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Comorbidity is a major issue in psychiatry that notably associates with more severe symp-
toms, longer illness duration, and higher service utilization. Therefore, identifying key
clusters of comorbidity and exploring the underlying pathophysiological mechanisms repre-
sent important steps toward improving mental health care. In the present review, we focus
on the frequent association between addiction and depression. In particular, we summarize
the large body of evidence from preclinical models indicating that the kappa opioid recep-
tor (KOR), a member of the opioid neuromodulatory system, represents a central player
in the regulation of both reward and mood processes. Current data suggest that the KOR
modulates overlapping neuronal networks linking brainstem monoaminergic nuclei with
forebrain limbic structures. Rewarding properties of both drugs of abuse and natural stim-
uli, as well as the neurobiological effects of stressful experiences, strongly interact at the
level of KOR signaling. In addiction models, activity of the KOR is potentiated by stressors
and critically controls drug-seeking and relapse. In depression paradigms, KOR signaling
is responsive to a variety of stressors, and mediates despair-like responses. Altogether,
the KOR represents a prototypical substrate of comorbidity, whereby life experiences con-
verge upon common brain mechanisms to trigger behavioral dysregulation and increased
risk for distinct but interacting psychopathologies.

Keywords: kappa opioid receptor, place conditioning, reward, addiction, anhedonia, depression, comorbidity,
animal models

INTRODUCTION
Addiction and depression are chronic relapsing disorders with dev-
astating consequences for individuals and their social environment
(1). Chronic exposure to drugs of abuse, as well as prolonged
abstinence from these drugs, is strongly associated with lowered
mood and a negative affective state. Conversely, in some individu-
als, depressed mood potently drives the consumption of euphoric
psychoactive substances, a process referred to as self-medication.
Accordingly, epidemiological studies have clearly demonstrated
a marked comorbidity between addiction and depression (2, 3).
This comorbidity is accompanied by greater functional disabil-
ity, longer illness duration, less social competence, and higher
service utilization. Therefore, understanding pathophysiological
mechanisms underlying comorbidity has important therapeutic
implications.

The present review will discuss numerous lines of evidence
that have accumulated to document the kappa opioid recep-
tor (KOR) as an important substrate in comorbidity between
addictive and depressive disorders. The KOR belongs to the opi-
oid system, a neuromodulatory system that is widely expressed
throughout the central and peripheral nervous systems. The opi-
oid system is composed of three G protein-coupled opioid recep-
tors: mu (MOR), delta (DOR), and kappa (KOR), which under
physiological conditions are activated by a family of endogenous

peptides to inhibit neuronal activity. Among opioid peptides,
dynorphins (encoded by the Pdyn gene) primarily activate the
KOR and have very low affinity for MOR or DOR. Conversely,
the other opioid peptides (endorphin and enkephalins) poorly
interact with the KOR. Therefore, the dynorphin/KOR signaling
pathway forms a distinct process within the opioid system (4, 5).

Opioid receptors tightly regulate motivational processes, and
are identified as important players in psychiatric disorders char-
acterized by reward dysfunction, such as addiction and depression
(6, 7). Several exhaustive reviews have recently summarized data
on the role of MOR and DOR in these disorders, and will be
briefly mentioned when appropriate (6, 8–11). Our goal is to
provide the reader with a historical and neuro-anatomical per-
spective on where, when, and how KORs are recruited in rodent
models of addiction and stress-related psychopathology (12–16).
First, we will summarize how the KOR progressively emerged as
an anti-reward system that encodes dysphoria and limits motiva-
tional properties of drugs of abuse. Secondly, we will show that
the KOR is recruited and activated during stressful experiences,
thereby contributing to the emergence of depressive states (10, 17,
18). Finally, we will discuss two main aspects of how these roles
of KOR in addiction, stress-related behaviors and depression have
important implications for the understanding of comorbidity. On
one hand, we will show that stress-induced recruitment of KOR
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signaling is a potent trigger of drug-seeking and relapsing behav-
iors. On the other hand, we will summarize data on KOR function
in the particular context of depressive-like behaviors that emerge
during chronic exposure to drugs of abuse, as well as during drug
abstinence (19–21).

As a pathophysiological substrate of comorbidity, the KOR rep-
resents a promising pharmacological target (10, 18). Clinical trials
are currently on-going to assess KOR antagonists as a treatment for
depression (22), in particular in the context of addicted patients
suffering from comorbid depressive conditions (23, 24). Build-
ing on rodent studies, we will discuss the potential of therapeutic
strategies targeting the KOR.

KAPPA OPIOID RECEPTOR: AN ANTI-REWARD, DYSPHORIC
SYSTEM
Interest in KOR pharmacology historically stemmed from the hope
of developing analgesic compounds devoid of the classical abuse
potential of MOR agonists, such as morphine. Unfortunately, early
human studies exploring properties of KOR agonists reported
potent dysphoric and psychomimetic effects (25, 26). While these
results clearly decreased the therapeutic potential of KOR in the
treatment of pain, they also urged preclinical researchers to explore
these intriguing dysphoric effects.

Activation of the MOR is known to induce euphoria in
human, and to produce reinforcement in animal models. There-
fore, researchers hypothesized that MOR and KOR may have
opposite effects in the regulation of motivational processes, poten-
tially through the modulation of common neuronal pathways.
This framework was initially explored using conditioned place
preference (CPP) or conditioned place avoidance (CPA). In this
Pavlovian conditioning paradigm, a drug is repeatedly paired with
a set of environmental stimuli that progressively acquire posi-
tive (CPP) or negative (CPA) motivational properties. Following
repeated conditioning sessions, the animal subsequently exhibits
preference or avoidance on re-exposure to the environmental stim-
uli (in the absence of the drug), a behavior that depends on
learning, motivational, and hedonic mechanisms. The seminal rat
study by Shippenberg and Hertz (27) reported that, as hypoth-
esized, systemic administration of the KOR agonist U69593 or
morphine yielded opposite effects, respectively producing CPA
and CPP. While morphine-induced CPP reflects its reinforcing
properties, KOR-induced CPA suggested that this receptor might
be an anti-reward mechanism that contributes to a bi-directional
regulation of motivation and hedonic tone.

The next step was to investigate underlying neurochemical sub-
strates, with early studies exploring how the KOR may regulate
the mesolimbic pathway (Figure 1). This pathway is composed
of dopaminergic (DA) neurons that are located in the midbrain
ventral tegmental area (VTA) and project to forebrain limbic
structures, including the ventral striatum [or nucleus accumbens
(NAc)] and prefrontal cortex (PFC). Animal and human data have
clearly demonstrated that drug addiction (and mood disorders,
see Part 2) associate with major disruptions of the brain’s DA
reward circuitry (28), which normally acts to predict and encode
the salience of environmental stimuli and natural rewards. The
now classical “unitary” theory of addiction postulates that essen-
tially all drugs of abuse enhance DA transmission in the NAc, an

