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Recently, there has been considerable interest in understanding brain networks in major
depressive disorder (MDD). Neural pathways can be tracked in the living brain using
diffusion-weighted imaging (DWI); graph theory can then be used to study properties
of the resulting fiber networks. To date, global abnormalities have not been reported in
tractography-based graph metrics in MDD, so we used a machine learning approach based
on “support vector machines” to differentiate depressed from healthy individuals based on
multiple brain network properties. We also assessed how important specific graph metrics
were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal
connectivity at specific nodes of the network. We were able to classify depression using
whole-brain graph metrics. Small-worldness was the most useful graph metric for classifi-
cation.The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate
all showed abnormal network connectivity in MDD. This is the first use of structural global
graph metrics to classify depressed individuals. These findings highlight the importance
of future research to understand network properties in depression across imaging modali-
ties, improve classification results, and relate network alterations to psychiatric symptoms,
medication, and comorbidities.

Keywords: major depressive disorder, diffusion-weighted imaging, graph theory, support vector machine, small
world network, subgenual anterior cingulate cortex

INTRODUCTION
Major depressive disorder (MDD) is among the most common
psychiatric disorders in the world, affecting more than 350 mil-
lion individuals (1), and is associated with a large and increasing
economic and personal burden (2). MDD is characterized by low
mood and loss of pleasure (anhedonia); other significant symp-
toms involve difficulties in motivation, attention, psychomotor
functioning, sleep, and appetite. With the advent of tools and pro-
cedures to assess human brains in vivo, the neuroscience of MDD
has experienced tremendous growth over the past two decades.
While early work in this area documented anomalies in specific
structures in MDD (3, 4), more recently investigators have begun
to examine brain networks (5–8). Initial evidence from this litera-
ture indicates that MDD is associated with abnormalities in both
structural and functional networks [for reviews, see Ref. (5–8)].
More specifically, MDD is associated with abnormal resting-state
functional connectivity in a cortico-limbic (prefrontal–amygdala–
pallidostriatal–mediothalamic) mood-regulating circuit and in
the default-mode network [DMN; (5)]. MDD is also characterized
by structural abnormalities in white matter regions that link pre-
frontal cognitive control areas with subcortical emotion processing
regions (8).

In this context, diffusion-weighted imaging (DWI) can be
used to assess water diffusion in the brain and is the most
widely used tool for assessing white matter connectivity in MDD.

Using image analysis methods, this diffusion information can
be used to track neural pathways in 3D models. The most
commonly used model of diffusion is diffusion tensor imaging
(DTI), which uses tensors to quantify the rate of water diffu-
sion for a given voxel in three principal directions. This tensor
information can then be used to track neural pathways algo-
rithmically. More sophisticated diffusion models can use high-
angular resolution diffusion imaging (HARDI), making it easier
to characterize complex white matter anatomy, including cross-
ing fibers. White matter fibers can be grouped into whole-brain
networks that can be examined using graph theory (9, 10),
which represents network-level properties of the brain. In this
approach, researchers create a graph representing the brain using
various brain regions as “nodes,” with edges (i.e., connections
between them) computed from either correlated activation in
resting-state functional magnetic resonance imaging (rs-fMRI),
or from properties of fibers computed using tractography in
DWI. Characteristics of the resulting graph can then be summa-
rized using continuous metrics to describe large-scale network
properties.

Given the interest in how brain regions interact in MDD, sev-
eral studies have used graph metrics to study such relations. Three
studies have used graph metrics to analyze structural connec-
tivity with DWI; none of these studies found global network
abnormalities in MDD participants (11–13). Although global
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graph metrics may not yield MDD-related abnormalities when
examined individually, multivariate methods may identify abnor-
mal patterns of global graph metrics associated with this disorder.
In the present study, we used linear support vector machines
[SVMs; (14)] to differentiate MDD participants from healthy con-
trols using structural graph metrics. Using an exhaustive feature
scoring technique and feature weight ranking, we also examined
which graph metrics contributed most strongly to the differentia-
tion of depressed from non-depressed individuals. We then related
the most robust graph metric to clinical measures (i.e., depression
severity, level of global functioning, age of onset of depression, and
years since onset). Finally, we conducted a regional graph analy-
sis of degree centrality (i.e., the level of network connectivity of
each given brain region) to understand more precisely how the
network connectivity of specific brain regions may be abnormal
in MDD.

This study had four aims: (1) use global graph metrics in
conjunction with SVM to differentiate depressed from healthy
individuals; (2) characterize the ability of specific graph met-
rics to classify depression; (3) understand the relations between
characteristics of the onset and severity of depression and global
graph metrics; and (4) examine local network properties that may
contribute to global network abnormalities.

