sway is quantified, and a greater degree of
sway is indicative of poorer postural control. Furthermore, these
instrumental measures also allow researchers to manipulate the
placement of the feet, and whether or not participants complete
the task with their eyes opened or closed. Marvel and colleagues
(64) were the first to use such a measure of balance to investigate
postural control in patients with schizophrenia. This investiga-
tion demonstrated that patients with schizophrenia have deficits
in postural control such that they sway more than controls, though
they did not see any further effects of alcohol use (64). These find-
ings were recently replicated by Kent and colleagues (65), and they
demonstrated that in patients, greater postural sway was associ-
ated with worse general psychopathology symptoms. There was a
similar trend with respect to negative symptoms (such as anhe-
donia). Importantly, in both of these investigations anti-psychotic
medications do not seem to be impacting the findings (64, 65).
The findings of increased sway were also replicated across a het-
erogeneous group of patients with psychosis, including those with
schizophrenia, acute psychosis, and undefined psychotic disorder
(66). It is of note, however, that an additional recent study is not
consistent with these findings (67).

To our knowledge, there has been only one study investigating
postural control in UHR individuals. We recently investigated

whether or not adolescents and young adults at UHR for psy-
chosis show impaired postural control as measured by increased
sway area (1). We found that postural control deficits are indeed
present in UHR individuals. Furthermore, greater sway area was
associated with increased negative symptoms. Finally, we investi-
gated cerebello-cortical networks using resting state connectivity
MRI. Not only were cerebello-cortical networks weaker in the
UHR group relative to the controls, but they were also correlated
with postural sway, providing a link between cerebellar networks
and behavior in this population (1).

Future directions regarding postural control across the psy-
chosis spectrum fall into several key domains. First is the use of
instrumental measures to quantify postural sway. Since Marvel
and colleagues first used this method in patients with schizo-
phrenia (64) there have been several replications. Using such
methods whenever possible provides a more sensitive measure
of postural control, and also allows for better comparison across
investigations. Relatedly, such methods also lend themselves to
more complex statistical analysis techniques, which may yield
additional important information regarding postural control and
schizophrenia, as demonstrated by Kent and colleagues (65). Sec-
ond, additional investigations and replications of our recent find-
ings regarding postural control deficits in UHR populations (1)
are warranted. Follow-ups across disease progression in longi-
tudinal investigations will also be especially informative. Finally,
more direct links with cerebellar structure and function in patient
groups are needed. While there is strong evidence in healthy indi-
viduals and in other clinical populations linking the cerebellum
more directly to cerebellar structure and function (57, 58, 63),
such work is lacking across the psychosis spectrum.

TIMING
The cerebellum has been implicated in timing function across
multiple research domains. Assessments in cerebellar patients
have indicated that these individuals are impaired in both timing
production and perception (68), and more recently, these impair-
ments have been linked more specifically to discontinuous timing
tasks, such as discrete finger tapping (69). Furthermore, functional
neuroimaging methods have also implicated the cerebellum in
timing perception (70, 71). Overall, the cerebellum is thought to
be generally very important in timing, particularly with respect to
precise event timing (72). It has been suggested that the cerebel-
lum is particularly important in timing on the sub-second scale,
and that longer timing intervals (supra-second) are more cogni-
tively mediated, and may be related to the basal ganglia (72). On
the whole the cerebellum is certainly implicated in timing and this
is important for a wide array of motor tasks such as finger tap-
ping and sequence learning. With respect to schizophrenia, there is
evidence to indicate that timing functions, particularly those that
are purported to be cerebellar-dependent are impaired. Here, we
will focus primarily on sub-second timing, as this is most closely
linked to the cerebellum.

Before discussing the timing deficits seen in patients with
schizophrenia, it is important to understand the more common
methods to investigate timing. Broadly speaking, these paradigms
fall into two categories – time perception and production. The
most typical way of assessing time perception is with a temporal

Frontiers in Psychiatry | Schizophrenia November 2014 | Volume 5 | Article 160 | 4

http://www.frontiersin.org/Schizophrenia
http://www.frontiersin.org/Schizophrenia/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bernard and Mittal Cerebellar-motor function in psychosis

bisection task. During a temporal bisection task, participants are
presented with anchor durations that are either long or short.
Then, test durations are presented and participants are asked
to determine if the test duration is closer to the long or short
anchor, and timing variability and temporal precision can be
quantified [e.g., (48)]. Production tasks typically involved fin-
ger tapping using a synchronization–continuation type paradigm.
Participants synchronize their tapping to a tone, and the tone is
then taken away while tapping continues. Tap variability, often
measured as the coefficient of variation, is used to quantify timing
in these paradigms [e.g., (49)]. In both cases, the intervals used
can vary to include both sub- and supra-second timing.