FIGURE 1 | A simplified scheme of neuronal circuits implicated in the
regulation of reward (green) and stress (orange), which are both
modulated by dynorphins and the kappa opioid receptor (KOR).
KOR-mediated inhibition of ventral tegmental area (VTA) dopaminergic
neurons projecting to the prefrontal cortex (PFC) is responsible for
dysphoria and conditioned place aversion (13, 27, 33). Dynorphinergic
medium spiny neurons, located in the nucleus accumbens (NAc) and
expressing D1 dopamine receptors, send axonal projections back to the
VTA (36), further supporting the importance of KOR in dopamine
modulation and as an anti-reward agent. In addition, stressful experiences
trigger widespread corticotropin releasing factor (CRF) release in the central
nervous system (37), leading to dynorphin release and KOR
phosphorylation, notably in the dorsal raphe nucleus (DRN) (38) and locus
coeruleus (LC) (39). Stress-induced signaling events have been extensively
characterized in the DRN, where activation of KOR stimulates G
protein-coupled inwardly rectifying potassium channels [GIRK, see in Ref.
(40)] and phosphorylation of the p38α kinase, in turn leading to translocation
of the serotonin reuptake transporter to the plasma membrane and
increased 5-HT reuptake (14). Similar stress-induced activation of KOR has
also been documented at the level of the NAc, which appears to be the site
where SERT translocation occurs (16). Available evidence also suggests
that KOR regulation of 5-HT and DA neurotransmissions converge at the
level of the NAc (red arrows), with important implications for comorbidity
(see text for details). Further, recruitment of KOR signaling during stressful
experiences has been shown: (i) in the amygdala, to potentiate conditioned
place preference for drugs of abuse (20), and (ii) in the DRN (14) and LC
(39), to mediate reinstatement of drug-seeking. KOR-dependent modulation
of monoaminergic pathways has important implications for mood
regulation. Systemic treatments with KOR agonist and antagonist have pro-
and antidepressant-like effects, respectively. KOR activation locally in the
NAc is sufficient to achieve a prodepressant-like effect (41–45), while
knock-down of dynorphins in the NAc has opposite effect (46). Recently,
hypocretin (blue) and dynorphin/KOR systems in the hypothalamus (Hyp)
have been shown to stimulate and inhibit VTA DA neurons, respectively (47,
48). Avenues for future investigations include the identification of: (i) the
signaling events following KOR activation in the LC and VTA; (ii) the brain
regions receiving innervation from amygdala (Amy) and LC KOR-positive
neurons; (iii) the brain sites where CRF acts to stimulate dynorphinergic
neurons, and (iv) the neurochemical identity and projections targets of VTA
neurons expressing hypocretin receptors. Altogether, data indicate that the
KOR inhibits the activity of all three monoaminergic centers at multiple
sites, thereby critically controlling their interactions in rodent models of
addiction, depression, and dual diagnosis.
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effect that is central to their rewarding properties (29). Within this
line, many studies have consistently shown that acute reinforcing
effects of morphine rely on disinhibition, i.e., the activation of DA
neurons. This disinhibition occurs through the activation of MOR
expressed by GABAergic interneurons located mainly in the tail of
the VTA [tVTA, or RMTg, see in Ref. (30, 31)], but also in the VTA
and NAc (32). In contrast, decreased DA signaling was hypothe-
sized to be responsible for the encoding of KOR-mediated aversion.
Using microdialysis, Spanagel and colleagues (33) showed that DA
release in the NAc was decreased by infusion of a KOR agonist
into the NAc, but not into the VTA (pharmacological agents used
in every study discussed in the present review are summarized in
Tables 1–3). In addition, infusion of a KOR antagonist (nor-BNI)
into the NAc increased DA release, suggesting that dynorphins ton-
ically reduce DA neurotransmission in this region. The most com-
pelling evidence implicating DA neurons in KOR-induced aversion
came recently (12) from the use of genetically modified mice using
the Cre-lox recombination system (34). Bals-Kubik et al. took
advantage of a knockin mouse expressing the Cre-recombinase
under transcriptional control of the endogenous promoter of the
DA transporter [DAT, a specific marker of DA neurons (35)]. These
mice were bred with another knockin mouse harboring a condi-
tional “floxed” KOR allele, thereby achieving the specific deletion
of KOR in DA neurons (DAT KOR-cKO). At the behavioral level,
KOR-induced CPA was abolished in DAT KOR-cKO mice, and
restored upon virally mediated KOR re-expression in theVTA (12).

In parallel, investigators undertook a brain-wide analysis of
regions where recruitment of the KOR may potentially encode
aversion. The effect of local KOR activation was assessed in several
areas using the CPA paradigm (49). Infusion of the KOR agonist
U50,488H in the NAc was sufficient to induce a robust CPA, con-
sistent with the notion that KOR activation in this region decreases
DA release. Surprisingly, infusions in the PFC, lateral hypothala-
mus, and VTA (but not in the substantia nigra and dorsal striatum)
had similar effects, suggesting that multiple KOR pools may regu-
late motivation and hedonic tone. These results also indicate that
activation of VTA KOR induces CPA in the absence of any change
in NAc DA release [see aforementioned neurochemical data (33)],
implying the involvement of another brain region receiving DA
innervation (i.e., the PFC, see below). In addition to the regulation
of DA transmission, KOR expression and function is now under
investigation in many other brain regions using rodent assays rele-
vant to reward and mood [e.g., bed nucleus of the stria terminalis,
BNST, amygdala, locus coeruleus (LC), see below].

An important next goal was to identify which neuronal cell
types are controlled by the KOR. Electron microscopy approaches
(50, 51) found that in the NAc, half of the axons that were
KOR-immunoreactive also expressed DAT. Interestingly, this study
found that almost one-third (29%) of these KOR-immunoreactive
axons were DAT-negative but contacted pre-synaptic terminals of
DAT-positive neurons, suggesting that the mesolimbic pathway is
regulated at the level of the NAc by afferent neurons expressing
the KOR. Based on recent evidence (16), it is likely that non-
DAergic KOR-positive neurons are, at least in part, serotonergic
(5-HT). Possibly, KORs expressed by 5-HT neurons may medi-
ate DA/5-HT crosstalk in the NAc, and represent a mechanism
that contributes to interactions between mood and reward, as well

as between addiction and depression (see below). At the level of
the NAc (52), there is also evidence for KOR-dependent modu-
lation of glutamate release, suggesting that this receptor may be
expressed pre-synaptically by glutamatergic cortical neurons that
densely innervate the NAc. To our knowledge, the behavioral rel-
evance of the latter KOR pool has not been addressed. Finally,
in the PFC (53), the KOR was mainly located on pre-synaptic
terminals, likely corresponding to DAergic inputs, although the
neurochemical identity of these neurons was not assessed.

Other investigators used electrophysiology and immunohis-
tochemistry to identify KOR-expressing neurons. Application of
a KOR-selective agonist in the VTA decreased spontaneous fir-
ing activity of a sub-group of neurons (54). This KOR-mediated
inhibition only occurred in DA cells, as indicated by immunore-
activity for tyrosine hydroxylase (the rate limiting enzyme for DA
synthesis, and another marker of DA neurons). Electrophysiol-
ogy, retrograde tracing and microdialysis were then combined to
assess whether DA neurons projecting either to the NAc or to
the PFC are differentially regulated by the KOR (55). These ele-
gant experiments revealed that local KOR activation in the VTA
hyperpolarized PFC-targeting DA neurons, but had no effect on
NAc-targeting DA neurons. Accordingly, DA release was reduced
in the PFC, but not in the NAc, upon VTA KOR activation.