MATERIALS AND METHODS
PARTICIPANTS
Thirty-two participants, all women aged 18–55 years, were
included in the current study (14 diagnosed with MDD). All
participants were recruited using online postings describing par-
ticipation in a paid research study at a major local university.
Psychiatric diagnoses were established using DSM-IV-TR crite-
ria assessed with the Structured Clinical Interview for DSM Axis
I [SCID-I; (15)], and the 17-item Hamilton Depression Rat-
ing Scale (HAM-D) was administered to assess severity of the
depressive episode (16). All participants in the MDD group were
currently experiencing a diagnosable depressive episode. Partic-
ipants in the control (CTL) group did not meet criteria for any
past or current Axis I disorder. Exclusion criteria for both the
CTL and MDD group included current alcohol/substance abuse
or dependence, history of head trauma with loss of consciousness
>5 min, aneurysm, or any neurological or metabolic disorders that
require ongoing medication or that may affect the central ner-
vous system (including thyroid disease, diabetes, epilepsy or other
seizures, or multiple sclerosis). Level of education was quantified
using an 8-point scale (from 1= completed elementary education
to 8= completed professional or graduate education). Depres-
sion severity was assessed on the day of MRI data acquisition
using the Beck Depression Inventory-II [BDI-II; (17)]. Partic-
ipants’ age at first onset of depression was assessed during the
SCID-I. Years since the first episode of depression was computed
as the difference between the participant’s current age and age at
onset. Finally, participants were administered the Global Assess-
ment of Functioning [GAF; (18)], a 100-point scale that indexes
their level of social, occupational, and psychological function-
ing. Each participant provided written informed consent, and the
study was approved by the Stanford University Institution Review
Board.

NEUROIMAGING DATA ACQUISITION
Magnetic resonance imaging data were acquired using a
Discovery MR750 3.0 T MR system (GE Medical Systems,
Milwaukee, WI, USA) at the Stanford Center for Neurobiolog-
ical Imaging. Whole-brain T1-weighted images were collected
using a sagittal spoiled gradient echo (SPGR) pulse sequence
[repetition time (TR)= 6240 ms; echo time (TE)= 2.34 ms;
flip angle= 12°; spatial resolution= 0.9 mm× 0.9 mm× 0.9 mm;
slice number= 186; scan duration= 315 s]. The T1-weighted
images were used for anatomical segmentation and local-
ization. Diffusion-weighted images were acquired using a
single-shot, dual-spin-echo, echo-planar imaging sequence [96
unique directions; b= 2000 s/mm2; TR= 8500; TE= 93.6 ms;
spatial resolution= 2 mm× 2 mm× 2 mm; slice number= 64;
scan duration= 901 s) and included nine non-diffusion-weighted
(b= 0 s/mm2) volumes.

MRI DATA PREPROCESSING
Raw diffusion data were processed using the FMRIB Software
Library’s (FSL)1 eddy_correct tool for eddy and motion correc-
tion. Fractional anisotropy (FA) was computed on a voxel-wise
basis using a single-tensor diffusion model (19, 20). An optimized
global probabilistic tractography method (21, 22) was used to
estimate whole-brain tractography. A total of 45,000 fibers were
estimated for each participant. FreeSurfer2 was used to segment
the T1-weighted images according to the Desikan–Killiany method
(23). FreeSurfer processing was visually inspected for major errors.
No manual edits were conducted (24, 25). This resulted in 68
unique cortical regions per participant (34 per hemisphere; for
complete list, see Table 1). Cortical regions were dilated to increase
their intersection with white matter, and to make it easier to cre-
ate tractography-based connectivity matrices. The T1-weighted
images were then registered to the FA image (in native diffusion
space) using an affine followed by a non-linear transformation
via the automatic registration toolkit (ART) (26, 27). The result-
ing transformations were then used to warp the dilated cortical
segmentations to native diffusion space.

CREATION OF CONNECTIVITY MATRICES
For each participant, in native diffusion space, connectivity matri-
ces were created using the dilated cortical regions from the
Desikan–Killiany atlas as nodes and the number of fibers con-
necting each pair of regions as edge weights. This resulted in a
68× 68 connectivity matrix for each participant, with each row
and column representing a cortical region, and each cell element
representing an edge between the corresponding cortical regions.
Edge values were normalized such that the minimum edge value
was 0, and the maximum 1. This removed the potential influence
of the number of fibers connecting pairs of regions across individ-
uals. To ensure that the same number of connections were present
in each participant’s connectivity matrix, we applied a sparsity
threshold to the connectivity matrices so that only the 25% most
robust edge weights were retained. A value of 25% was used for
sparsity thresholding because this value falls within a biologically

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
2http://surfer.nmr.mgh.harvard.edu/
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Table 1 | Complete list of cortical regions of interest (ROIs).

