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Several lines of evidence have shown that the endogenous cannabinoids are implicated
in several neuropsychiatric diseases. Notably, preclinical and human clinical studies have
shown a pivotal role of the cannabinoid system in nicotine addiction. The CB1 receptor
inverse agonist/antagonist rimonabant (also known as SR141716) was effective to decrease
nicotine-taking and nicotine-seeking in rodents, as well as the elevation of dopamine
induced by nicotine in brain reward area. Rimonabant has been shown to improve the
ability of smokers to quit smoking in randomized clinical trials. However, rimonabant was
removed from the market due to increased risk of psychiatric side-effects observed in
humans. Recently, other components of the endogenous cannabinoid system have been
explored. Here, we present the recent advances on the understanding of the role of the
different components of the cannabinoid system on nicotine’s effects. Those recent find-
ings suggest possible alternative ways of modulating the cannabinoid system that could
have implication for nicotine dependence treatment.

Keywords: cannabinoid system, nicotine, addiction, endogenous cannabinoids

INTRODUCTION
Among addictive substances, nicotine use is one of the most
prevalent worldwide. The World Health Organization (WHO)
estimates that nearly six million tobacco smokers will die every
year as a consequence of their tobacco use (1). Therefore, tobacco
smoking represents the largest preventable cause of death in the
world. Nicotine exerts its effects on the main neurotransmitter
systems, such as acetylcholine, dopamine, noradrenaline, sero-
tonin, opioid, glutamate, and gamma-aminobutyric acid (GABA)
systems (2–7). There is also mounting evidence supporting the
existence of a significant role of the endocannabinoid system in
mediating the reinforcing and other addiction-related effects of
nicotine. The close overlap of cannabinoid and nicotinic acetyl-
choline receptors (nAChRs) in certain brain areas such as the
midbrain, known to mediate the reinforcing properties of nico-
tine, but also the hippocampus and the amygdala that are involved
in nicotine-associated memory certainly facilitates the interaction
between both systems (8–10). There is also evidence of the exis-
tence of modulatory interactions between endocannabinoid and
cholinergic signaling systems (11–13). Behavioral experiments
have shown specific functional interactions between nicotine and

the endocannabinoid system that could be mediated by brain
structures involved in motivation (14).

The cannabinoid system includes the cannabinoid CB1 and CB2

receptors, endogenous cannabinoids, and the processes responsi-
ble for their biosynthesis, cellular uptake, and metabolism (15–18).
Endocannabinoids are synthesized on-demand and can activate
cannabinoid CB1 and/or CB2 receptors (19, 20). CB1 receptors are
believed to be the main mediators of the psychoactive properties
of delta-9-tetrahydrocannabinol (THC), which is the main psy-
choactive component of cannabis (21). CB1 receptors are among
the most abundant G-protein-coupled receptors in the central
nervous system (CNS) (22). Cannabinoids modify the synaptic
efficacy of central neuronal circuits involved in reward and other
processes by acting at CB1 receptors located pre-synaptically (23).
Although CB2 receptor protein can be detected in the brainstem
neurons using western blotting and immunohistochemistry (24),
yet, levels of expression of brain CB2 receptors are much lower
than those of CB1 receptors (25, 26). CB2 receptor mRNAs were
detected in certain regions of the rat brain such as, the cerebel-
lum, cortex, and brainstem using reverse transcription polymerase
chain reaction (RT-PCR) (24). In contrast to the predominant
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pre-synaptic localization of CB1 receptors in the brain, immunore-
activity studies suggest a more likely post-synaptic localization of
CB2 receptors (25, 26).