While investigations of timing in schizophrenia are certainly
nothing new, earlier work largely focused on intervals of several
seconds [e.g., Ref. (50–52)], which are thought to be more cogni-
tively demanding, and are less likely to involve the cerebellum.
More recent work, however, has investigated these sub-second
durations in schizophrenia. The first of these investigations was
by Elvevåg and colleagues (73). This study included two tasks, a
temporal bisection task, as well as a temporal generalization task
where participants had to recognize a standard duration. Across
both domains, patients with schizophrenia were impaired with
respect to controls, and importantly, performance was not corre-
lated with working memory abilities, nor was it strongly associated
with general intelligence (73). Davalos and colleagues replicated
these findings even when the time between the anchor and test
durations was varied (74), and similar results are seen with stimuli
in both the auditory and visual domains (75). The patient group
was impaired in both domains, but the impairment was greatest
for the auditory presentation of stimuli. Interestingly, deficits have
also been seen in patients with schizophrenia that have first-rank
symptoms (76). These individuals experience hallucinations and
thoughts that they believe to be under the control of another agent.
The authors suggest that these patients may have a slowed internal
pacemaker such that they experience time differently. However, it
is crucial to note that these differences were not present in patients
without first-rank symptoms (76), though it is possible that such
sub-groups may be driving the effects in other investigations.

As noted above, sub-second intervals are thought to be more
reliant upon the cerebellum, while supra-second intervals rely
upon other neural systems, perhaps the basal ganglia, and are
postulated to be more cognitively demanding (72). While the pri-
mary focus here is on cerebellar-mediated motor behaviors, work
by Carroll and colleagues comparing temporal bisection perfor-
mance on sub- and supra-second durations is worth noting (77).
In this investigation, the patients were impaired in both timing
ranges and the authors suggest that this may be indicative of a
more general timing deficit in schizophrenia (77). There were also
no associations with time deficits and symptomatology. However,
it is worth noting that the sub-second findings not only support
the cerebellar deficits in schizophrenia, the basal ganglia, and pre-
frontal cortex, which are important for more cognitively mediated
tasks, have long since been implicated in schizophrenia (78). Thus,
the longer supra-second durations may be tapping into additional
neural systems that are impacted by the disease.

The majority of timing work has been done using time
perception. In the one study, we know of using a synchronization–

continuation time production task, there are also deficits in
patients with schizophrenia as compared to controls during both
the synchronization and continuation phases (79). During this
task, tapping variability was increased in patients during both task
phases. Furthermore, models of timing indicated that in patients
with schizophrenia the deficit was due to actual deficits in tim-
ing as opposed to task performance or implementation (79). The
motor production aspects of timing production may also come
into play in motor learning tasks that involve timed, sequential
finger movements (please see below).

Across the psychosis spectrum and in UHR individuals there
has been very little work to date on timing. In those at genetic
risk, a timing deficit was found, but this study was limited to
supra-second durations, and similar supra-second deficits are seen
in those with high schizotypy based on the Schizotypal Person-
ality Questionnaire (80, 81). Thus, investigations of sub-second
cerebellar-mediated timing tasks are necessary in UHR popula-
tions. However, sub- and supra-second performance was corre-
lated with schizotypy dimensions (81). Overall, it is clear that
further work is needed in these populations to better understand
cerebellar-mediated timing deficits.

Future directions with respect to timing deficits fall into sev-
eral domains. Most importantly is the need for additional work
using temporal production tasks at the sub-second level in patients
with schizophrenia. Relatedly, there is a general lack of research
on this domain in at-risk populations and across the psychosis
spectrum. Understanding whether or not such sub-second timing
deficits exist prior to the onset of formal psychosis will provide
us important insight as to the range of cerebellar-motor dysfunc-
tion prior to disease. Next, translation of such tasks to the scanner
environment using functional neuroimaging is warranted, as are
investigations looking at associations with regional cerebellar vol-
ume. While studies in individuals with cerebellar damage (69) and
those using functional neuroimaging (70, 71) have implicated the
cerebellum, such measures in schizophrenia and across the psy-
chosis spectrum will further our understanding of the nature of
this timing deficit in patients. Similarly, insightful relationships
with regional cerebellar volume may be gleaned, and indeed Ivry
and Spencer have suggested that there may be regional contribu-
tions of the cerebellum to timing (72). Finally, more work looking
at timing with respect to symptom severity is needed.