Cortical region

1 Banks of the superior temporal sulcus

2 Caudal anterior cingulate

3 Caudal middle frontal

4 Cuneus

5 Entorhinal

6 Frontal pole

7 Fusiform

8 Inferior parietal

9 Inferior temporal

10 Insula

11 Isthmus of the cingulate

12 Lateral occipital

13 Lateral orbitofrontal

14 Lingual

15 Medial orbitofrontal

16 Middle temporal

17 Parahippocampal

18 Paracentral

19 Pars opercularis

20 Pars orbitalis

21 Pars triangularis

22 Peri-calcarine

23 Postcentral

24 Posterior cingulate

25 Precentral

26 Precuneus

27 Rostral anterior cingulate

28 Rostral middle frontal

29 Superior frontal

30 Superior parietal

31 Superior temporal

32 Supra-marginal

33 Temporal pole

34 Transverse temporal

Note that each ROI appears in both left and right hemisphere.

plausible range (28) and several graph metrics (e.g., global effi-
ciency, characteristic path length) have been found to be unreliable
at sparsity thresholds lower than 25% (29). Although there exist
other methods for the selection of sparsity thresholds [e.g., area
under the curve (AUC)], it is currently unclear which selection
method is optimal (30). Finally, the matrices were binarized such
that non-zero remaining edge weights were set to 1. This resulted in
a binarized, undirected graph. All graph analyses were conducted
using the Brain Connectivity Toolbox [BCT; (31)] in MATLAB
(the Mathworks, Natick, MA, USA).

WHOLE-BRAIN GRAPH METRIC COMPUTATION
Nine graph metrics were selected as features for SVM classification
based on their ability to characterize whole-brain network-level
characteristics (31–35): assortativity, global flow coefficient, global
total flow, global betweenness, global efficiency, modularity, charac-
teristic path length, transitivity, and small-worldness. All nine global

graph metrics were computed from the undirected, binarized
matrices.

Here, we describe the nine global graph metrics that we used for
classification. For further details including equations, see Rubinov
and Sporns (31) unless stated otherwise. Assortativity is the cor-
relation coefficient between degrees of all nodes on opposite ends
of a link. High Assortativity indicates that vertices of a relative
degree (connectedness) tend to connect to vertices with similar
degree. Global flow coefficient is the average flow coefficient over
the network, where flow coefficient is defined as the number of
all paths of length two linking neighbors of a central node that
pass through the node, divided by the total number of all pos-
sible such paths (32). Global total flow is the average number of
paths that flow across the networks nodes (32). Betweenness cen-
trality of a given node is the fraction of shortest paths in a network
that include that node. Global betweenness was computed as the
average node betweenness centrality of the given network [as in
Ref. (33)]. High global betweenness indicates that nodes of the
given network participate in a large number of shortest paths.
Global efficiency is the average inverse shortest path length in a
network and indexes how well a network can transmit informa-
tion at a global level. Modularity quantifies the degree to which a
network can be subdivided into clearly delineated sub-networks.
Modularity offers insight into the community structure of the
given graph. Due to variation in the algorithm, modularity was
computed as the average value across 10 iterations. Characteristic
path length is the global mean of the distance matrix, which is a
matrix of shortest paths between pairs of nodes. Thus, character-
istic path length is the average shortest path length of the given
network, which offers an index summarizing the connectedness
of a matrix. Transitivity is the ratio of triangles (set of three nodes
that each connects to the other two) to triplets (three nodes that
are not fully connected) in a network. Transitivity measures the
degree to which nodes in a graph tend to cluster and is a version
of the clustering coefficient. We used Transitivity instead of clus-
tering coefficient as in the computation of clustering coefficient the
mean clustering coefficient is normalized for each node, which may
inflate the importance of low degree nodes. Contrastingly, tran-
sitivity is normalized collectively and therefore is not susceptible
to this issue (34). Finally, small-worldness was calculated as the
ratio of transitivity to characteristic path length and indexes the
balance between local specialization and global integration (35).
Small-worldness was computed using transitivity and characteristic
path length each normalized against 10 instances of the given met-
ric computed from randomized versions of the original binarized
matrices that maintained the degree distribution of the original
binarized matrices.

These nine metrics assess important global network properties,
including integration, segregation, resilience, and the balance of
integration and segregation. Seven of these metrics were selected
on the basis of their widespread usage (31), while both flow-
related metrics were included in order to yield complementary
insight concerning integration: flow coefficient is similar to global
betweenness, but utilizes only local-level information (i.e., con-
strained to the first shell of the given node, and paths of maximum
length two).