There are several endocannabinoids, of which the most stud-
ied have been arachidonoyl ethanolamide (anandamide; AEA)
and 2-arachidonoylglycerol (2-AG). Anandamide synthesis is reg-
ulated through the conversion of a minor phosphoglyceride,
N -arachidonyl phosphatidylethanolamine (N -arachPE), through
two possible pathways. The first pathway involves phospholipase
D (NAPE-PLD) (27) and the second involves two enzymes, alpha
beta hydrolase (ABH4) and glycerophosphodiesterase (GDE1)
(28). The exact processes regulating the involvement of these
enzymes in the synthesis of anandamide have not been fully eluci-
dated. Cessation of endocannabinoid signaling is hypothesized
to happen through the transport inside the cell and the later
degradation by specific enzymes. It is further hypothesized that
anandamide and 2-AG actually share same the intracellular trans-
port mechanism (17, 23). Anandamide and 2-AG seem to diffuse
passively through lipid membranes due their lipophilic nature.
Nevertheless, the diffusion process might be facilitated by a selec-
tive carrier system (29, 30). After anandamide’s uptake inside the
cell, the enzyme fatty acid amide hydrolase (FAAH) degrades it into
arachidonic acid and ethanolamine (31, 32). FAAH and CB1 recep-
tors are widely distributed in the CNS and show partial overlap.
However, FAAH is mainly available at the post-synaptic neurons
whereas CB1 receptors are located at the pre-synaptic neurons
(33, 34). On the other hand, 2-AG has its own distinct structure
and different biosynthesis and degradation pathways. Moreover,
2-AG appears to be formed under conditions different from those
required for the synthesis of anandamide and is modulated by
different pharmacological mechanisms. 2-AG is synthesized in
response to cellular activation from arachidonic acid-containing
membrane phospholipids. The most important pathway for 2-
AG synthesis is the phosphatidylinositol (PI)-phospholipase C
(PLC)/DAG lipase [diglyceride lipase (DAGL)] pathway, which
involves the hydrolysis of inositol phospholipids by PLC. The
second pathway for producing 2-AG is through the sequential
hydrolysis of PI (35). Although a large number of enzymes are
involved in the hydrolysis of monoacyl glycerols, evidence has
shown that MAG lipase [monoglyceride lipase (MAGL)] might
play a fundamental role on 2-AG degradation. The remaining 2-
AG seems to be hydrolyzed by ABHD6 and ABHD12 enzymes
(36), although the information on this regard is limited. Inter-
estingly, it has been demonstrated that anandamide enhances
the metabolism and in turn attenuates 2-AG effects in the stria-
tum (37). These findings suggest that anandamide and 2-AG
might have different actions according to the different physiolog-
ical or pathophysiological conditions under which they are syn-
thesized (17). Endocannabinoids function as non-conventional
neuromodulators whose functions include retrograde signaling
and they mediate several types of synaptic plasticity (38). Once
released by post-synaptic neurons, endocannabinoids will inhibit
neurotransmitter release by pre-synaptic neurons. The respective
inhibition of GABA or glutamate release by endocannabinoids
mediate depolarization-induced suppression of “inhibition”(DSI)
(39, 40) or the depolarization-induced suppression of “excita-
tion” (DSE) (41), respectively. The occurrence of DSE and DSI

in the mesocorticolimbic system (42–44) is relevant because of
the importance of this system in addiction.

Emerging evidence has shown that the endogenous cannabi-
noid ligands are implicated in drug addiction processes (10, 45,
46). We will review the literature on nicotine only. Initial pre-
clinical and human clinical studies suggested that the use of CB1

receptor inverse agonists/antagonists such as rimonabant (also
known as SR141716) and AM251 might be effective for the treat-
ment of nicotine addiction (47). In fact, rimonabant was able to
improve smoking cessation rates in controlled trials (47). How-
ever, the use of rimonabant was associated with higher rates of
anxiety and depression (48, 49), and consequently this medication
was withdrawn from the market in 2008 (50). In this article, we
will review the recent advances that have occurred in the last few
years regarding our understanding of the different components of
the cannabinoid system and how it possibly modulates nicotine
addiction.