MOTOR LEARNING
Motor learning is the process by which individuals learn to use new
tools or devices, and turn novel and perhaps disjointed movements
into fluid performance. Examples include learning to use a new
computer mouse, or putting together a sequence of movements to
shoot a basketball. The process of motor learning recruits a vari-
ety of cortical and subcortical brain regions (82–87), including
the cerebellum. While it is certainly not the case that the cere-
bellum is engaged alone in motor learning, it does seem to be a
key contributor, and investigating motor learning in patients with
schizophrenia and those at UHR may be especially informative for
our understanding of cerebellar–motor dysfunction in psychosis.

There are several different motor learning paradigms that are
most typically used, and they seem to engage slightly different
regions of the cerebellum (88). Motor sequence learning typically
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requires participants to learn a new sequence of finger move-
ments, and both accuracy and reaction time are compared to a
random sequence of button presses. This can be done explic-
itly where the participant knows they are learning a sequence,
or implicitly when a sequence is learned while the participant is
unaware. Mirror-drawing is a form of implicit motor learning
that requires participants to update their movements based on a
mirror-reflection of their movements. Over multiple trials, partic-
ipants are able to accurately trace complex shapes. Pursuit rotor
tasks, which are also implicit, ask participants to track a target
across a track pad using a mouse or joystick. The target is titrated
so that the target moves with varying speed in order to ensure a
standard minimum level of accuracy and time on target is calcu-
lated. Over several trials, the time on target increases, indicative of
learning.

Early work investigating motor learning in schizophrenia was
behavioral in nature. Deficits on a pursuit rotor task were demon-
strated by Schwartz and colleagues (89). Patients with schizophre-
nia spent less time on the target and deficits were exacerbated
by advanced age. Furthermore, these findings were not associ-
ated with medication or other movement abnormalities in the
patient group, though they were weakly related to cognitive abili-
ties. Using an implicit sequence learning task (serial reaction time
task), Green and colleagues investigated motor learning in patients
with schizophrenia (90). While both patients with schizophre-
nia and healthy controls showed overall improvement in reaction
time over the course of the task, the patient group showed less
learning. The authors suggested that this may be due to possi-
ble cerebellar deficits (90). Looking at both implicit and explicit
sequence learning, Pederesen and colleagues found deficits in both
domains relative to controls in those with first-episode schiz-
ophrenia (91). Using mirror-drawing paradigms, patients with
schizophrenia have been shown to have implicit learning adap-
tation deficits (92–94). However, these deficits are often linked to
medications in these patients.

These initial behavioral findings were soon followed up by
neuroimaging investigations using functional, anatomical, struc-
tural, and connectivity methods (95–100). Though the measures
of motor learning varied to some degree, with one exception (100),
the behavioral findings were consistent with prior work indi-
cating deficits in motor learning in patients with schizophrenia.
In addition, these neuroimaging investigations also provide fur-
ther information about what underlying brain differences may be
contributing to these deficits.

Kumari and colleagues (95) showed that there are differential
brain activations when comparing patients to controls, and this
included both the cerebellum and regions in the basal ganglia.
The patients with schizophrenia did not activate these regions,
though they were activated by controls (95). The implication of
the cerebellum is perhaps not surprising, and interesting given
the proposed role of the cerebellum in schizophrenia. Implicit
sequence learning has also been investigated in patients with schiz-
ophrenia using PET (96). The patients showed less learning over
time when compared to the control participants. In the patient
group, the pre-frontal cortex and cerebellum showed differential
correlations with sequence learning, highlighting the importance
of the cerebellum, but also the importance of investigating the

interactions between the cerebellum and pre-frontal cortex. Null
findings with regards to learning and the cerebellum in schizophre-
nia have also been reported (100). Recently, using meta-analysis,
we investigated cerebellar functional activation across a variety
of task domains including motor function (27). The majority
of included motor studies related to finger tapping and motor
sequence learning. While we cannot speak to performance in our
analyses, across these studies we did find that in patients with
schizophrenia cerebellar functional activation was altered relative
to controls during motor tasks, indicating that perhaps patients
with schizophrenia rely upon less efficient cerebellar networks and
processing (27).