Overall these results are consistent with previous CPA and
microdialysis studies, and suggest a model whereby VTA KORs do
not control NAc DA tone but rather modulate DA release in the
PFC to produce CPA. The previously described DAT KOR-cKO
mice recently provided strong evidence for the latter hypothe-
sis. Tejeda et al. found that infusion of a KOR agonist in the
PFC decreased DA overflow in wildtype (WT) but not in DAT
KOR-cKO mice (13), confirming KOR-mediated control of DA
transmission in the PFC. Importantly, the authors then directly
tested the behavioral relevance of PFC KORs for dysphoria in rats.
Infusion of a KOR antagonist into the PFC was sufficient to prevent
KOR agonist-induced CPA, clearly identifying the limbic cortex as
a necessary substrate for this behavioral effect.

Collectively, results from these various methodological
approaches also suggest that NAc-projecting DA neurons express
KOR in pre-synaptic terminals, but not in soma and dendrites
(33), while PFC-projecting DA neurons express KOR in both com-
partments (13, 54, 55) (Figure 1). At the molecular level, it is
currently unknown how DA neurons may control KOR trafficking
to distinct cellular compartments as a function of their projection
targets. We speculate that the type of electrophysiological feedback
(excitatory from the cortex, inhibitory from striatal medium spiny
neurons) provided to the VTA by each region may be implicated.
Alternatively, cell-autonomous processes might be involved, with
distinct transcriptomic profiles in NAc- and PFC-projecting DA
neurons leading to distinct KOR post-translational modifications
and trafficking. To experimentally address the latter hypothe-
sis, technological advances now allow researchers to distinguish
transcriptomes from neuronal populations sharing a common
cell-body location but with distinct projections (56). Alternatively,
retrograde tracing may be coupled with knockin reporter mice
expressing opioid receptors in fusion with fluorescent proteins
[such mice are currently available for mu and delta, but not kappa,
opioid receptors (57, 58)].
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Activity of the dynorphin/KOR pathway on DA neurotransmis-
sion and in CPA has obvious implications for addiction-related
behaviors, as observed for a variety of drugs of abuse in self-
administration paradigms [see in Ref. (59) for an exhaustive
review]. KOR agonists dose-dependently decrease morphine self-
administration in rats and mice (60, 61). Similar inhibitory effects
of KOR activation were found for ethanol (62–64), cocaine (61,
65–68), nicotine (69), and cannabis (70), and these were associ-
ated with reduced drug-induced DA release (for example, cocaine,
see in Ref. (71); ethanol, see in Ref. (72)). Globally, these results
provide robust evidence for an inhibitory effect of KOR on the
rewarding effects of drugs of abuse, and recent findings sug-
gest that natural rewards, such as social interactions, may also be
affected. In prairie voles, a monogamous rodent species, mainte-
nance of mating pair bonds relies on the expression of aggressive
behaviors toward novel conspecifics. Interestingly, this form of
“social aversion” has been shown to be mediated by KOR signaling
within the NAc (73). In rodents, social play represents a highly
studied, naturally occurring behavior that recruits DA neurons
and triggers potent reinforcement. Systemic activation of KOR
decreased social play in both rats (74, 75) and mice (76). These
findings are relevant to our understanding of depression in human
as anhedonia, or the altered perception of rewarding properties of
everyday-life stimuli (including social interactions), is a hallmark
of this condition. Therefore, while KOR-dependent modulation of
DA and reward was initially conceptualized and explored in addic-
tion paradigms, it is now becoming clear that it also has strong
implications for mood disorders (17, 18). CPA reflects the inter-
action of several neurobiological mechanisms, corresponding to
three psychological constructs: learning, motivation, and hedonia.
Intra-cranial self-stimulation (ICSS) is another paradigm assess-
ing these three aspects: in this operant conditioning, animals learn
to self-administer brief electrical pulses into specific brain regions
(usually the medial forebrain bundle (77)). Systemic activation of
KOR was found to induce an anhedonic-like state in ICSS, as indi-
cated by increased stimulation threshold (78). In the latter work,
the stimulation electrode was placed in the lateral hypothalamus,
strengthening previous evidence for KOR-dependent regulation
of hedonic state occurring outside the NAc (49). Further, Potter
et al studied the kinetics of KOR agonist-induced ICSS modula-
tion following acute and repeated injections (79). The KOR agonist
Salvinorin-A increased the stimulation threshold, and this acute
effect persisted with daily injections over an 8-day period. Inter-
estingly, repeated injections also triggered delayed and opposite
effects, as evidenced by decreased ICSS stimulation threshold 24 h
post-injection, suggesting that opponent processes (80, 81) had
developed.

The neuronal pathway potentially linking hypothalamic KOR
activity with DA transmission and reward has been poorly studied.
Recent elegant data using electron microscopy, electrophysiol-
ogy, ICSS, and cocaine self-administration (47, 48), suggest an
antagonistic interplay between orexin and dynorphin peptidergic
systems. The hypocretin/orexin system is composed of neurons
originating in the lateral hypothalamus and projecting to several
mesolimbic structures (82). Importantly, orexin and dynorphin
were found to act as co-transmitters in neurons of the hypo-
thalamus (47): the two peptides co-localize in synaptic vesicles,
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and are co-released upon electrical hypothalamic stimulation. The
authors further showed that orexin and dynorphin act within
the VTA to stimulate and inhibit, respectively, the excitability of
DA neurons, thereby bi-directionally modulating reward (in ICSS
experiments), and self-administration of cocaine (and potentially
other drugs of abuse). In the VTA, most cells (65%) were found
to be common targets for both orexin and dynorphin. Based on
previous evidence, future experiments may test the hypothesis
that VTA DA neurons expressing both KOR and orexin receptors
project preferentially to the PFC rather than the NAc.

Overall, data on KOR function in the regulation of reward high-
lights the importance of assessing the full spectrum of peptides
and neurotransmitters expressed along the mesolimbic pathway
and associated neuronal circuits. Determining how this network
dynamically evolves under chronic pathologic conditions will be
an exciting endeavor.

KAPPA OPIOID RECEPTOR: A STRESS SYSTEM IMPLICATED
IN DEPRESSION PATHOPHYSIOLOGY
In parallel to these studies on reward, recent data have demon-
strated that the KOR also controls emotional responses, in par-
ticular during stressful experiences. Pharmacological studies in
rodents indicate that the dynorphin/KOR system regulates mood-
related behaviors. In rats, systemic administration of KOR ago-
nists and antagonists showed pro- and antidepressant-like effects,
respectively, in the forced swim (FS) and learned helplessness
(LH) tests [see in Ref. (10, 41–45) for a review]. Consistent with
CPA studies, systemic KOR activation decreased DA release in
ventral (44, 83), dorsal (84, 85), and striatal regions, while local
NAc injection of a KOR agonist mimicked the prodepressant-
like effect of systemic treatment (86). These data further con-
firm that KOR-dependent modulation of DA is implicated in
both mood- and addiction-related behaviors (28). Interestingly,
KOR-dependent prodepressant-like effects may be modulated by
gender (87), an important aspect considering that the preva-
lence of depression is higher in women. Using ICSS, the authors
found that the KOR agonist-induced increase in ICSS stimulation
threshold was higher in male than female rats. This effect was
independent from circulating levels of gonadal hormones, and
was not accounted for by sex differences in pharmacokinetics of
the agonist. Rather, sex differences in KOR agonist-induced neu-
ronal activation, as revealed by c-fos staining, were found in the
BNST and PVN, but not in the NAc or amygdala. Therefore, in
addition to the mesolimbic pathway, sex-specific KOR-dependent
regulation of hedonic tone may also occur at the level of the
BNST and PVN, two structures controlling stress-responses and
emotions.