NICOTINE DEPENDENCE AND BRAIN REWARD PATHWAYS
To better interpret how endocannabinoids modulate the rein-
forcing effects of nicotine, it is important to understand how
nicotine interacts with the different brain reward pathways, par-
ticularly the mesolimbic dopaminergic pathway. The psychoactive
effects of nicotine are believed to occur through its activation of
the nAChRs. These receptors are located in a variety of brain
areas and are not limited to the central cholinergic pathways.
The nAchRs have been detected in high densities in the thala-
mus and caudate nucleus, moderate densities in the frontal and
temporal parietal cortices, and in the cerebellum with low levels in
white matter tracts (51). Exposure to nicotine in a chronic man-
ner leads to desensitization (52) and up regulation (53) of α4β2*
subtype of high-affinity nAChRs (54). This receptor subtype has
been shown to play a major role in mediating the reinforcing and
antinociceptive effects of nicotine. In the ventral tegmental area
(VTA), nicotine binds to nAChRs located on nerve terminals of
GABAergic and glutamate neurons projecting on the dopaminer-
gic neurons, but also on nAChRs located directly on dopamine
neurons (55). The dopamine neurons project to several brain
regions implicated in reward including the nucleus accumbens
(NAc). Nicotine administration ultimately stimulates the release
of dopamine in the dorsal and ventral striatal terminals, notably
the NAc (52). These findings have been validated using positron
emission tomography (PET) approach (56, 57). Notably, a recent
PET study using [11C]-(+)-PHNO PET tracer have shown that
tobacco smoking produced elevation of dopamine in the limbic
striatum and in extra-striatal area (the ventral pallidum) (57).
Interestingly, this study identified that in smokers, dopamine
release in the limbic striatum was associated with motivation
to smoke, anticipation of pleasure from cigarettes, and relief of
withdrawal symptoms. Furthermore, studies have shown that the
lesion of the mesolimbic dopamine system (58) or administration
of selective dopamine antagonists results in a significant decrease
of nicotine self-administration in rats (59). On the other hand,
several neurotransmitter systems have shown to play a vital role in
nicotine dependence. Studies have shown that nicotine-induced
dopamine release can be reduced significantly by atropine (mus-
carinic receptor antagonist), eticlopride (dopamine D1/2 receptor
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antagonist), and MK801 [N -methyl-d-aspartate (NMDA) antag-
onist] (60). It has been shown that smoking cigarettes enhances
plasma levels of endogenous opioids (61, 62) and that nicotine
stimulates the release of β-endorphins in neuronal cell cultures
(63). Furthermore, nicotine-conditioned place preference (CPP)
and nicotine-induced antinociception were significantly attenu-
ated in µ-opioid knockout mice compared to wild-type mice (64).
Additionally, naloxone has been shown to block nicotine CPP in
mice (65).

ENDOCANNABINOID MODULATION OF DOPAMINERGIC
NEURONAL INPUTS
The dopaminergic system has long been hypothesized to play an
essential role in the formulation of goal-directed behaviors of
natural rewards and drugs of abuse including nicotine (58, 66,
67). Furthermore, the conditioned-reinforcing properties of drugs
of abuse and their associated stimuli are also mediated through
the dopaminergic system (68, 69). Dopamine is further involved
in the development of behavioral sensitization that follows the
repeated administration of drugs of abuse, as well as non-drug
stimuli (70).

Several lines of evidence have demonstrated the significance of
the dopaminergic system in cue associations. Using a discrimi-
native stimulus and a conditioned stimulus as conditioning tasks
associated with a food reward,Miller and colleagues,demonstrated
an increase in neuronal firing in the VTA and substantia nigra (71).
Similarly, in monkeys, phasic neuronal responses were recorded in
response to conditioned stimuli in dopaminergic neurons (72).

The modulatory role of the endocannabinoid system on signal-
ing in the mesolimbic dopamine reward system (73, 74), is believed
to be substantiated by its abundant presence within the VTA (75,
76). The ability of endocannabinoids to act as retrograde neuro-
transmitters (44) allows them to attenuate the activity of external
afferents (pre-synaptic neurons) (42) and allows dopamine neu-
rons (post-synaptic neurons) to regulate their own function (43).
This topic has been recently reviewed by Wang and Lupica (77) and
will be not developed here. It appears that the main endocannabi-
noid regulating dopamine firing is 2-AG and it has been proposed
that the burst firing activity pattern of dopamine neurons as well as
the long-term plasticity effects induced by drugs of abuse are reg-
ulated by 2-AG (77, 78). The critical role of endocannabinoids
mediating the ability of drugs of abuse, including nicotine, to
stimulate reward pathway is shown by multiple pharmacological
studies (14, 79, 80).