As noted above with respect to the findings of Marvel and
colleagues (96) investigating the interactions between the cere-
bellum and cortex is potentially of great interest. One way to do
so is with functional connectivity analyses. These analyses mea-
sure the correlations between the brain signal in different brain
regions. Recently, Kasparek and colleagues (97) investigated motor
sequencing abnormalities with respect to functional connectiv-
ity between the cerebellum and cortex assessed while subjects
were making finger movements (finger-to-thumb opposition).
Motor sequencing was indexed based on the Neurological Eval-
uation Scale (NES). Both patients and controls were assessed
and then divided into those with sequencing abnormalities and
those without, regardless of diagnosis. However, motor sequenc-
ing deficits were more common in the patient group. There were
no differences between patients with schizophrenia and controls
with respect to functional connectivity; but, those with motor
sequencing deficits had lower functional connectivity between
the cerebellum and the motor cortex (101). Though the differ-
ences were not related to diagnosis, given that motor sequencing
deficits were more common in the patient group, this find-
ing is potentially important for understanding motor learning
deficits in schizophrenia, and further highlights the role of the
cerebellum.

Also relying upon the NES measure of sequencing, Hüttlova
and colleagues recently looked at structural connectivity of the
cerebellum using diffusion tensor imaging (DTI) (98). In the
patients with motor sequencing deficits, there was decreased white
matter structural integrity relative to controls in the superior
cerebellar peduncle, which is the primary cerebellar efferent to
the thalamus, whereas in the patients without deficits, differences
relative to controls were seen in the corticospinal tract. This sug-
gests potential sub-groups within schizophrenia related to motor
sequencing, but also further highlights the cerebellum in motor
deficits in this patient population.

Finally, structural MRI has been used with respect to sequence
learning in patients with schizophrenia (99). Volumes of the cere-
bellum and pre-supplementary motor area (SMA) were investi-
gated. First, the only group differences in volume were seen in the
pre-SMA, and in patients volume in this region was correlated with
implicit learning. While it is notable that there were no group dif-
ferences in total cerebellar volume, nor were there any cerebellar-
behavior relationships, the measurement of the entire structure
may be a contributing factor. In sum, across multiple studies, there
seem to be relatively robust deficits in motor sequence learning
and in procedural learning in patients with schizophrenia, and
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Bernard and Mittal Cerebellar-motor function in psychosis

this is supported by meta-analysis (102). Furthermore, there is
at this point at least some evidence linking these deficits to the
cerebellum, along with other liable neural substrates.

Though there has been a good deal of investigation related to
motor learning in patients with schizophrenia, across the psychosis
spectrum this has been investigated less extensively. In schizo-
typal individuals relative to controls, there do not appear to be any
deficits in motor sequence learning, as measured using the implicit
serial reaction time task (103, 104). However, more recently, we
demonstrated procedural learning deficits in UHR patients relative
to controls using a pursuit rotor task (2). Furthermore, learning
was associated with volume of Crus I of the cerebellum. Given
the cognitive functions of this region (4), and its associations with
the pre-frontal cortex (105), this is an especially interesting find-
ing, and may perhaps be related to the differing relationships with
learning seen in the pre-frontal cortex and cerebellum (96). This
may be due in part to the overall difficulty of this task as more
complex motor tasks recruit this region of the cerebellum (106),
though we may also be tapping into cognitive deficits as well.

Future directions in motor learning research across the psy-
chosis spectrum include the further investigation of motor learn-
ing in psychosis spectrum populations. While there have been
some inroads in this domain, further research is clearly warranted.
Additionally, interesting investigations using non-invasive brain
stimulation to the cerebellum have been completed in healthy indi-
viduals (107, 108). This stimulation can influence motor learning
in these healthy individuals, and the impact on motor learning
in patients with schizophrenia or across the psychosis spectrum
may be especially informative. Finally, while there has been a great
deal of work looking at the functional MRI correlates of motor
learning in patients with schizophrenia, inclusion of anatomical
and structural connectivity measures will be especially informa-
tive, both with respect to cerebellar pathology, but also to other
brain regions implicated in motor learning.