We used permutation-based, two-sample, two-tailed t -tests to
compare global graph metrics between the depressed and control
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groups. Specifically, we computed a p-value based on the percent-
age of p-values from 100,000 random shuffles of group labels that
were less than or equal to the original p-value associated with
veridical group labels. To control for false positive inflation as a
result of conducting nine statistical tests, we used a false discovery
rate (FDR) procedure with q= 0.05 (36).

SVM CLASSIFICATION
Support vector machines is a method for supervised classification
developed in the field of machine learning that uses training data
to learn a classifier (i.e., the parameters of a classification func-
tion), which can then be used to classify novel, “test,” data (14).
SVM constructs a hyperplane (i.e., high-dimensional plane) to
robustly separate groups in m-dimensional feature space, where m
is the number of features. To assess classifier performance, we used
leave-one-out cross-validation, averaging performance across N
folds. Leave-one-out cross-validation is a form of k-fold cross-
validation where k is equal to N and is a commonly used method
for the classification of psychiatric disorders (37–39). In each fold
of the cross-validation, the individuals are grouped into disjoint
training and testing sets such that there are no subjects used for
both training and testing in a single fold. This process is repeated
N times and the results from all the folds are averaged to obtain
a final estimate of accuracy (40). This cross-validation design was
used for every result related to classifier performance presented in
this work, and was used to evaluate the generalizability of the clas-
sifier given that there is a separate test set in each fold. Although
we have a relatively small sample size in this study, we do have the
advantage in our analysis of including 3.6 times as many individ-
uals as features; this is a high ratio that should help to reduce the
classification error. All SVM-related analyses were conducted in
MATLAB.

Specifically, here we used linear SVM, generalized to non-
separable training data (14), to classify individuals diagnosed with
depression vs. healthy controls, using graph metrics as the features.
Explicitly, the optimal hyperplane was defined by:

〈w , x〉 + b = 0 (1)

where xi ∈<
d represents graph metric feature vectors with length

d, and w ∈<d separates the groups (i.e., classes) by maximizing
the margin between the hyperplane and each group. The optimal
hyperplane is identified using the L2-norm problem:

argmin
w , b, v

(
1

2
〈w , w〉 + D

∑
i

v2
i

)
(2)

with the following constraints:

yi (〈w , xi〉 + b) ≥ 1− vi

vi ≥ 0
(3)

where D is a penalty parameter, vi represent slack variables, and
y =±1 represents group label with −1 for depressed, and 1 for
control. The value of D was scaled for each data point based on
group size, that is:

D =
N

(2× NG)
(4)

Where NG is the number of individuals in a given data point’s
group. Feature weights were computed based on their relation to
the hyperplane [i.e., |w |; (41)].

SVM PERFORMANCE EVALUATION
We assessed in two ways whether graph metrics can be used to
classify MDD vs. healthy individuals. First, using the sign test,
we assessed the performance of the classifier with all nine global
graph metric features. Second, we used a method based on exhaus-
tive feature combination in which we assessed performance across
an exhaustive set of classifiers created using combinations of the
nine graph metrics. In total, 511 sets of SVMs were trained [i.e.,
all combinations of the nine features (29

− (null feature set)= 511
unique feature sets)]. For a given set, classification of 22 or more
of the 32 folds was considered statistically significant performance
(two-tailed sign test, p= 0.05). Next, to assess SVM performance
across sets, we tested the number of total tests that reached signif-
icance against the null hypothesis that would be expected under
chance performance; that is, that only 5% of the 511 tests would be
expected to reach significance (i.e., two-sided binomial test with
alpha= 0.05).

We used two methods in order to yield complementary infor-
mation regarding classifier performance. The first method relies
on information from all nine graph metrics in a single model,
and thus offers insight into SVM performance using information
across all features. Because feature selection can affect SVM per-
formance, the second method yields information about robustness
across features using all possible combinations of features.

IDENTIFYING MOST ROBUST GRAPH METRIC
We conducted two analyses to evaluate the robustness of indi-
vidual graph metrics for classifying depressed vs. healthy indi-
viduals. First, we assessed feature weights for each graph metric
in the SVM set that included all nine metrics. Feature weights
were computed based on the relation of a given feature to
the decision boundary (SVM hyperplane), as in De Martino
et al. (41). For a given graph metric, the average ranked fea-
ture weight was computed across cross-validation folds to assess
the relative importance of that metric in classification. Higher
ranks indicated greater importance. Ranks were used instead of
raw feature weights as raw feature weights have relative units,
which may not be consistent across folds. Second, using a tech-
nique based on exhaustive feature combination, we aggregated
the accuracies that included each graph metric and then com-
pared raw counts reaching significance (i.e., 22 of 32 correct
classifications); we then used permutation-based two-sample t -
tests to test for statistical differences in these accuracies between
metrics.