ROLE OF CB1 RECEPTORS ON NICOTINE ADDICTIVE
PROPERTIES
In rats, the selective CB1 receptor inverse agonist/antagonist
rimonabant decreases intravenous nicotine self-administration
behavior and also nicotine-induced elevations in extracellu-
lar dopamine in the NAc (14). We and others subsequently
reported that rimonabant decreases the motivation to self-
administer nicotine, as measured using progressive-ratio schedules
of reinforcement (81) (see Figure 1), blocks the development of
nicotine-induced CPP (82–84), and the reinstatement of previ-
ously extinguished nicotine-seeking behavior in rats (81, 85, 86)
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FIGURE 1 | Effects of rimonabant on motivation for nicotine in rats. In
(A), rimonabant [0.3–3 mg/kg, IP 60 min pre-treatment time (PTT)]
dose-dependently reduced nicotine (0.03 mg/kg/injection) self-administration
under a progressive-ratio schedule. Data are expressed as means (±SEM) of
the number of injections (break-point, left y -axis) and of the last ratio
completed (in number of lever presses, right y -axis) during baseline (BL)
conditions, rimonabant pre-treatment, and vehicle pre-treatment and
substitution of nicotine with saline (EXT). N =8. **p < 0.01; ***p < 0.001 vs.
baseline (BL), Dunnett’s test after significant ANOVA for repeated measures.
In (B), effects of rimonabant (1 mg/kg, IP 60 min PTT) on nicotine

self-administration under a progressive-ratio schedule during three
consecutive sessions. Data are expressed as means (±SEM) of the number
of injections (break-point, left y -axis) and of the last ratio completed (in
number of lever presses, right y -axis) during baseline (BL) conditions, during
three consecutive sessions with rimonabant pre-treatment (1 mg/kg) and
during three consecutive sessions with vehicle pre-treatment and substitution
of nicotine with saline. N =9. **p < 0.01; ***p < 0.001 vs. baseline;
$$p < 0.01 vs. vehicle extinction group, Student Newman–Keuls multiple
comparison test after significant ANOVA for repeated measures. The figure
and its caption have been reproduced with permission from Ref. (81).
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FIGURE 2 | Effects of rimonabant on nicotine-seeking in rats. In
(A), effects of rimonabant [0.1 mg/kg, IP 60 min pre-treatment time (PTT)]
on the active (top) and the inactive (below) levers responses during
cue-induced reinstatement of nicotine-seeking. **p < 0.01 vs. baseline;
##p < 0.01 vs. vehicle pre-treatment. In (B), effects of rimonabant (1 mg/kg,

IP 70 min, PTT) on the active (top) and the inactive (below) levers
responses during a nicotine-induced (0.15 mg/kg, SC, 10 min)
reinstatement of nicotine-seeking. ***p < 0.001 vs. baseline; ##p < 0.001
vs. vehicle pre-treatment. The figure and its caption have been reproduced
with permission from Ref. (81).

(see Figure 2). Several studies have shown that genetic deletion
of cannabinoid CB1 receptors reduces nicotine-induced CPP (87,
88). Cannabinoid CB1 receptor stimulation, in contrast, increased
the motivation to self-administer nicotine as measured using a
progressive-ratio schedule of reinforcement (89) (see Figure 3),
enhanced cue-induced reinstatement of nicotine-seeking behav-
ior and the discriminative stimulus effects of low doses of nicotine
in rats (89) (see Figure 4). Several of these responses in rats
were blocked by the CB1 inverse agonist/antagonist rimonabant.
However, the CB2 antagonist AM630, was not able to block CB1

stimulation effects, supporting the critical role of CB1 receptors
in mediating nicotine-dependent processes (89, 90). Interestingly,
blockade of the CB1 receptors in the shell of the NAc, the baso-
lateral amygdala, and the prelimbic cortex (91), but also in the
bed nucleus of the stria terminalis (92), is able to reduce nicotine-
seeking behavior. Nicotine-taking appears to be controlled by CB1

receptors located in the VTA, but not in the NAc (93). Taken
together, these findings indicate that CB1 receptors have a bi-
directional role on both nicotine reward/reinforcement and on
relapse to nicotine-seeking behavior in abstinent subjects.

CB2 RECEPTORS ON NICOTINE ADDICTIVE PROPERTIES
Several lines of evidence indicate that central CB2 receptors could
be implicated in modulating several neuropsychiatric disorders,
including drug addiction (94–96). In fact, the effects of CB1

and CB2 receptor activation (at high doses) can produce similar
effects such as antinociception and catalepsy (97, 98). However, the
activation of CB2 receptors by the selective CB2 agonist AM1241
did not have effects on motivation to obtain nicotine or nicotine
intake in rats (90). Similarly, the selective CB2 antagonist AM630
did not modify nicotine-taking or motivation to obtain nicotine
under the progressive-ratio schedule of reinforcement. Moreover,