Importantly, across all of these domains medication and cogni-
tive deficits may be impacting performance. For example, deficits
in mirror-drawing seem to be largely tied to medication (92–
94), and our recent findings with respect to the cerebellum and
pursuit rotor implicate cognitive cerebellar regions (2). Findings
of cerebellar–motor deficits in at-risk populations where anti-
psychotics are less commonly used indicate that many of these
deficits are not an artifact of medications. However, not all stud-
ies of at-risk groups include only anti-psychotic naïve participants,
and in patient groups, medications may be exacerbating these find-
ings. Similarly, cognitive deficits in patients with schizophrenia
may also be confounding these motor findings as motor perfor-
mance is certainly closely linked to cognitive function [e.g., Ref.
(109, 110)].

Finally, as noted throughout, and with the exception of motor
learning, across most domains evidence directly linking these
motor behaviors to the cerebellum are generally lacking. As such,
the implication of cerebellar dysfunction is relatively indirect. By
combining these motor measures with neuroimaging techniques
we can better investigate the cerebellum in psychosis. Impor-
tantly, by combining these behavioral measures with measures of
cerebellar volume or function, we can more effectively establish
whether or not these behaviors may serve as markers of disease,

and in clinical high-risk populations, they may serve as predic-
tive biomarkers, as recently suggested by Bolbecker and colleagues
(52). However, the cerebellum is a relatively large structure that
is involved in both motor and non-motor behaviors (34, 35). An
understanding of the cerebellar functional topography (4, 111) is
important when considering the structure and its role in disease. It
is important to consider the regional and functional organization
within the cerebellum when looking to link the structure to overt
motor deficits seen across the psychosis spectrum.

CEREBELLAR FUNCTIONAL TOPOGRAPHY
Beginning in the mid 1980s, investigators began speculating about
the non-motor role of the cerebellum (28–31, 112). Investiga-
tions in non-human primates provided additional support for this
notion. Using viral tract tracing methods, distinct tracts connect-
ing pre-frontal and primary motor regions of the cortex to the
cerebellum were revealed (113–116). These closed-loop circuits
provide topographically segregated connections with the cerebral
cortex. Specifically, the anterior aspects of the cerebellum (largely
lobule V, but also lobules IV, and VI) along with a region in the
inferior posterior cerebellum (lobules VIIIa and VIIIb) were con-
nected to the primary motor cortex. Conversely, lateral aspects of
the cerebellum (Crus II) were connected to the pre-frontal cor-
tex (113). Similar motor and pre-frontal dissociations were seen
in the dorsal and ventral aspects, respectively, of the cerebellar
dentate nucleus (115).

More recently, using both structural (DTI) and functional con-
nectivity neuroimaging (fcMRI) methods, a parallel topography
of connections has been demonstrated in the human brain as
well. fcMRI has revealed comparable distinct motor and cogni-
tive networks in the cerebellar hemispheres at rest, based on the
correlation between the resting state brain signal in these regions
(117–119), and the dorsal and ventral dentate distinction was
also replicated in humans using this methodology (120). How-
ever, distinct cerebello-cortical networks go beyond just a general
motor/pre-frontal (non-motor) distinction. By investigating the
resting state cerebello-cortical networks of individual cerebellar
lobules, Bernard and colleagues showed that on a lobular level,
the cerebellum is uniquely coupled with distinct cortical regions,
resulting in distinct networks (105). Further support for multiple
distinct motor and non-motor cerebellar networks comes from the
work of Buckner and colleagues (121) (Figure 1A). They created
a cerebellar parcelation based on coupling with multiple cortical
resting state networks of the cortex. Finally, DTI has demonstrated
distinct white matter tracts connecting the cerebellum and the cor-
tex, that nicely parallel non-human primate literature (122). Thus,
the cerebellum has distinct motor and non-motor closed-loop
circuits with the cerebral cortex.

While the dissociable structural and functional motor and non-
motor connections between the cerebellum and the cerebral cortex
provide evidence for a topographically distinct functional organi-
zation in the cerebellum, there is also additional evidence from
lesion studies and functional neuroimaging. The notion of a cog-
nitive affective syndrome due to damage in the posterior lobe of
the cerebellum was initially described by Schmahmann and Sher-
man (31). More recently, several investigations by Stoodley and
colleagues (4, 111, 124) using both meta-analysis and functional
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Bernard and Mittal Cerebellar-motor function in psychosis