These two methods of feature ranking are complementary. The
first method explicitly quantified relations between all features as
computed using SVM feature weights (41) from the full model
(i.e., the model that included all features). The second incorpo-
rated information across all combinations of metrics, focusing on
overall performance accuracies associated with a given feature.
This approach is helpful for assessing the robustness of a given
metric across models while taking into account the influence of
feature selection.
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ADDITIONAL ANALYSES OF THE MOST ROBUST GRAPH METRIC
After identifying the most robust graph metric for classification,
we conducted additional analyses in order to better understand
this metric in relation to classification and differentiation of the
depressed and non-depressed groups, and in relation to clinical
variables within the MDD group. Thus, we tested the aggregate
accuracies of this metric against the null hypothesis of 50% clas-
sification (using a single-sample t -test), in addition to computing
Pearson correlations with scores on the BDI-II and GAF, age at
onset of depression, and years since first depressive episode.

REGIONAL GRAPH ANALYSIS
To assess abnormalities in network-level properties of individual
nodes (i.e., brain regions), we conducted a regional graph analy-
sis including the assessment of degree centrality, or the number
of neighbors for each node, across groups. Degree centrality was
selected based on its simple interpretation and widespread use
(31). Permutation t -tests were used for each comparison, and FDR
(q= 0.05) was used to control for false positive inflation as a result
of multiple statistical tests [i.e., 68 tests, one per region; (36)].

RESULTS
DEMOGRAPHICS AND CLINICAL ATTRIBUTES
The depressed and non-depressed participants did not dif-
fer in level of education [χ2(3)= 1.83, p > 0.60], handedness
[χ2(1)= 0.15, p > 0.70], or age [t (30)=−1.53, p > 0.10]. Not
surprisingly, the MDD group obtained higher BDI-II and HAM-D
scores, and lower GAF scores, than did the control group [BDI-II:
t (30)= 16.59, p < 0.001; HAM-D: t (30)= 15.20, p < 0.001; GAF:
t (30)= 14.36, p < 0.001; Table 2]. Based on standard BDI-II score
cutoffs [moderate depression= 20–28; severe depression= 29–
63; (17)], our depressed sample spans moderate to severe lev-
els of depression (minimum score= 22; maximum score= 43).
Three depressed participants were currently taking one or more
psychotropic medications, including Venlafaxine and Sertra-
line, and three depressed participants were currently receiving

psychotherapy. In addition, 7 of the 14 MDD participants met
criteria for one or more anxiety disorders (Table 3).

GLOBAL GRAPH METRICS
Univariate analyses of global graph metrics
Following previous structural graph analyses (11–13), we con-
ducted univariate analyses on the global graph metrics examined
in this study to assess the relations of specific global graph metrics
to MDD. Global flow coefficient was the only metric that yielded
an uncorrected permutation t -test p-value of <0.05; after FDR-
correction, no permutation t -test comparing global graph metrics
between groups reached significance (Table 4).

General SVM classification performance
To assess the utility of SVM with global graph metric features
for classifying depression, we assessed performance of the SVM
set that included all nine metrics using the sign test. This test
reached statistical significance (71.88% general accuracy, 71.43%
sensitivity, 72.22% specificity; sign test: p < 0.025). In addition,
we counted the number of sets of SVMs (using features from all
combinations of the 9 metrics) that reached significance (i.e., 22 or
more correct classifications from 32 folds during cross-validation).
This count was then tested statistically using the binomial test with
an expected outcome of 5% of tests reaching significance. A total
of 228 of the 511 sets of SVMs reached significance (binomial test:
p < 0.001).

SVM performance associated with specific graph metrics
To evaluate the utility of specific global graph metrics for depres-
sion classification, we first computed feature weights for graph
metrics in the SVM set that included all nine graph metrics, and
then averaged their ranks across folds. This analysis indicated that
small-worldness had the highest average feature weight rank (indi-
cating that it was the most important feature for classification),
followed by global efficiency and modularity (Table 5). Second, we
compared the SVM set accuracies associated with different global

Table 2 | Demographic information by group.

CTL (N = 18) MDD (N = 14) p-value

Sex: male/female 0 18 0 14 =1.00§

Age: years, M /SD/min/max 30.4 10.2 18.9 52.1 35.6 8.4 22.8 48.5 >0.10*

BDI-II: M /SD/min/max 2.2 3.2 0 11 31.7 6.6 22 43 <0.001*

HAM-D: M /SD/min/max 1.4 2.2 0 6 18.6 4.2 14 26 <0.001*

GAF: M /SD/min/max 87.8 7.0 75 99 53.0 6.6 35 60 <0.001*

Age of depression onset (years): M /SD/min/max NA 16.3 6.8 3 26 NA

Years since depression onset: M /SD/min/max NA 18.2 11.0 3 39 NA

Duration of current episode (months): M /SD/min/max NA 10.2 12.3 2 47 NA

Handedness: left/right 2 16 1 13 >0.70§

Level of education&: M /SD/min/max 6.6 1.5 4 8 7.2 1.1 4 8 >0.60§

CTL, control group; MDD, Major Depressive Disorder group; M, mean; SD, standard deviation; BDI-II, Beck Depression Inventory-II; HAM-D, Hamilton Rating Scale

for Depression; GAF, Global Assessment of Functioning.
&Level of education was quantified as follows an individual having finished: elementary school received education score, 1, junior high school, 2, high school, 3, some

college, 4, technical school, 5, junior college, 6, 4-year college, 7, graduate or professional education, 8.