the CB2 agonist and antagonist were not able to affect cue or
nicotine-induced reinstatement of nicotine-seeking behavior (90).
Together, these results further support the current literature on
the distinct behavioral, neurochemical, and immunological pro-
files, of CB1 and CB2 receptors. On the other hand, it should be
noted that in mice, CB2 receptors have been shown to modulate
some addictive properties of drugs of abuse using both genetic
and pharmacological models (99, 100). Another recent study by
Zhang and colleagues, reported that activation of CB2 receptors
in the VTA can attenuate cocaine self-administration in WT and
CB1 knockout but not in CB2 knockout mice (101). Moreover,
recent studies have documented the relevance of CB2 receptors
on the rewarding/reinforcing properties of nicotine in mice (102,
103). Altogether, these results suggest that there may be important
species differences that mediate these effects. Further studies per-
formed in non-human primates or human subjects would allow
better exploration of these discrepancies.

ROLE OF ENDOGENOUS CANNABINOID LIGANDS IN
MODULATING THE REINFORCING EFFECTS OF NICOTINE
A recent study have shown that the volitional intake of nicotine
(i.e., nicotine self-administration in rats) was able to modify
anandamide and oleoylethanolamide (OEA) levels in the VTA
(104). This is an interesting finding considering that several
studies have described the existence of modulatory effects in
signaling between the endocannabinoid and cholinergic sys-
tems (11–13). The understanding of effects of anandamide and
2-AG in modulating nicotine-reinforcing properties has been
facilitated by the discovery of drugs able to interfere with
the different processes involved in the synthesis, reuptake, and
inactivation of these endocannabinoids. Among those drugs,
N -(4-hydroxyphenyl)-arachidonamide (AM404) and cyclohexyl
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FIGURE 3 | Effects of the stimulation of cannabinoid receptors on
motivation for nicotine. In (A), effects of pre-treatment with WIN 55,212-2
[0.1–1 mg/kg, IP 15 min pre-treatment time (PTT)] on nicotine (0.03 mg/kg/
infusion) self-administration under a progressive-ratio schedule. Data are
expressed as means (±SEM) of the number of infusions obtained during the
4-h sessions. **p < 0.01 vs. vehicle pre-treatment (Dunnett’s test after
significant ANOVA for repeated measures N =9). In (B,C), individual

representative cumulative responses on the active and inactive levers during
nicotine self-administration under progressive-ratio schedule in rats
pre-treated with vehicle (B) or 1 mg/kg WIN 55,212-2 (C). Each short upward
mark on the cumulative lever-press records indicates one nicotine infusion.
Break-point values are indicated and the pattern of response across time on
active and inactive levers is provided below. The figure and its caption have
been reproduced with permission from Ref. (89).
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FIGURE 4 | Effects of the stimulation of cannabinoid receptors on
nicotine-seeking. In (A), rats trained to self-administer nicotine underwent
an extinction phase after which they were pre-treated with WIN 55,212-2
[0.1–1 mg/kg, IP 15 min pre-treatment time (PTT)]. Figure shows responses on
the active lever (top) and inactive lever (bottom). WIN 55,212-2 (0.3 and
1 mg/kg) significantly reinstated nicotine-seeking, assessed by the number of

responses on the active lever (*p < 0.05 and *p < 0.001). No significant
changes in responding on the inactive lever were observed. In
(B), pre-treatment with the CB1 antagonist rimonabant (SR141716A) (1 mg/kg,
IP), but not with the CB2 antagonist AM630 (5 mg/kg, IP) reversed
reinstatement of nicotine-seeking induced by WIN 55,212-2. The figure and its
caption have been reproduced with permission from Ref. (89).

carbamic acid 3′-carbamoyl-3-yl ester (URB597) produce eleva-
tion of anandamide levels by blocking anandamide reuptake or by
inhibiting FAAH, respectively (105, 106).