FIGURE 1 | (A) A lobular summary of resting state connectivity (left: coronal,
right: sagittal) analyses conducted in humans, shown for the right cerebellar
hemisphere, and concatenated across several studies (105, 121). Lobules of
the right hemisphere are labeled, and general connectivity patterns are listed.
The cerebellar vermis, made up of mid-line lobular aspects analogous to the
hemispheres was not included, but distinct connectivity patterns, comparable
to those seen in their hemispheric counterparts, have been reported (105).
(B) A summary of the cerebellar functional topography presented on coronal

slices (left to right, posterior to anterior), as demonstrated in humans using
meta-analysis (4, 123) as well as functional neuroimaging (111) is provided.
Verbal and spatial processing is differentially lateralized, and motor and
non-motor processing patterns are relatively consistent with cerebellar
sub-regions that are associated with motor and non-motor cortical regions,
respectively. Motor activation was largely localized to the right hemisphere,
given that only right handed individuals were included in these investigations.
CRI, Crus I; CRII, Crus II; DMN, default mode network; PFC, pre-frontal cortex.

neuroimaging indicate that in addition to the closed-loop circuitry
of the cerebellum, there is also a distinct topography of func-
tional activation across different task domains (Figure 1B). That
is, tasks such as working memory and motor tapping result in
activations in distinct cerebellar regions. Likewise, language and
spatial processing are lateralized as in the cortex (4, 111), and there
is some evidence of a unique area active when processing emo-
tion (4). Even within the anterior cerebellum, there appear to be
sub-regions associated with distinct types of motor behavior and
learning (88). Finally, in healthy individuals, regional cerebellar
volume is also associated with individual differences in behavioral
performance on motor and cognitive tasks in regionally specific
ways (58). Importantly, there is increasing evidence to indicate
that the cerebellum is processing non-motor information in many
of these higher order cognitive tasks (125), and that cerebellar
contributions are necessary for effective task performance, and
not just an artifact of the structure’s connections with the cerebral
cortex (33). Given the diverse functional contributions of the cere-
bellum and the topographical nature of the activation associated
with these task domains, the potential benefits of more targeted
regional investigations are clear. Distinct cortico-cerebellar circuits
and cerebellar regions may be differentially impacted in the disease
state, and consideration of this putative regional variability may
provide additional clarity for our understanding of the cerebel-
lum in psychosis. Not only might this provide key insights into the
motor deficits seen in schizophrenia and psychosis-risk, but it may
also shed light on the various cognitive deficits that accompany the
disorder.

REGIONAL CEREBELLAR INVESTIGATIONS
Converging evidence indicates that there are distinct functional
sub-regions within the cerebellum making up a functional topog-
raphy within the structure. Furthermore, the sub-regions of the
cerebellum are part of distinct motor and non-motor cortical cir-
cuits. As such, when investigating the cerebellum it is important to
consider the structure regionally. Making up approximately 10%
of the total brain volume, the cerebellum is especially large to
be considered as a whole. Its size, coupled with the known func-
tional sub-regions call for a more fine-grained approach. It may
be that sub-regions of the cerebellum are differentially impacted
in the disease state. Not only would this approach provide impor-
tant insight into the cerebellum across the psychosis spectrum,
but it would also allow for comparisons across psychopathology.
Cerebellar morphological differences with respect to controls have
been observed in both depression and bipolar disorder (126–129).
Understanding whether or not individual sub-regions or lobules
are impacted differently across disease types will increase our
understanding of the cerebellar contributions to psychopathology.

Post-mortem investigations provided some of the first evidence
to indicate that there are cerebellar morphological differences in
patients with schizophrenia with respect to controls. Differences
when compared to controls have indicated reduced gyrification
in the cerebellar vermis in patients (130), decreased neuronal
integrity in patients, also in the cerebellar vermis (131), and there
is a decrease in Purkinje cell (one of the main cerebellar cell
types) density (fewer Purkinje cells) in patients with schizophre-
nia, as compared to controls (132). However, these results have
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Bernard and Mittal Cerebellar-motor function in psychosis

been somewhat mixed with some groups showing no differences
in patients relative to controls (133–135). These mixed findings
may be because cerebellar deficits are specific to certain sub-
types of schizophrenia as suggested by Lohr and colleagues (133),
though regional sampling (or lack thereof) may also come into
play in these investigations. Despite the mixed results, this work
has provided important insights into the cerebellum in schizophre-
nia, particularly with respect to the underlying cytoarchitectonic
pathology. That is, any possible volumetric differences seen using
neuroimaging may be due to the decreased neuronal integrity and
smaller number of Purkinje cells revealed in these post-mortem
investigations. However, one weakness in this method is the fact
that in at-risk populations (both genetic and UHR), there is a lack
of post-mortem data as these individuals are typically quite young.
Thus, we can only make inferences regarding cerebellar cytoarchi-
tecture in these populations, and are reliant upon neuroimaging
research.