*Computed using two-sample t-tests.
§Computed using chi-square test.
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graph metrics (i.e., the accuracies of SVM sets that included the
given metric; Table 5). The highest mean classification accuracy
was associated with SVM sets that included small-worldness,
followed by global flow coefficient (permutation t -test: p < 0.001).

Additional analyses of small-worldness
Given that small-worldness performed best and had the highest
ranked feature weight, we conducted further analyses to better
understand the relation of this metric to the classification of
depression. Using a single-sample t -test, we compared the accu-
racies associated with small-worldness to the null hypothesis of a
classification accuracy of 50% (i.e., chance in a binary decision).
This test indicated that the classification accuracies were signif-
icantly greater than chance, t (255)= 9.1, p < 0.001. Neither the
SVM set that included only small-worldness (59.4% accuracy; sign
test: p > 0.35) nor comparing small-worldness between groups
reached significance (Table 4). In addition, we conducted corre-
lations between small-worldness and clinical variables within the
MDD group. None of these tests yielded statistically significant
results: BDI-II, r = 0.11, p > 0.70; GAF, r = 0.23, p > 0.40; age of

Table 3 | MDD group psychiatric comorbidities.

Psychiatric comorbidities Number of MDD

participants

% of MDD group

Any psychiatric comorbidities 7 50.0

Bulimia nervosa 1 7.1

General anxiety disorder 3 21.4

Panic disorder 2 14.3

Post-traumatic stress disorder 2 14.3

Social phobia 4 28.6

Specific phobia 2 14.3

MDD, major depressive disorder group.

onset of depression, r = 0.41, p > 0.10; years since first episode,
r = 0.04, p > 0.85.

REGIONAL GRAPH METRICS
Permutation t -tests yielded uncorrected p-values of <0.05 for
group comparisons of degree centrality for seven brain regions
(Table 6; Figure 1). Three of these tests reached significance after
correction for multiple comparisons using FDR: the right pars
orbitalis of the right ventrolateral prefrontal cortex (VLPFC), right
inferior parietal cortex, and left rostral anterior cingulate.

DISCUSSION
Despite considerable interest in understanding network-level
brain abnormalities in MDD, investigators have not identified

Table 4 | Univariate results comparing graph metrics between groups.

Graph metric CTL MDD p-value*

M SD M SD

Assortativity −0.062 0.022 −0.065 0.038 0.822

Characteristic path length 1.916 0.029 1.907 0.019 0.314

Global betweenness 62.921 2.649 62.559 1.492 0.659

Global efficiency 0.590 0.006 0.593 0.004 0.074

Global flow coefficient 0.329 0.013 0.339 0.013 0.039

Global total flow 1.441 4.592 1.441 3.962 0.991

Modularity 0.334 0.042 0.354 0.039 0.167

Small-worldness 1.548 0.039 1.575 0.040 0.067

Transitivity 0.548 0.012 0.543 0.548 0.187

CTL, control group; MDD, major depressive disorder group; M, mean; SD,

standard deviation.

*p-values computed using permutation t-tests. No test reached significance after

FDR multiple comparison correction.

Table 5 | Accuracy of SVMs sorted by individual graph metric and feature weight ranks for SVM set with all features.

Graph metric Across all SVM sets SVM set with all features

Accuracy SVM count* Rank across foldsa Ranked meansb

M% SD% M SD

Assortativity 64.40 9.3 118 5.78 1.21 7

Characteristic path length 65.39 8.3 123 5.13 1.34 4

Global betweenness 64.29 8.8 115 8.47 0.57 9

Global efficiency 65.75 7.9 122 2.13 0.42 2

Global flow coefficient 66.28 6.9 132 5.53 1.46 6

Global total flow 66.25 8.7 134 8.34 0.75 8

Modularity 65.76 8.2 122 3.22 0.79 3

Small-worldness 68.88 6.3 169 1.03 0.18 1

Transitivity 65.75 8.8 135 5.38 1.31 5

SVM count, number of significant classifications (i.e., the number of sets including the given graph metric that reached significance as defined by the sign test) out

of a total of 256 per metric.