Adding to pharmacological studies targeting KOR, there is also
evidence that dynorphins provide an endogenous tonic regula-
tion of mood-related traits (43, 88). In the NAc, medium spiny
neurons expressing the DA D1-receptor are known to synthesize
and release dynorphins under the control of the cAMP response
element binding protein (CREB). Accordingly, prodynorphin lev-
els were decreased in the NAc of transgenic mice overexpressing
a dominant negative form of CREB. This effect was associated
with decreased behavioral despair in the LH paradigm. Consis-
tently, a recent study reported that Pdyn knock-down (by viral

expression in the NAc of an anti-Pdyn short hairpin RNA)
decreased depressive-like behavior in the FS test (46).

Beyond baseline emotional responses, data indicate that activ-
ity of the dynorphin/KOR system is potentiated by stress. Acute,
but not chronic, restraint stress was shown to sensitize KOR-
dependent CPA (89). Also, repeated exposure to FS stress produced
a prodepressant-like effect that was blocked by the KOR antago-
nist nor-BNI, and was absent in Pdyn KO mice (90). Dynorphins
were further demonstrated to modulate repeated stress-dependent
aversive conditioning (37). Mice trained to associate a given odor
with FS stress robustly avoided that odor. This avoidance behavior
was not observed in Pdyn KO mice, and was blocked in WT mice by
pre-treatment with a KOR antagonist. Similarly, a context repeat-
edly paired with footshocks was aversive in WT mice; but again,
this effect was absent in Pdyn KO mice, and prevented by KOR
antagonist pre-treatment. Importantly, the authors showed that
corticotropin releasing factor (CRF) release in the central nervous
system is likely the primary event responsible for stress-induced
recruitment of the dynorphin/KOR system. Results indicated that
systemic injection of CRF triggered KOR phosphorylation, as
revealed using a phospho-KOR antibody. Further, stress-induced
CPA (mimicked by systemic or intracerebroventricular injection
of CRF or the CRF2-receptor agonist Urocortin III) was absent in
Pdyn KO mice, and blocked by nor-BNI pre-treatment. Following
stress exposure, KOR activation, and phosphorylation was identi-
fied in several brain structures, including the basolateral amygdala,
hippocampus, dorsal raphe, VTA, and NAc. Altogether, these data
show that dysphoric aspects of stress behaviorally manifest when
CRF stimulates dynorphin release, yielding KOR activation (37).

Stress is a complex physiological process that has a primarily
adaptive value, but that can trigger pathological events during pro-
longed and excessive stressful experiences. Recently, interactions
between stress and the KOR have been investigated using more
sophisticated and ethologically relevant models of depression. In
nature, confrontation among conspecific animals potentially gen-
erates significant consequences in terms of control over resources,
access to mates, and social positions. For example, the resident–
intruder social defeat paradigm (91) is a naturalistic model char-
acterized by potent aggressive interactions that are unpredictable
and inescapable, thereby inducing several anhedonia-like symp-
toms such as diminished sexual pursuit and decreased sucrose
preference (52). McLaughlin and colleagues were the first to reveal
the role of dynorphins and KOR in transducing the effects of social
stress (92). Mice exposed to repeated social defeats over 3 days
showed a characteristic defeated postural response, as well as an
increased nociceptive threshold, or stress-induced analgesia (SIA,
observed in a tail withdrawal latency assay). Both aspects were
prevented in mice pre-treated with a KOR antagonist, or lack-
ing the Pdyn gene. Another important feature of the social defeat
model is that its effects show high inter-individual variability, both
in rats and among inbred mice, such that animals can be typically
separated into susceptible and resilient groups (93). Along this line,
according to Bérubé et al. (94), expression levels of dynorphins in
the NAc differ among susceptible and resilient Sprague–Dawley
rats. Increased dynorphin mRNA levels (measured by qPCR) were
found in the ventral striatum of susceptible rats (NAc shell, coher-
ent with previous mice data), while surprisingly increased levels
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were observed in the dorsal striatum of resilient individuals, sug-
gesting that the regulation of DA and mood by dynorphin and
KOR may be more complex than anticipated. Additional studies
will be necessary to further substantiate this hypothesis. In con-
trast, another study reported no change in dynorphin levels in VTA
or NAc of socially defeated Long–Evans rats (95). Discordance
between these two studies might be explained by the different
strains used, or the absence of a distinction between resilient and
susceptible Long–Evans rats in the latter study. Of note, Nocjar
et al. (95) found decreased dynorphin-A, as well as decreased orex-
ins A and B, in the hypothalamus of defeated rats. Therefore, com-
bined regulation of VTA DA neurons activity by these two antag-
onistic peptides might mediate defeat-induced KOR-dependent
social aversion, and be impaired following social defeat.

We previously discussed (Part 1) how the KOR may display
differential cellular localization across the two populations of
VTA DA neurons projecting to the NAc or to the PFC. A recent
report suggests that this anatomical dissociation may have rele-
vance for the understanding of the effects of chronic social defeat.
Chaudhury and colleagues (96) showed that the selective inhi-
bition of VTA DA neurons projecting either to the NAc or to the
PFC, respectively, promoted resilience or susceptibility to repeated
social defeat. Due to its selective cellular localization, it is tempt-
ing to speculate that the KOR may mediate prodepressant-like
symptoms induced by the inhibition of the VTA-PFC DA pathway.

In addition to DAergic signaling, new findings suggest that
5-HT transmission may also be modulated by KOR in stress-
and social defeat-based models of depression. Electrophysiology
experiments (97, 98) initially demonstrated that the KOR reg-
ulates 5-HT neurons at the level of the dorsal raphe nucleus
(DRN), a main 5-HT brain nucleus. Importantly, rescue exper-
iments showed that the selective re-expression of KOR in the
DRN of KOR KO mice is sufficient to restore the CPA induced
by infusion of a KOR agonist in the NAc (38). Together with
previous findings, these results indicate that KOR in the PFC,
and KOR expressed by neurons present in the DRN, which tar-
get the NAc (that are likely to be 5-HT neurons), are necessary
and sufficient, respectively, for the expression of KOR agonist-
induced aversion. At the molecular level, acute social defeat was
shown to trigger phosphorylation of KOR and the p38α kinase in
the DRN (14). Recruitment of p38α in 5-HT neurons is essen-
tial, as defeat-induced social avoidance was abolished in cKO
mice in which p38α is specifically deleted from serotonin trans-
porter (SERT)-expressing neurons (p38α-cKOSERT). Phosphory-
lated p38α in turn promotes SERT translocation to the plasma
membrane, thereby increasing 5-HT reuptake and likely mediat-
ing social avoidance. Electrophysiological recordings in brain slices
(40) also showed that KOR activation dampens excitability of DRN
5-HT neurons through two mechanisms: the pre-synaptic inhibi-
tion of glutamatergic inputs, and the post-synaptic stimulation of
G-protein-gated inwardly rectifying potassium channels (GIRKs).
Repeated exposure to FS stress impairs post-synaptic, but not pre-
synaptic, effects of KOR activation. Importantly, stress-induced
inhibition of KOR-mediated GIRK currents was abolished in
p38α-cKOSERT mice. Finally, recent evidence suggests that KOR
regulation of DA and 5-HT neurons may converge at the level of
the NAc to produce dysphoric and depressive-like effects. Repeated