Based on observations of the effects of cannabinoid recep-
tor agonists and antagonists on nicotine’s rewarding properties,
one could speculate that increasing brain anandamide levels

www.frontiersin.org March 2015 | Volume 6 | Article 41 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gamaleddin et al. Endogenous cannabinoids in nicotine addiction

might enhance nicotine’s rewarding/reinforcing effects. Consistent
with this prediction, Merritt et al. (88) observed enhanced nico-
tine CPP in FAAH knockout mice. Similarly, the pre-treatment
with URB597 enhanced nicotine CPP in mice (88). Adminis-
tration of a sub-threshold dose of nicotine that did not pro-
duce CPP in wild-type mice effectively produced CPP in FAAH
knockout mice, and this effect was mediated by CB1 recep-
tors (88). The enhancement of nicotine’s rewarding effects in
FAAH knockout mice further supports previous studies where
co-administration of sub-threshold doses of nicotine and THC
produced nicotine CPP in mice (107). On the other hand, no
differences on nicotine CPP were observed between FAAH knock-
out and wild-type mice when higher doses of nicotine were
tested (88).

In a marked contrast to the results of Merritt et al. (88) in
mice, FAAH inhibition by URB597 has been shown to reverse
some addiction-related behavioral and neurochemical effects of
nicotine in rats (81, 108). The inhibition of FAAH by URB597 was
able to prevent the development of nicotine-induced CPP, reduced
acquisition of nicotine self-administration behavior, and inhibited
reinstatement of nicotine-seeking behavior induced by nicotine
priming and cue-induced reinstatement in abstinent rats, while
demonstrating no rewarding effects per se (108). However, there
was no impact on nicotine-taking assessed using a fixed-ratio or a
progressive-ratio schedule of reinforcement (81). A possible expla-
nation for the differences observed between those studies is the fact
that different species were used in these studies: rats (81, 108) vs.
mice (88). However, URB597-induced increases in anandamide
brain levels do not differ between mice and rats (109).

POSSIBLE INVOLVEMENT OF NON-CANNABINOID SYSTEMS
FAAH INHIBITORS EFFECTS
There is a surprising similarity between the effects of FAAH inhi-
bition by URB597, which is expected to enhance anandamide
levels and, thus, enhance cannabinoid CB1 receptor signaling, and
those of rimonabant, described earlier, which blocks cannabinoid
CB1 receptor signaling. In addition to a similarity in behav-
ioral effects, it has been shown that both compounds, URB597
and rimonabant, were able to block nicotine-induced increases
of dopamine levels in the NAc (14, 108). The similar effects of
URB597 and rimonabant described above could be explained
by the involvement of non-cannabinoid peroxisome proliferator-
activated nuclear receptor (PPAR-α) systems (110, 111). There-
fore, PPAR-α receptors seems to mediate the effects of FAAH
inhibition on nicotine’s abuse-related behavioral and neurochem-
ical effects in both rats and monkeys while CB1 receptors may
play the major role in mediating the effects of FAAH inhibi-
tion on nicotine’s abuse-related behavioral and neurochemical
effects in mice. This is supported by findings by Fegley et al. (109),
showing that 2 h after treatment with 0.3 mg/kg URB597, there
was only a twofold increase in brain levels of the endogenous
PPAR-α ligand OEA and palmitoylethanolamide (PEA) in mice
compared to a four to fivefold increase in OEA and PEA levels
in rats (109). In contrast, as commented above, URB597-induced
increases in anandamide brain levels do not differ between mice
and rats (109). Moreover, the PPAR-α receptor antagonist MK-
886 blocked URB597-induced reductions in nicotine’s effects on

dopaminergic neuronal activity in rats (112). Similar to URB597,
a variety of natural and synthetic PPAR-α receptor agonists were
shown to decrease nicotine-reinforcing properties and reinstate-
ment nicotine-seeking in different species (111). Another mech-
anism by which PPAR-α ligands are proposed to modulate the
reinforcing effects of nicotine is downstream that activation of α7-
nAChR subtype. During low activity, acetylcholine preferentially
binds to high-affinity β2-nAChRs. This binding does not trig-
ger nAChRs-mediated modulation of PPAR-α ligands. However,
upon activation of cholinergic receptors, low affinity α7-nAChRs
located in the extra dendritic regions of dopaminergic neurons
are activated. This activation leads to an increase in intracellular
Ca2+ which stimulates the synthesis of the PPAR-α ligands OEA
and PEA as well as, anandamide. These ligands in turn activate
PPAR-α which exerts negative modulation of β2-nAChRs through
tyrosine kinase-mediated phosphorylation of β2-nAChRs. This
mechanism demonstrates how dopaminergic neurons in the VTA
have an ability to self-regulate their firing through selectively
increasing OEA and PEA levels (110, 113). Thus, PPAR-α recep-
tors could also be mediating their inhibitory effect on nicotine’s
addiction-related behavioral and neurochemical effects through a
non-FAAH pathway (111).