*All p-values <0.001 (as assessed using the binomial test).
aMean (M) and standard deviation (SD) of feature weight ranks across folds, for the SVM set with all nine graph metric features.
bRanked mean ranked feature weights across folds for the SVM set with all nine graph metric features.
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Table 6 | Regional degree centrality by group.

Region CTL MDD p-value*

M SD M SD

Left banks superior temporal sulcus 15.6 2.3 13.1 3.4 0.014

Left entorhinal 3.7 2.9 7.3 3.5 0.003

Left rostral anterior cingulate 20.5 1.2 22.1 1.3 0.002**

Left temporal pole 5.8 2.1 7.4 1.6 0.024

Right inferior parietal 21.4 1.9 18.2 1.7 <0.001**

Right lateral occipital 17.0 1.7 15.7 1.0 0.021

Right Pars orbitalis 5.5 0.7 6.6 1.1 <0.001**

M, mean; SD, standard deviation.

*p-value as computed using permutation two-sample, two-tailed t-tests.

**Significant p-values after correction for multiple comparisons using a false

discovery rate (FDR) procedure (q=0.05).

tractography-based whole-brain graph metrics that differentiate
individuals diagnosed with this disorder from healthy con-
trols. In the present study, we show, first, that individuals
diagnosed with MDD can be differentiated from healthy con-
trols using a collection of whole-brain graph metrics derived
from the diffusion-tractography-based connectomes that can
be optimally combined using the results from SVMs. Sec-
ond, using feature scoring techniques, we found that small-
worldness was associated with the highest classification accu-
racies and largest feature weights. Finally, our results indicate
that regional connectedness is abnormal in MDD. That is, we
used a local graph analysis approach of degree centrality to
compare regional connectedness in MDD to healthy controls
and identified three brain regions that differentiated the MDD
group from the healthy controls: right pars orbitalis, right infe-
rior parietal cortex, and left rostral anterior cingulate. Whereas
the parietal region exhibited reduced connectivity in MDD, the
pars orbitalis and rostral anterior cingulate exhibited greater
connectivity.

Three previous studies that have used tractography-based
graph analyses in MDD found that whole-brain graph metrics
did not differentiate depressed participants from healthy con-
trols (11–13). Indeed, our univariate analyses also did not yield
whole-brain abnormalities associated with MDD. Therefore, our
findings build on previous results by suggesting that combinations
of tractography-based graph metrics are critical for classification
of this disorder, and that multivariate machine learning techniques
can be used to identify these patterns.

Whole-brain graph metrics derived from other imaging meth-
ods (e.g., rs-fMRI or inter-regional volume correlations) have also
been found to identify abnormalities in MDD. For example, using
rs-fMRI, Meng et al. (42) found that MDD was associated with
reduced global efficiency and increased global betweenness and path
length; similarly, Singh et al. (43) used inter-regional volume cor-
relations and found that global clustering coefficient was reduced in
MDD. Notably, several studies have reported using machine learn-
ing to classify depressed vs. healthy individuals using graph metrics
derived from rs-fMRI (44, 45). Graph metrics derived from differ-
ent neuroimaging and electrophysiology modalities may provide

unique and potentially complementary information about abnor-
mal brain networks in depression. Future research may benefit
from explicitly comparing graph metrics derived from different
modalities.

The current findings support the possibility of combining
graph metrics with machine learning to identify biosignatures for
use in a clinical context, for purposes of prevention, diagnosis,
and treatment. For such a use to be viable, it will be neces-
sary to improve classification accuracies for MDD. Given that the
methods used to define nodes have been shown to affect global
graph metrics (46), improved classification may be achieved by
determining the most effective technique for node identification.
For example, it is not clear which of the Desikan–Killiany and
Destrieux cortical parcellations are better for node identification
for the purposes of classification (23, 47), or, more generally,
whether functionally or anatomically defined nodes might yield
stronger classification performance. Classification may also be
improved by using features derived from multi-modal data and
by utilizing more sophisticated machine learning methods. For
example, feature selection techniques may improve performance
by removing redundant features and noise, and some classifi-
cation methods may be more useful than others [e.g., SVMs,
relevance vector machines (RVMs), Gaussian process classifiers
(GPCs); (48)].

Based on feature scoring, small-worldness was associated with
the highest classification accuracies and largest feature weights.
Given that small-worldness was computed as the balance between
a metric of segregation (transitivity) and integration (characteristic
path length), it may offer more information than either segregation
or integration (49). In fact, as additional support for this formu-
lation, we found a statistical trend in our univariate analysis of
small-worldness (p < 0.10), but not of transitivity or characteristic
path length. Despite a potential relation between small-worldness
and MDD, in the current study we did not find statistically sig-
nificant relations between small-worldness and BDI-II scores, age
of depression onset, or years since first depressive episode. This
may be a result of low statistical power. Thus, future research
might profitably examine the relation between small-worldness
and symptoms and characteristics of MDD.