FS stress selectively increased cell-surface expression of SERT in the
ventral striatum, but not in other regions examined (dorsal stria-
tum, hippocampus, PFC, amygdala, or DRN). This effect of stress
on SERT was prevented by pharmacological blockade of KOR sig-
naling in the NAc, but not in the DRN (16). Altogether, stressful
experiences appear to recruit a CRF-dynorhin-KOR-p38α-GIRK
signaling cascade within DRN 5-HT neurons, as well as KOR acti-
vation in the NAc. These molecular adaptations in turn lead to
up-regulation of SERT function in the NAc, and ultimately affect
DA function to produce behavioral symptoms. Whether similar
DRN signaling is also involved in more prolonged mood-related
deficits, in particular in the context of chronic exposure to drugs
of abuse (Part 3), has yet to be determined.

In addition to 5-HT and DA circuits, other possible sites of
KOR-dependent mood regulation notably include hippocampal
neurogenesis and noradrenergic (NA) transmission. One report
found that in rats, the antidepressant-like effect of the KOR antag-
onist nor-BNI (99) associated in the hippocampus, as well as in
other structures (e.g., frontal cortex, amygdala, hippocampus, and
endopiriform cortex), with increased mRNA levels of BDNF, a
neurotrophic factor controlling synaptic plasticity and neurogen-
esis. Further studies are required to better understand the relevance
of this KOR/BDNF interaction.

KAPPA OPIOID RECEPTOR AT THE INTERFACE OF
DEPRESSION AND ADDICTION
We have summarized the role of KOR in the regulation of reward
processes (Part 1), and in the modulation of stress-responses and
affective states (Part 2). Based on these data, several groups have
recently explored how the KOR may mediate the interplay between
addiction and depression. The relationship between these two dis-
orders is likely bi-directional: addicts show a strong lifetime risk
for anxiety or depressive disorders, while, conversely, depressed
patients frequently abuse drugs to self-medicate their depressive
symptoms. Both aspects are currently being addressed in animal
models.

STRESS SENSITIVITY, RELAPSE, AND THE EMERGENCE OF DEPRESSIVE
SYMPTOMS IN ADDICTED INDIVIDUALS
Stress-induced relapse during the course of addiction
Rodent models of CPP and drug self-administration have been
extensively used to investigate various triggers for relapse, or the
re-initiation of drug-seeking behaviors. Following a period of
repeated conditionings, or stable drug self-administration, ani-
mals are repeatedly re-exposed to CPP or operant chambers
in the absence of drug, so that drug-seeking and instrumental
responding are no longer reinforced and progressively disappear,
a process referred to as extinction. Importantly, after extinction
has been achieved, relapse can be triggered through re-exposure
(i.e., “priming”) to the drug of abuse (drug-induced reinstate-
ment), or through exposure to an acute stressor (stress-induced
reinstatement). Classically, stressful experiences represent major
lifetime risk factors for the emergence of depressive (100) and
addictive (101) disorders. In addition, drugs of abuse potentiate
the neurobiological and behavioral effects of a variety of stres-
sors, which in turn may potentiate the effects of drugs of abuse
in a vicious circle (see below the stress-induced reinstatement of
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CPP) (102). Therefore, addiction and stress interact tightly, and
the underlying neurobiological mechanisms represent factors con-
tributing to the comorbidity between addiction and stress-related
psychopathology.

Based on available evidence implicating KOR in stress effects
(Part 2), researchers went on to probe the role of this recep-
tor in stress-induced reinstatement. Overall, results demonstrate
that KOR signaling critically mediates stress-induced reinstate-
ment for a variety of drugs of abuse. In rats, pre-treatment with a
KOR antagonist (either JDTic or nor-BNI) significantly decreased
stress-induced (footshock), but not cocaine-induced, reinstate-
ment of cocaine self-administration (41). In mice, similar findings
were obtained for both stress- and drug-induced reinstatement of
cocaine-seeking in a CPP assay [using a new systemically active
KOR peptidergic antagonist with short duration of action (103)].
Further, exposure to acute or repeated stress reinstated cocaine
CPP in WT, but not in KOR or Pdyn KO mice, nor following
pharmacological KOR blockade (104). Stress and the KOR also
interact at the level of cocaine-context associative conditionings:
stress is classically known to potentiate cocaine CPP, and this effect
is mimicked by systemic KOR activation (105). Therefore, the KOR
mediates stress/cocaine interactions during initial drug exposure,
as well as following extinction.

Consistent with cocaine data, genetic and pharmacological
approaches showed that stress-induced reinstatement of ethanol
consumption similarly relies on dynorphin and KOR in both CPP
and self-administration paradigms (106). These results support
the notion that the KOR is a pro-addictive agent during stress
exposure, in contrast with its inhibitory action on acute reinforc-
ing properties of drugs of abuse (see Part 1). As will be discussed
below, clarifying this apparent paradox will require systematically
determining which KOR populations are recruited in the entire
brain following stress events (and following release of central CRH
and systemic corticosteroids), and how this stress-induced signal-
ing differs from KOR activation (by endogenous dynorphins or
systemic pharmacological agents) in naïve, unstressed animals.

At the neuro-anatomical level, findings across several drugs of
abuse and stressful modalities suggest that stress-induced rein-
statement of drug-seeking relies on multiple interactions between
the KOR and monoaminergic systems, as well as several forebrain
limbic structures. In the DRN, results are in line with previously
mentioned data on KOR-dependent CPA. Social stress-induced
reinstatement of cocaine CPP was abolished after the conditional
deletion of p38α in 5-HT neurons, as shown using p38α-cKOSERT

mice (14). In the context of nicotine addiction, FS stress-induced
activation of dynorphin/KOR signaling was shown to potentiate
nicotine CPP (20), an effect that could be prevented by infusion
of nor-BNI in the amygdala. In the latter brain structure, recent
studies have started unraveling, which neurons express the KOR
(see below). Additional studies will be necessary to assess where
KOR-positive amygdala neurons send projections, and whether
dysregulation of nicotinic receptors, the direct nicotine targets,
occurs in this or another brain region following stress exposure.

