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Mood regulation is known to be affected by the change of seasons. Recent research find-
ings have suggested that mood regulation may be influenced by the function of circadian
clocks. In addition, the activity of brown adipocytes has been hypothesized to contribute
to mood regulation. Here, the overarching link to mood disorders might be the circadian
clock protein nuclear receptor subfamily 1, group D, member 1.
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There are seasonal variations in mood and behavior, including
those in sleep duration, social activity, mood, appetite, weight, and
energy levels that tend to reoccur year after year (1). These varia-
tions are common and present as a continuum: from individuals
not having any marked variation, some having experienced the
variations as a problem, and to those having the seasonal pattern
of mood disorder known as seasonal affective disorder (2).

The current diagnostic criteria for seasonal affective disorder
require that an episode of either recurrent major depressive disor-
der or bipolar disorder routinely occurs during a particular period
of the year (3). Typically, in individuals with the winter type of
seasonal affective disorder, or winter depression, the shortage of
light during the autumn routinely induces depressive episodes,
whereas the abundance of light during the spring routinely leads
to remission. The treatment of choice for winter depression is
bright light therapy, in which timed and repeated light expo-
sures in the morning are administered via the eyes during the
winter.

Concerning seasons and mood disorders, the clinical picture is
more complex than these routine seasonal variations, as it has been
noticed for centuries that a depressive episode tends to deepen and
becomes life-threatening in the spring, but not to an equal extent
in any other time of the year (4). There is no clear explanation
to this phenomenon. A clue to understanding it may lie in reac-
tions of the body to changes in daylight and ambient temperature
during spring. Here, the circadian clocks that anticipate and try to
adapt the body to the changes are in a key position. The function
of brown fat being inducible in adult humans is another target
to which attention is worth paying. In the following, I present
my perspective on the circadian clocks and brown fat in mood
disorders.

CIRCADIAN CLOCKS IN MOOD DISORDERS
Nearly all people suffering from mood disorders have disruptions
in circadian rhythms (5). The circadian rhythms are generated
in each cell, but maintained by the master circadian clock in the

neurons that are located in the suprachiasmatic nucleus of the
anterior hypothalamus in the brain (6). Because the sleep–wake
rhythm is dictated by the circadian clock (7), these disruptions
are often seen as sleeping problems. Documentation of circadian
rhythm disruptions in patients with mood disorders relies on valid
markers that are generated by the master circadian clock and dis-
play a reliable circadian rhythm, such as continuous recording
of core body temperature and repeated assessments of melatonin
concentration (8).

Dysfunction of the proteins encoded from the circadian clock
genes is hypothesized to play a role in the etiology of mood dis-
orders (9). Here, I consider those proteins that are repressors of
transcription to be most important, since they are essential to the
normal function of circadian clocks (10). Among them, nuclear
receptor subfamily 1, group D, member 1 (NR1D1) has a key posi-
tion as a connecting node in the transcriptional and translational
loops that constitute the circadian clock in a cell (11–13). Further,
CRY2 and CRY1 are the key repressors in the core of the circadian
clock (14–20).

Thus far, genetic association studies have suggested that vari-
ants of some, not all, circadian clock genes associate with mood
disorders. Of them, NR1D1 genetic variants have been demon-
strated to associate with bipolar disorders (21–23) and depressive
disorders (24, 25), CRY2 (cryptochrome 2) with depressive disor-
ders (26, 27) and bipolar disorders (28), and CRY1 (cryptochrome
1) with depressive disorders (29). However, experimental studies
elucidating the mechanisms of action by which the circadian clock
proteins might contribute to mood disorders are missing.

BROWN FAT IN MOOD DISORDERS
A hypothesis suggests that dysfunction of the brown adipose tissue
contributes to mood regulation (30). This hypothesis was based
on the original finding of brown adipose tissue being clearly over-
activated in two suicide cases with depressive disorder (31). On
the basis of only this data, it cannot be judged whether the finding
was specific or whether it is reliable.
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However, it provides a basis for a view that the activation
of brown adipose tissue improves cold tolerance at the cost of
heat tolerance, triggering anxiety, and psychomotor agitation, and
affects mood in a negative way during the spring. It provides some
evidence to stimulate not only replication studies but also experi-
mental studies to demonstrate the mechanisms of action by which
the brown adipose tissue might affect mood and contribute to
mood disorders.

ROLE OF ORPHAN NUCLEAR RECEPTORS
Nuclear receptor subfamily 1, group D, member 1 is one of the so-
called orphan nuclear receptors, while it seems to be a molecular
link between the circadian clocks and mood regulation (32). Stud-
ies with Nr1d1-knockout mice agree with and support this finding,
as there is up-regulation of tyrosine hydroxylase in the hippocam-
pus (33) and increased proliferation of hippocampal neurons (34)
in these mice. In these experiments, their mood-related behaviors
were manifested as less anxious and less depressive.