Anandamide might also modulate nicotine effects by targeting
other receptors such as transient potential receptor of vanilloid
type 1 (TRPV1) or even nicotine receptors. Indeed, anandamide
has been shown to inhibit α4β2-nAChRs function in a CB1

receptor-independent manner (114, 115). Therefore, the effect
of endocannabinoids on nicotine-reinforcing properties seems
to be complex and suitable of being affected by different vari-
ables including the species and nicotine doses being tested. Other
non-cannabinoid systems as vanilloid and PPAR-α might also be
involved.

SIMILARITIES BETWEEN FAAH INHIBITORS AND
ENDOCANNABINOID UPTAKE INHIBITORS EFFECTS
In support of the results obtained with the FAAH inhibitor URB
597, the anandamide uptake inhibitor VDM11 (5Z, 8Z, 11Z, 14Z)-
N -(4-hydroxy-2-methylphenyl)-5, 8, 11, 14-eicosatetraenamide,
was able to reduce both cue- and nicotine-induced reinstate-
ment of nicotine-seeking behavior. However, VDM11 did not
affect responding for nicotine under fixed-ratio or progressive-
ratio schedules of reinforcement (116) (see Figure 5). Findings
with VDM11 were further confirmed using AM404, another anan-
damide uptake inhibitor, which also attenuated cue and nicotine
priming reinstatement of nicotine-seeking behavior (117). Addi-
tionally, AM404 decreased nicotine CPP and its reinstatement.
AM404 has been also shown to attenuate dopamine increase on
the NAc shell following nicotine injection (118). The fact that two
different ligands developed to elevate anandamide levels produce
similar effects, strongly suggest that those effects are mediated by
anandamide elevation.

The effects observed with VDM11 and AM404 on nico-
tine reward/reinforcement, were further supported by Oleson
and Cheer (119) using the intracranial brain stimulation par-
adigm. Elevating levels of anandamide using the anandamide
uptake inhibitor VDM11 reduced NAc neural encoding of reward-
predictive cues and attenuated reward seeking, defined as the time
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FIGURE 5 | Effects of VDM11 on cue and nicotine priming reinstatement
of nicotine-seeking behavior. In (A), a significant reinstatement of nicotine-
seeking behavior was produced by presentation of nicotine-associated cues
in non-treated animals (*p < 0.01). Pre-treatment with VDM11 [3 and 10 mg/
kg, IP 30 min pre-treatment time (PTT)] significantly reduced cue-induced
reinstatement of nicotine-seeking behavior (#p < 0.05). In (B), a significant
reinstatement of nicotine-seeking was also produced by pre-treatment with

nicotine (0.15 mg/kg) (*p < 0.01). VDM11 (3 and 10 mg/kg, IP 30 min PTT)
significantly reduced the reinstatement of nicotine-seeking behavior induced
by a priming injection of 0.15 mg/kg nicotine administered 10 min before the
session (#p < 0.05). Data are expressed as means (±SEM) of the number of
active lever presses during extinction (BSL) vehicle pre-treatment (visual
cues). The figure and its caption have been reproduced with permission from
Ref. (116).

occurring between cue presentation and a reward-directed behav-
ioral response (120). A possible explanation for these findings
is that VDM11 increases anandamide to a greater extent than
2-AG in vivo (121). Since anandamide functions as a partial ago-
nist, the elevation of its levels in the brain induced by VDM11
might allow it to compete with 2-AG, a full CB1 receptor agonist
(122), thereby anandamide might block 2-AG effects on reward
seeking. In fact, comparing different behavioral studies suggest
that anandamide and 2-AG may have opposite effects on reward-
seeking behavior (81, 116, 119, 120). Interestingly, anandamide
and 2-AG are effective reinforcers as evaluated using the intra-
venous drug self-administration paradigm in squirrel monkeys
(123, 124). However, while 2-AG increases dopamine neurotrans-
mission (125) and facilitates reward-directed behavior (125, 126),
the elevation of anandamide levels attenuates the ability of cues to
motivate reward-seeking behavior (81, 116, 119, 120).