Functional interactions between NA transmission and the
dynorphin/KOR system also contribute to stress-induced rein-
statement of drug-seeking. Anatomical studies initially showed
that the KOR is expressed in multiple cellular compartments

within the LC, the main NA brain nucleus. Light and electron
microscopy showed that KOR prominently co-localizes with the
vesicular glutamate transporter and CRF (107), as well as with
preprodynorphin (108), in axon terminals of the LC. The KOR is
also expressed by LC NA neurons, as KOR immunoreactivity was
found in TH-positive somatodendritic processes (108). Electro-
physiological recordings indicated that KOR activation in the LC
stably attenuates the neuronal activation achieved by recruiting
excitatory, or CRF-positive, inputs. In contrast, KOR activation
had no effect on spontaneous LC neurons activity (107), sug-
gesting that KOR agonists predominantly recruit pre-synaptic
KORs under basal conditions. At the behavioral level, KOR/NA
interactions were recently investigated in the context of heroin
self-administration (109). Systemic Yohimbine injection was used
to precipitate relapse, based on the property of this compound to
activate the HPA axis and NA neurons (acting as an antagonist at
α2 NA inhibitory autoreceptors). Results showed that Yohimbine
produced a significant reinstatement in control rats, but not in
rats pre-treated with the KOR antagonist nor-BNI. Because this
study used systemic administration of Yohimbine and nor-BNI,
it is difficult to conclude whether the observed effects resulted
from KOR blockade in the LC, or in another brain region, follow-
ing Yohimbine-induced activation of the stress system (potentially
leading to widespread CRF and dynorphin release). Another recent
report dissected these mechanisms with better anatomical resolu-
tion, taking advantage of the simpler behavioral model of KOR
agonist-induced reinstatement of cocaine CPP (39). Blockade of
the KOR selectively in the LC partly prevented KOR-induced rein-
statement. Consistently, rescuing the KOR in the LC of KOR
KO mice partially restored KOR-dependent CPP reinstatement.
Like other monoaminergic circuits (110, 111), physiological activ-
ity of NA neurons relies on multiple receptor subtypes, includ-
ing inhibitory α2-autoreceptors and post-synaptic β1- and β2-
heteroreceptors. Selective pharmacological agents were used to
show that the inhibition of NA neurons (α2-receptor agonist),
or the blockade of NA action at post-synaptic β1-receptors (β1-
antagonist), both potentiated KOR-induced reinstatement. These
results suggest a model whereby stress- and KOR-mediated inhi-
bition of NA neurons contributes to relapse, and are in line with
previous data showing that LC KOR activation locally decreases
neuronal activity. Interestingly, both cocaine-induced reinstate-
ment of cocaine CPP, as well as KOR-induced CPA, were unaf-
fected by manipulations of NA signaling, suggesting that the
KOR/NA interplay selectively mediates stress-related aspects of
drug-seeking. In the previously mentioned study, Yohimbine pre-
cipitated relapse while it is considered an activator of both the
HPA axis and NA neurons. Reconciling both studies, one might
speculate that these initial stimulatory effects of Yohimbine may be
followed and ultimately counteracted by CRF- and KOR-induced
inhibition of LC NA neurons, leading to relapse. Finally, these data
raise several questions for future studies: how are CRF-receptors
and KOR interacting in the LC? Which molecular signaling path-
ways are recruited in LC neurons following KOR activation, and
are they similar to those described in the DRN? Which forebrain
structures are impacted upon LC KOR activation?

Very recently, synaptic plasticity has emerged as another level
of analysis to better understand KOR-mediated reinstatement of
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drug-seeking. Based on previous evidence that: (i) stress impairs
long-term potentiation (LTP, a form of long-lasting enhancement
in synaptic transmission between two neurons) in the VTA, and
that (ii) KOR regulates the mesolimbic pathway (Part 2), a recent
report explored KOR modulation of LTP in the VTA as a func-
tion of stress (112). Results showed that systemic pharmacological
blockade of KOR prevented stress-induced inhibition of LTP at
GABAergic synapses (LTPGABA), but not stress-induced poten-
tiation of excitatory synapses, within the VTA. KOR activation
in the VTA was sufficient to mimic the effect of stress, and to
block LTPGABA in DA neurons. Importantly, intra-VTA nor-BNI
infusion, prior to FS stress, was shown to prevent stress-induced
reinstatement of cocaine self-administration. The same group of
investigators further characterized the kinetics of the stress/KOR
interplay (113) by looking at KOR and the glucocorticoid receptor
(GR), which is activated during stressful experiences and the sys-
temic endogenous release of corticosteroids. Following FS stress,
the GR was transiently recruited (during 1 day), whereas at least
4 days of tonic activation of the KOR was necessary to medi-
ate long-lasting effects of stress on LTPGABA in DA neurons.
Consistently, blocking KOR signaling after FS stress prevented
reinstatement of cocaine self-administration. Globally, these two
studies strongly suggest that GR- and KOR-dependent blockade
of LTPGABA in DA neurons crucially mediates stress-induced rein-
statement of drug-seeking. Based on these data, it appears likely
that in models of stress response and addiction, distinct plasticity
processes might also occur across multiple brain regions following
KOR activation.

Overall, the dynorphin/KOR system is critically implicated in
relapse across a variety of animal paradigms and drugs of abuse,
through complex interactions with 5-HT, DA, and NA signaling.
Under baseline conditions, acute activation of the KOR inhibits
the reinforcing properties of drugs of abuse (Part 1). In con-
trast, rodent data suggest that in humans, recruitment of the KOR
during stressful life experiences may mediate reinstatement of
drug-seeking in addicted individuals trying to achieve abstinence
from the drug, and may therefore contribute to the maintenance
of addiction.

Emergence of depressive symptoms in addicted individuals
Enhanced stress-reactivity during prolonged exposure to, and
abstinence from, drugs of abuse contributes to the emergence
of depressive symptoms, which may then evolve into chronic
conditions independently from the addictive disorder.

Chronic exposure to drugs of abuse has been shown to poten-
tiate endogenous signaling through the KOR. Repeated exposure
to cocaine increased dynorphins concentrations in the striatum
and substantia nigra in rats (114). Similarly, prolonged heroin
self-administration led to increased Pdyn expression in the NAc
shell and the central nucleus of the amygdala, with no effect on
Penk, the gene encoding the enkephalin opioid peptides acting
preferably at MOR and DOR (115). Chronic alcohol has also been
associated with increased dynorphin expression and release in the
NAc (116, 117) and the amygdala (118). As already mentioned,
increased dynorphin release in the NAc likely occurs through a
cAMP–CREB signaling pathway (119). Accordingly, drugs of abuse
increase DA release in the NAc, leading to enhanced and prolonged

activation of the DA D1-receptor, a receptor that couples to stim-
ulatory Gs-proteins. This in turn increases intra-cellular cAMP
formation, and increases CREB binding to its genomic response
elements, leading to increased expression of the Pdyn gene. These
findings have been substantiated in humans in frontal cortical
regions which, similar to the NAc, receive dense DA innervation.
In a study examining post-mortem tissues from 14 alcoholics ver-
sus 14 healthy controls, increased Pdyn mRNA and dynorphin
peptides A and B were observed in the dorsolateral PFC, as well
as increased KOR mRNA in the orbito-frontal cortex, whereas, no
change was found for other opioid peptides and receptors (120)
in these regions.