Our analysis of degree centrality revealed abnormal connec-
tivity of the right pars orbitalis, right inferior parietal cortex,
and left rostral anterior cingulate. The FreeSurfer rostral ante-
rior cingulate cortex prominently includes sgACC, one of the
most consistently implicated regions in MDD. For example, neu-
roimaging studies have found that depressed individuals tend to
exhibit increased sgACC activity, and that the extent of this abnor-
mality may be reduced with pharmacological treatment (50).
Moreover, the pars orbitalis, Brodmann’s area (BA) 47 or ante-
rior [VLPFC; (51)], is included in orbitofrontal cortex (OFC),
which is posited to be involved in emotion processing and has
abnormal volume and functional connectivity in MDD (52–55).
Finally, with respect to the right inferior parietal region, the pari-
etal cortex has shown MDD-related abnormalities in cognitive
and affective tasks (56, 57). Specifically, the right parietal cortex
may be implicated in impaired emotion processing and decreased
arousal (58, 59). Our regional graph analyses expand these find-
ings to a tractography-based network context, further supporting
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FIGURE 1 | Cortical surface renderings of regional graph analysis of
degree centrality between groups. Data are rendered on the cortical
surface of an example participant. (A) p-values assessed using permutation
t-tests between groups projected to the cortical surface for each of the 68
regions. (B) Statistical significance of the tests depicted in (A). Seven regions
exhibited p-values <0.05 uncorrected, with three of these regions significant
after correction for multiple comparisons using a FDR (false discovery rate)

procedure (for means and SD, seeTable 6). For (A,B), upper left, left
hemisphere lateral view; middle left, left hemisphere medial view; bottom
left, bilateral anterior view (right hemisphere on left side); upper middle,
bilateral superior view (left hemisphere on left side); bottom middle, bilateral
inferior view (left hemisphere on left side); upper right, right hemisphere
lateral view; middle right, right hemisphere medial view; bottom right,
bilateral posterior view.

Frontiers in Psychiatry | Affective Disorders and Psychosomatic Research February 2015 | Volume 6 | Article 21 | 8

http://www.frontiersin.org/Affective_Disorders_and_Psychosomatic_Research
http://www.frontiersin.org/Affective_Disorders_and_Psychosomatic_Research/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sacchet et al. Classification of depression using graph metrics

the importance of these regions in depression. Because degree
centrality indexes how communication of a given area with the
rest of the brain may be facilitated or reduced, future studies
should relate these MDD-related abnormalities (i.e., facilitated
communication of the right pars orbitalis and left rostral anterior
cingulate, and reduced communication of right inferior parietal
cortex) to specific cognitive and affective processes associated
this disorder. For example, future studies could relate increased
sgACC network connectivity in MDD with abnormal experience
of emotion (60).

One study has documented that individuals with remitted geri-
atric depression exhibit reduced network strength and global effi-
ciency, and increased characteristic path length (61). Thus, future
research might assess the relation of global network properties
to remission and age across the lifespan (i.e., in childhood, ado-
lescence, adulthood, and old age). Given the heterogeneity of
MDD, and the recent proposal by the NIMH supporting the use
of Research Domain Criteria (RDoC), it will also be important
in future research to relate graph metrics to clinical signs and
symptoms, and to behavior and brain processes in a transdi-
agnostic, spectrum-based manner, and to use multiple units of
analysis. This approach promises to increase our understand-
ing of basic network-level abnormalities and their relation to
psychopathology.

We should note four limitations of this study: (1) half of the
MDD participants in this study were diagnosed with comor-
bid anxiety disorders; (2) three MDD participants were taking
psychotropic medications; (3) all participants were female; and,
(4) our sample size is relatively small (N = 32). Thus, it will be
important in future to examine the potential influence of anx-
iety comorbidities, pharmacological agents, age, and gender on
measures of network connectivity in depression, in addition to
replicating our current findings in a larger cohort of depressed
and healthy individuals.

CONCLUSION
The present study is important in describing the first use of
global tractography-based graph metrics for the classification
of depression, and the identification of small-worldness as the
most useful graph metric for this purpose. We further identi-
fied the right pars orbitalis, right inferior parietal cortex, and
left rostral anterior cingulate as exhibiting abnormal connec-
tivity in MDD. These findings highlight important directions
for future research, including the assessment of graph met-
rics across different imaging modalities, optimizing classifica-
tion (e.g., atlas selection), relations of graph metrics to clinical
signs and symptoms, psychiatric comorbidities, and psychotropic
agents.
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