Thanks to in vivo neuroimaging methods, there is increasing
evidence to indicate that there are morphological differences in the
cerebella of patients with schizophrenia, and there is an emerging
literature indicating this in psychosis-risk as well (both UHR and
genetic). However, the results thus far are relatively mixed [for a
review, see Ref. (28)]. That is, in some cases, patients with schiz-
ophrenia have larger cerebellar volumes than controls, whereas
in other cases, cerebellar volume in patients is decreased with
respect to controls [cf. (28)]. Subsequent to the review of Shenton
and colleagues, additional mixed findings with respect to cerebel-
lar volume in schizophrenia have been revealed (136–142). The
majority of these studies were methodologically similar in that
they looked at the cerebellar hemispheres as a whole, and also
investigated the vermis, which was often further subdivided into
vermal sub-regions. The most consistent differences were found
in the vermis across studies (136, 140), and the more detailed
approach taken to investigating the vermis may be a contribut-
ing factor. The literature on the cerebellum in those at-risk for
psychosis (UHR and genetic risk) is much smaller than that in
schizophrenia, but the mixed findings persist (2, 142–144). How-
ever, they did differ methodologically, largely relying upon whole
brain methods to assess gray matter. While this is not an exhaus-
tive list of investigations of the cerebellum in schizophrenia and
psychosis-risk, it is clear that the results are mixed, and while differ-
ences in study inclusion factors and subject age may contribute, we
suggest that the gross measures of cerebellar volume, particularly
in the hemispheres are a contributing factor.

Assessments of the cerebellum taking regional approaches are
certainly the exception to the rule, and the few cases where these
approaches have been used have provided interesting results. In
a relatively small sample (n = 19), Loeher and colleagues (141)
traced individual cerebellar lobules and found volumetric differ-
ences in the vermis. In childhood-onset schizophrenia, siblings,
and healthy controls, Greenstein and colleagues also investigated
cerebellar sub-regions (142). Though they did not look at individ-
ual lobules, they did subdivide the cerebellar hemispheres based
on anatomical boundaries, providing increased detail relative to
whole hemisphere analyses. In this study, the patients with schiz-
ophrenia (n = 94) had smaller anterior cerebellar volume, as well
as smaller vermis volume when compared to controls, and they
also showed differing developmental volumetric trajectories with

respect to controls. Though the siblings of the patients did not dif-
fer in their regional cerebellar volumes from controls at baseline,
they did show differing regional volumetric trajectories during
longitudinal assessments (142). The detailed approaches taken
here, along with the large sample size provide important insights
with respect to cerebellar volume across the schizophrenia spec-
trum, and indicate that cerebellar sub-regions may be differentially
impacted. As discussed above, Edwards and colleagues (43) inves-
tigated the anterior and posterior cerebellum with respect to eye-
blink conditioning. They found smaller anterior cerebellar volume
in patients with schizophrenia, and though there were no signifi-
cant correlations with behavior in the patient group, the relation-
ships were in the opposite direction as compared to controls. The
authors as a result suggested that there may be altered structure–
function relationships in schizophrenia with respect to the cere-
bellum and eye-blink conditioning (43). Using automatic lobular
segmentation methods (58) we recently demonstrated that there
are regional lobular differences in UHR adolescents and young
adults (2). The anterior cerebellum and Crus I differed between
the patient group and age-matched healthy controls, as did the
vermis, though lobule X did not differ. Though this study was
focused on specific cerebellar lobules, this provides further pre-
liminary evidence that regional cerebellar volumetric differences
may be present prior to the development of psychosis, and as we
continue to longitudinally investigate these individuals, we will be
able to investigate their volumetric trajectories over time. Finally,
an intriguing new study looking at modularity of the cerebellum
using DTI, indicates that the modular organization of the cerebel-
lum is altered in schizophrenia (145). This finding further under-
scores the importance of regional approaches, as the functional
architecture of the cerebellum seems to differ in schizophrenia
(93), and these structural findings may underlie this (145).