Because of its robust prodepressant-like activity (Part 2),
increased expression of the dynorphin/KOR system following pro-
longed exposure to drugs of abuse has been implicated in the
aversive symptoms of acute withdrawal, as well as in the emer-
gence of depressive symptoms during long withdrawal phases or
abstinence. Negative affect drives drug consumption (the “self-
medication” hypothesis), thereby reinforcing drug-seeking and
contributing to addiction severity. In addition, drug-induced emo-
tional disruption may also possibly lead, in vulnerable individuals,
to depressive disorders evolving independently from the initial
substance abuse. In rodent models, acute withdrawal from chronic
ethanol exposure is associated with negative emotional states [see
for examples in Ref. (121–124), including behavioral traits usu-
ally described as anxiety- (125) or depression-related (126)]. It is
likely that both of these dimensions of emotional responses inter-
act (127–129), and that withdrawal-induced anxiety-like behav-
iors may potentiate depressive symptomatology. In rats, ethanol-
dependence can be established by chronic and passive exposure to
an ethanol liquid diet (125) or to ethanol vapors (130). In Wistar
rats (125), dependence has been shown to manifest as enhanced
anxiety-like behavior (as assessed in the elevated plus maze test)
during acute withdrawal, and this effect was blocked by systemic
treatment with the KOR antagonist nor-BNI. Kissler et al. (130)
also observed that acute withdrawal from ethanol-dependence
associates with increased alcohol operant self-administration, and
an increase in 22-kHz ultrasonic vocalizations, which represents
“an ethologically valid behavior that easily discriminates negative
affective states” (131). These behavioral changes associated with
increased Dynorphin-A immunoreactivity in the capsular region
of the central amygdala (CeA) and increased agonist-stimulated
G-protein coupling of KOR [as measured using the classical [35S]-
GTPγS method (132)]. Blockade of KOR in the CeA was shown to
prevent escalated ethanol self-administration in dependent rats.
The effect of this local manipulation on ultrasonic vocalizations
was not assessed; however, it is likely that CeA KOR signaling
may contribute to negative affect following chronic ethanol expo-
sure. At the circuitry level, localization of KOR in the amygdala
and its physiological relevance has only begun to be appreci-
ated, and recent results indicate that the receptor mainly locates
on pre-synaptic terminals of GABAergic neurons (133). Consis-
tently, administration of a KOR agonist and an antagonist onto
slice preparations of amygdala rat tissue, respectively decreased
and increased GABAergic transmission [miniature IPSCs, (21)].
Surprisingly, these two compounds were found to have inverse
effects following daily sessions of cocaine self-administration, and
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respectively induced increased and decreased GABAergic activity.
These effects were observed only in rats that escalated cocaine
consumption during long (6 h) sessions of self-administration,
but not in rats showing stable cocaine consumption during short
(1 h) sessions. Therefore, while chronic exposure to drugs of abuse
potentiate dynorphin/KOR signaling, it is also possible that loss-
of-control over drug-taking may specifically modify the net impact
of KOR activation on specific neuronal circuits (as exemplified
here in the CeA), possibly due to changes in cell types expressing
the KOR, or in the cellular localization of KOR. At the behavioral
level, CeA micro-infusion of nor-BNI attenuated the heightened
anxiety-like behavior (in the defensive burying paradigm) that
was observed during withdrawal from chronic, experimentally
delivered, cocaine injections. While this effect of KOR blockade
should also be tested following voluntary cocaine consumption,
these results clearly suggest that amygdala KORs control emotional
responses during cocaine withdrawal.

During the repeated cycles of intoxication and withdrawal that
characterize addiction, some environmental cues progressively
associate with negative affective states, and may then produce aver-
sive effects independently of any drug exposure [even including
withdrawal-like symptoms (134)]. Along this line, Berger et al.
(19) showed that air-puff induced 22-kHz ultrasonic vocaliza-
tions are potentiated during withdrawal from ethanol-dependence
(induced by a 2-week forced exposure to ethanol vapors), and this
effect was dose-dependently blocked by systemic KOR antago-
nism. In another set of experiments, the authors associated a neu-
tral odor (almond scent), with the aversive properties of systemic
KOR activation. Interestingly, re-exposure to this conditioned
odor was shown to potentiate ethanol operant self-administration
in non-dependent rats, and this effect was blocked by KOR sys-
temic blockade. Likewise, in humans, re-exposure to contextual
cues that have been repeatedly paired with withdrawal-induced
negative affect may produce a KOR-dependent dysphoric state and
potentiate drug-seeking, thereby contributing to the maintenance
of addiction and the emergence of depressive symptoms.

Emotional consequences of drugs of abuse extend well beyond
the acute withdrawal phase, defined as the period during which
the drug is cleared from the body. A recent study examined the
long-term KOR-dependent changes associated with protracted
withdrawal from ethanol (135). Rats were fed a liquid alcohol
diet for 25–30 days, using oral self-administration in a two-bottle
choice paradigm. Six weeks following ethanol removal, anxiety-
like behaviors (measured immediately following a 20-min restraint
stress, in the elevated plus maze) were potentiated in ethanol-
abstinent rats. This effect was blocked by nor-BNI pre-treatment
24 h before testing, suggesting that increased stress-reactivity of
the dynorphin/KOR system may persist for very long periods fol-
lowing initial ethanol exposure. Our group recently expanded this
growing body of evidence to opiate abuse, and implicated KOR in
emotional deficits during long-term drug abstinence in mice. We
first showed that morphine abstinence progressively leads to the
emergence of increased behavioral despair (in the tail suspension
test) and social withdrawal (136, 137). Both deficits were detected
4 weeks, but not 1 week, following chronic experimentally deliv-
ered high morphine doses. Chronic per os treatment with the anti-
depressant Fluoxetine (a selective serotonin reuptake inhibitor)

during the 4-week abstinence period reversed morphine-induced
deficits. Further, 5-HT metabolism (136) and 5-HT1A-receptor
function (138) were dysregulated during morphine abstinence, in
particular in the DRN, suggesting an important contribution of
5-HT mechanisms. Strengthening this model, we characterized
a slightly different kinetic pattern using heroin (139): at 4 weeks
of abstinence, only social withdrawal was detected in heroin-pre-
treated mice; at 7 weeks of abstinence, this initial symptom was
accompanied by increased behavioral despair (in the FS test).
Importantly, we showed that this robust decrease in social inter-
actions (observed across both morphine and heroin abstinence)
relies on the activation of both MOR and KOR (139): this pheno-
type was absent: (i) in cKO mice, in which the MOR was specifically
deleted in the DRN prior to heroin treatment; and (ii) in consti-
tutive KOR KO mice. Considering previous data on a 5-HT and
DA interplay at the level of the NAc in models of KOR-dependent
CPA and cocaine CPP, an interesting possibility is that similar
monoamine interactions may contribute to emotional disruption
during opiate abstinence, potentially through similar molecular
cascades.

An important task for future research will be to explore
emotional-like responses in the context of more sophisticated
models of addictive-like behaviors. In a phylogenic and transla-
tional perspective, and using self-administration paradigms, sev-
eral groups have been able to transpose DSM-IV addiction criteria
into reproducible, drug-induced behavioral abnormalities, includ-
ing the emergence of compulsive drug-seeking and drug-taking
despite adverse consequences (140, 141). We speculate that such
aberrant patterns of drug intake may also lead to stronger and
more prolonged emotional deficits in rodents, and may repre-
sent better models of the emotional comorbidity associated with
addiction. Such approaches also have the potential to reveal, in a
dimensional approach, the behavioral traits that not only predict
the transition to compulsive drug use (such as high impulsivity),
but also the risk of emotional comorbidity.