It has been suggested that VDM11 might be actually a sub-
strate for FAAH. Thus, it has been shown that VDM11 reduces
FAAH hydrolysis of anandamide in vitro [(127, 128), also see
Ref. (129)]. Therefore, the above described effects of VDM11
attenuating reward seeking might be due FAAH inhibition as well
as reduced anandamide uptake. In that case,other fatty acid amides
affected by FAAH catabolic effects, such as PEA and OEA, might
also potentiate the effects of anandamide at TRPV1 receptors
(130). As the specific pharmacological mechanisms of action of
endocannabinoids remain unclear, it would be interesting to inves-
tigate the brain regions involved in mediating the effects observed
with increasing levels of anandamide (e.g., intraregional injection
of anandamide uptake inhibitors in areas of the brain that may be
involved in mediating reward/reinforcement such as the basolat-
eral amygdala and the NAc shell) (131). The ubiquitous nature of
the endocannabinoid system might provide another interpretation
regarding the pharmacological mechanism of action by which

anandamide uptake inhibitors modulate neural mechanisms of
reward seeking (132–134).

An alternative explanation of how VDM11 might attenuate
reward seeking comes from the pharmacological inhibition of the
membrane transporter. The bi-directional role of the membrane
transporter in transporting anandamide and 2-AG (29, 30, 135)
might explain the effects of VDM11 in reward seeking. In fact,
recent studies using VDM11 have reported effects that are in close
resemblance to those observed following CB1 receptor blockade
(116, 119).

ENDOCANNABINOIDS AND NICOTINE WITHDRAWAL
Endocannabinoids seem to be implicated in the response to with-
drawal from nicotine. The concomitant treatment with nicotine
and THC in mice induced an increased withdrawal syndrome
when these mice were challenged with rimonabant (107). Addi-
tionally, the administration of THC seems to attenuate the mag-
nitude of nicotine withdrawal (136). On the other hand, rimon-
abant failed to induce withdrawal in nicotine-dependent animals
(136), suggesting that the cannabinoid system is not involved in
the expression of nicotine physical dependence. However, more
recent findings have reported modification in the number of nico-
tine receptors following chronic exposure to cannabinoids (137).
Additionally, Cippitteli and colleagues reported that withdrawal
from nicotine is associated with fluctuations in anandamide
but not in 2-AG (138). Interestingly, the same study showed
that administration of URB597, decreased nicotine withdrawal
associated anxiety, but did not alter somatic signs of nicotine
withdrawal (138).

CONCLUSION
It appears, from the experiments conducted in preclinical mod-
els (and partly validated by the testing of rimonabant in human
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clinical trials) that the CB1 receptors are critically involved in
mediating nicotine reward/reinforcement. CB1 receptors also
seem to be involved in mediating cue and nicotine priming rein-
statement of nicotine-seeking behavior. Further work is needed
to explore the role of CB1 receptors in nicotine-seeking induced
by stress. It appears that many of these findings hold true in
non-human primate studies as well as rodents (46, 47, 139).
Thus, the CB1 receptor appears to be a logical target for drug
development. As inverse agonist/antagonists have been found to
have negative side-effects in humans (i.e., anxiety/depression),
novel approaches, such as neutral CB1 receptor antagonists that
might be effective against drug addiction without inverse ago-
nist/antagonists side-effects, could represent a better therapeutic
option (140–142). Limited experiments conducted in rats, suggest
that the CB2 receptor has no involvement in mediating nico-
tine self-administration and relapse to nicotine-seeking. However,
since differences have been reported in the role of CB2 receptors
in mice and rats, it would be interesting to further explore the role
of CB2 receptors before concluding that this receptor is not an
interesting target. Recent experiments suggest that elevating brain
anandamide levels would be an effective strategy to reduce relapse
to nicotine-seeking behavior, but not to reduce ongoing nicotine-
taking behavior. This is of great interest as such a strategy has
been shown to decrease anxiety and depression in some animal
models and may therefore be better tolerated than CB1 receptor
inverse agonist/antagonists. However, we have no validation in
humans of these interesting findings. Finally, exploring the role of
the endogenous cannabinoid receptor ligand 2-AG on nicotine-
taking and -seeking behavior will improve our understanding
of the respective behavioral role of different endocannabinoids.
Overall, those recent studies suggest that the endocannabinoid
system still presents many opportunities for development of novel
therapeutic strategies for nicotine addiction.
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