It is clear that cerebellar-mediated motor behaviors are
impacted in patients with schizophrenia, and across the psychosis
spectrum. There are also cognitive deficits that may be linked, at
least in part, to the cerebellum. From a morphological or network
perspective, the contributions of the cerebellum are better under-
stood by investigating this structure regionally. This may provide
key insights into both the motor and cognitive deficits experienced
by patients with schizophrenia and psychosis-risk groups. In the
work summarized above, though the cerebellum is implicated in
these motor deficits, direct links between morphology and perfor-
mance are generally lacking. By taking a regional approach, specific
hypotheses with respect to the cerebellum and motor performance
can be defined and tested to better understand cerebellar-motor
deficits across the psychosis spectrum. Applying this approach to
procedural learning in UHR populations, we demonstrated that
volume of Crus I in at-risk individuals was positively correlated
with procedural learning (2). Interestingly, this motor task was
associated with a more cognitive region of the cerebellum, suggest-
ing that cognitive circuits, which are implicated in complex motor
tasks (106) are perhaps also implicated in the cerebellar-motor
deficits seen across the psychosis spectrum. Future investigations
including regional measures of cerebellar volume with respect to
motor deficits are warranted, and will likely provide important
insights into the involvement of this structure in the disease state.

Most importantly, it is now much easier to investigate the cere-
bellum, especially morphology, on a lobular basis. While in the
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past such detailed analyses would require precise hand tracing of
individual cerebellar lobules requiring large amounts of time and
multiple raters, several recent studies have presented automatic
lobular segmentation methods (58, 146, 147). These methods
allow for investigators to easily compute lobular cerebellar vol-
umes, and can be applied to large clinical samples, eliminating
much of the methodological challenge associated with hand trac-
ing. Bernard and Seidler (58) used the lobular delineations and
masks originally created by Diedrichsen and colleagues as part of
the SUIT atlas (148, 149). We successfully applied these methods
in an investigation of adolescents and healthy controls at ultra-
high risk for psychosis (2), demonstrating their utility in clinical
populations, and providing important information about both
regional cerebellar volume as well as motor learning in this pop-
ulation. Similarly, the lobular delineations available in the SUIT
atlas can be used as starting seed regions for resting state con-
nectivity analyses (1, 105, 150), and such analyses have revealed
interesting differences and associations between lobular cerebel-
lar connectivity, postural control, and symptom severity in UHR
individuals (1). Finally, these regions may also serve as useful
starting points for DTI analyses. Salmi and colleagues looked
at cerebello-thalamo-cortical white matter networks in healthy
adults (122), and similar analyses across the psychosis spectrum
would be beneficial to our understanding of the role of the cere-
bellum in motor deficits, as well with respect to the disease state
more generally.

CONCLUSION
A range of cerebellar-mediated motor tasks are impacted across the
psychosis spectrum. Such motor impairments are present prior to
disease onset, and may serve as a marker for pre-morbid cere-
bellar dysfunction. However, to date, direct links between these
motor impairments and cerebellar morphology and/or cerebello-
cortical networks have generally been lacking. In part, this may
be due to standard approaches that treat the cerebellum as a func-
tionally homogenous brain structure, though converging evidence
indicates that there are distinct motor and non-motor functional
regions within the cerebellum [e.g., Ref. (16, 23, 34, 90)]. Thus, we
suggest that more specific topographically informed approaches
to investigating the cerebellum (particularly with respect to cere-
bellar morphology and cerebello-cortical networks) across the
psychosis spectrum will yield informative results with respect to
the involvement of the cerebellum in psychosis. Such analyses will
provide important information with respect to motor dysfunc-
tion, and they also may shed light on mixed findings with respect
to cerebellar morphology. Furthermore, such an approach may
provide additional insights into cognitive deficits experienced by
these patient groups. That is, regional volume or functional dif-
ferences may be limited to sub-regions of the cerebellum, and
investigations of the structure as a whole may have masked these
important findings. A better understanding of regional cerebellar
morphological and functional differences will indicate whether or
not there are more global or local cerebellar deficits in psychosis.
Cerebellar-mediated movement abnormalities may be an overt
manifestation of a more general cerebellar deficit, and regional
analyses will allow this to be tested more directly. However, it is
of note that these insights will be on a macro-structural level and
potential underlying cellular differences and cellular contributions

to pathophysiology are not assessed with these volumetric tech-
niques. Computational models with respect of cerebellar cytoar-
chitectonics may be especially informative in that domain. Finally,
regional approaches to investigating the cerebellum and cerebellar-
motor abnormalities across disorders will allow for important
comparisons resulting in a better understanding of the cerebellum
across disorders.
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