Collectively, the rapidly expanding KOR literature has stim-
ulated great interest in the development of KOR antagonists
as pharmacotherapies for depression and anxiety disorders, as
well as to improve stress regulation and reduce dysphoria in
the context of addiction. Although some KOR ligands have not
demonstrated optimal pharmacological properties, others have
been shown to be viable drug candidates (142). In summary,
KOR antagonists may (i) block stress-induced potentiation of drug
consumption, (ii) prevent stress-induced relapse during absti-
nence periods, and (iii) limit negative emotional states during
both acute withdrawal and more prolonged abstinence peri-
ods. Although long-term follow-ups and well-controlled studies
are methodologically challenging in drug addicts, these results
are coherent with a clinical report in depressed opiate abusers
of the beneficial effects of buprenorphine, a dual MOR ago-
nist/KOR antagonist (compared to methadone, a pure MOR
agonist) (23); another study, however, failed to detect a differ-
ence between these two compounds (143). Intensive research in
KOR pharmacology has already produced a plethora of short-
[Zyklophin (103), LY-2456302 (144, 145)] and long-acting (nor-
BNI, GNTI, JDTic) antagonists (146). Future studies will have to
carefully analyze their respective signaling properties depending
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on the structural conformation they achieve with the KOR, i.e.,
the promising field of biased agonism [see for example in Ref.
(147–150)]. Additional specificities may emerge when compar-
ing KOR signaling across rodent and human species (151), or
as a function of genetic polymorphisms (152–154). Also, the
recent possibility of studying human KOR in vivo, using PET-
Scans with the radiotracer 11C-LY2795050 (155), is promising.
In the long-term, pharmacogenomic approaches have the poten-
tial to predict individualized treatment modalities targeting the
KOR, and may therefore become the key to efficient clinical
prescriptions.

WHEN DEPRESSION PRECEDES ADDICTION
To address the neurobiological mechanisms of comorbidity
between depression and addiction, another complementary
approach in animal models is to study how depressive-like states
may potentiate behavioral effects and patterns of consumption of
drugs of abuse (36, 156). Compared to the inverse causal relation-
ship implicated in comorbidity, the later aspect has been poorly
studied, and very few studies have explored the potential role of
the KOR.

In this framework,available rodent evidence is inconsistent,and
chronic stress-based models of depression have been associated
with either increased effects of drugs of abuse (a sensitization of
reward pathways that would be consistent with the human comor-
bidity) or decreased effects. Krishnan et al. (93) showed that mice
that are susceptible to chronic social defeat effects, who develop
long-lasting depressive-like features, including decreased sucrose
preference and social avoidance, also show a significant CPP at
cocaine doses that are not reinforcing in undefeated mice, or in
defeated but resilient mice.

Chronic mild stress is another model of depression, which
is based on the unpredictable exposure of rodents to multiple
mild stressors, typically over 4–8 weeks. This model is extensively
used because of its face, construct, and predictive validities (157–
159). The most common behavioral output in chronic mild stress
(CMS) experiments is a decreased preference (over water) for a
sucrose solution, or anhedonia. This anhedonic phenotype also
seems to extend to the reinforcing properties of drugs of abuse,
as decreased CPP for amphetamine (160) and morphine (161)
has been reported following CMS in rats. Surprisingly, there is
no available study, to our knowledge, on CMS effects in KOR
KO mice: is KOR expression potentiated in stressed WT mice? In
which brain regions? Would KOR KO mice be protected against the
effects of chronic stress? Addressing this gap in the literature, Al-
Hasani et al. recently explored the effects on reinstatement of CPP
of three stressful modalities: CMS, a “sub-chronic social defeat” (a
shorter 5-day form of social defeat), and a single acute FS stress
(162). Results showed that, as previously described, acute stress
potentiates KOR-mediated reinstatement of cocaine CPP. In con-
trast, both CMS and sub-chronic social defeat were found to atten-
uate KOR agonist-dependent reinstatement of cocaine and nico-
tine CPP. As expected, drug-induced reinstatement of cocaine or
nicotine CPP was unaffected by CMS, adding to previous evidence
on the specific implication of KOR in stress-induced relapse. These
counterintuitive results suggest that, at least in rodent models,
CMS may have protective or adaptive effects against drug relapse,

a notion that fits poorly with epidemiological and clinical findings
in humans.

Overall, we speculate that anhedonia-like behaviors following
either CMS or prolonged social defeat may decrease the acute rein-
forcing properties of drugs of abuse (as assessed using place pref-
erence paradigms of drug conditioning, extinction, and relapse),
possibly implicating a KOR-dependent mechanism. At the same
time, stress-induced anhedonia may also potentiate the emergence
of compulsive drug-taking during chronic voluntary consump-
tion of drugs of abuse, hence favoring the entry into addiction. To
explore this possibility, future studies will ideally combine two sets
of advanced behavioral paradigms: CMS or chronic social defeat
first, followed by extended operant drug self-administration. The
plethora of cKO mice now available should prove useful in bet-
ter understanding the role of KOR in these combined preclinical
approaches of comorbidity.

FUTURE DIRECTIONS AND CONCLUSION
A major challenge in the future will be to unravel dynamic adap-
tations of the endogenous dynorphin/KOR system as mood and
reward disruption emerge and evolve. This issue is of significant
clinical relevance considering the chronicity of these two con-
ditions. In particular, available evidence indicates that the KOR
exerts multiple controls over the main monoamines in rodents.
Interestingly, addiction research suggests that repeated exposure to
drugs of abuse disrupts mutual inhibitory feedback mechanisms
between monoaminergic nuclei, which may mediate long-term
behavioral dysfunction (163, 164). Whether such mechanisms
also impair KOR-dependent mood regulation is an intriguing
hypothesis in the context of comorbidity.

Accumulating evidence in the KOR field has recently prompted
clinicians to undertake brain imaging studies and clinical trials
(22). Very recently, the first PET-Scan study using a radioac-
tive KOR antagonist was able to demonstrate significant and
widespread disruption of KOR in vivo availability in subjects
suffering from fear and dysphoric symptoms following severe
trauma exposure (165). While results are nicely consistent with
animal data on KOR and the mesolimbic pathway, they also
suggest that other brain regions, currently poorly explored in
preclinical settings, may be equally important (e.g., thalamus
and insular cortex). Additional studies will be required to fur-
ther assess KOR availability in well-characterized cohorts of
depressed, addicted, and comorbid subjects. Finally, from a phar-
macological point of view, the rapidly evolving field of biased
agonism (or ligand-directed signaling) raises great hopes for
KOR-targeting therapeutics (149). A major goal in the field
of G-protein-coupled receptors is the identification of dis-
tinct signaling pathways that may operate to control specific
behavioral responses. In the near future, such approaches will
likely aid in the development of antidepressants acting as KOR
antagonists and devoid of potentially associated adverse effects
(e.g., hyperalgesia).

In conclusion, we have summarized in the present review the
large body of evidence supporting the role of KOR in regulat-
ing reward and mood. We have also described how this receptor
is ideally placed to mediate strong interactions between two fre-
quent and severe psychiatric disorders, addiction, and depression.
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Altogether, preclinical research on the KOR exemplifies how trans-
versal studies across multiple animal models have the potential
to identify brain mechanisms that contribute to transdiagnostic
pathophysiological processes, and therefore represent key thera-
peutic targets for the management of comorbidity, one of the most
prominent global issues in mental health.
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