Among the circadian clock genes, NR1D1 is the only one that
maintains its oscillation on time at the light–dark transitions as
well as under constant darkness in organs throughout the body
(35). Therefore, NR1D1 seems to be the principal metronome
of the body. NR1D1 regulates the transcription of “the long-day
gene” TSHB (thyroid stimulating hormone, beta), and through
this action NR1D1 is also a link between the effects of light and
the seasonal variation in behavior (36). Transcription of TSHB is
induced to a greater extent about 14 h after dawn of the first long
day in the spring by the increasing exposure to light (37).

Intriguingly, the circadian clock protein NR1D1 has recently
been demonstrated to link the body’s circadian and thermogenic
networks through the regulation of the function of brown adipose
tissue (38). The physiological induction of uncoupling protein
in the mitochondria by cold temperature is preceded by rapid
down-regulation of NR1D1 gene in brown adipose tissue, or in

other words, the high levels of NR1D1 protein must fall before
cold ambient temperature can induce uncoupling protein 1 to
start producing heat and warm up the body. This switching off of
the NR1D1-dependent repression is a key to the acute thermogenic
response to cold and to subsequent cold tolerance.

Switching the NR1D1-dependent repression on again after it
has once been switched off, however, is challenged in the spring,
when the days are already long but may still be cold. Combination
of long light exposure together with cold ambient temperature
gives a conflicting signal of seasonal mismatch to the body (30).
Having such conflict, the body is likely to continue producing heat
and building up improvement in cold tolerance. If the activity of
brown adipose tissue were not to be shut down as normal in the
spring, it would easily become over-activated (39) and would pro-
duce excessive heat load that would give abnormal feedback from
brown adipose tissue to the brain (40, 41).

ROLE OF CRYPTOCHROMES
NR1D1 responds to a switch to longer days but does not imme-
diately reset to the long-day state (42). During the resetting, the
readouts of the circadian clock genes shift further away from the
signal of NR1D1, and the magnitude of this escape is greater in
Cry2-deficient than Cry1-deficient mice (43). Of the two cryp-
tochromes, CRY2 opposes the actions of CRY1, thereby denying
CRY1 from accessing to DNA targets too early (44), and in addition
CRY2 opposes the actions of PER1 (45). It is the timing of peaks
of PER1 and CRY2 expression, in particular, that varies directly
with the length of the photoperiod (46, 47), and it is therefore the
PER1–CRY2 and period 2 (PER2)–CRY2 protein complexes (48,
49) that control for their downstream targets during the resetting.

In addition to actions in the nucleus of a cell, the two cryp-
tochromes act as inhibitors of adenylyl cyclase and thereby limit
cyclic adenosine monophosphate production (50, 51). Interferon
regulatory factor 4 is induced by cold as well as by cyclic adenosine

FIGURE 1 | Schematic of mood regulation affected by the circadian clock proteins (NR1D1, PER2, CRY2, CRY1) and by the activity of brown adipose
tissue. Abbreviations: NR1D1, nuclear receptor subfamily 1, group D, member 1; PER2, period 2; CRY2, cryptochrome 2; CRY1, cryptochrome 1.
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monophosphate in adipocytes, driving up the activity of uncou-
pling protein 1 for heat production (52). Cryptochromes also
inhibit the G protein coupled receptors activity, receptive to lig-
ands such as vasoactive intestinal peptide and glucagon, through
a direct interaction with the stimulatory G(s)alpha subunit (50).
By these mechanisms, the cryptochromes might protect the indi-
vidual from a depression-like state seen in conditions where dys-
function in control of the mesolimbic dopaminergic tracts leads
to increased cyclic adenosine monophosphate production and
increased depression-like behavior (53).

With abnormal expression of CRY2, the circadian protein PER2
and the enzyme monoamine oxidase A (MAOA) would become
overactive (54). The over-expression of NR1D1 inhibits the activ-
ity of tyrosine hydroxylase (32), and the over-activity of MAOA
depletes dopamine release and impairs further the dopaminer-
gic transmission. In addition, the direct interaction of PER2 with
NR1D1 (55) may feedback to this vicious circle that was initi-
ated by the overactive brown adipose tissue. In the end, mood
is lowered and there is a deepening of depressive episode (see
Figure 1).

CONCLUSION
The loss of cryptochromes does change physiology, and dysfunc-
tion of cryptochromes may change mood. On the basis of the data
presented above, CRY2 appears to be “a mood gene.” Success in
the resetting has been hypothesized to improve lowered mood in
the depressed (56), whereas failure in the resetting may deepen a
depressive episode any time of the year, especially in the spring.
Here, the overarching link might be the circadian clock protein
NR1D1.
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