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Not everyone exposed to trauma suffers flashbacks, bad dreams, numbing, fear, anxiety,
sleeplessness, hyper-vigilance, hyperarousal, or an inability to cope, but those who do may
suffer from post-traumatic stress disorder (PTSD). PTSD is a major physical and mental
health problem for military personnel and civilians exposed to trauma. There is still debate
about the incidence and prevalence of PTSD especially among the military, but for those
who are diagnosed, behavioral therapy and drug treatment strategies have proven to be
less than effective. A number of these treatment strategies are based on rodent fear con-
ditioning research and are capable of treating only some of the symptoms because the
extinction of fear does not deal with the various forms of hyper-vigilance and hyperarousal
experienced by people with PTSD. To help address this problem, we have developed a
preclinical eyeblink classical conditioning model of PTSD in which conditioning and hyper-
arousal can both be extinguished. We review this model and discuss findings showing that
unpaired stimulus presentations can be effective in reducing levels of conditioning and
hyperarousal even when unconditioned stimulus intensity is reduced to the point where it
is barely capable of eliciting a response. These procedures have direct implications for the
treatment of PTSD and could be implemented in a virtual reality environment.

Keywords: conditioning-specific reflex modification, explicitly unpaired, extinction, reflex modification, rabbit
nictitating membrane response, virtual reality

INTRODUCTION
People exposed to trauma who suffer flashbacks, bad dreams,
numbing, fear, anxiety, sleeplessness, hyper-vigilance, hyper-
arousal, or an inability to cope comprise the 15–25% who suffer
from post-traumatic stress disorder (PTSD) (1–3). There is a cru-
cial need to know how responding to stressful events changes as a
function of trauma for patients who suffer from PTSD and partic-
ularly combat-related PTSD – a condition that can be resistant to
behavioral and drug therapy (2, 4, 5). PTSD is the most common
psychiatric condition for which veterans seek services (6, 7). PTSD
among veterans may be 3 times higher than in the general pop-
ulation, although it may be 30 times higher in combat veterans
(8). Even these numbers may be underestimates due to under-
reporting of mental disorders in active duty personnel because of
perceived weakness, loss of confidence, stigma, and threat to career
posed by a need for mental health services (6, 9–11). Adding fur-
ther concern are recent findings that PTSD can lead to an increased
risk of dementia (12, 13) and PTSD symptoms can last more than
15 years (14). Despite some progress in diagnosing and treating
PTSD in civilians, treating veterans is less successful (5, 15, 16), and
PTSD among veterans results in increased death (17, 18) includ-
ing suicide (18, 19). It is clear every effort, including better animal
modeling, needs to be made to improve our understanding and
treatment of PTSD.

Researchers have developed a range of animal models of PTSD
(3, 20–29). Although animal models cannot capture all the aspects
of a human disorder, they are invaluable for developing and testing

potential treatments, especially when a model expresses more than
one phenotype of PTSD (30–33). However, many of the current
animal models of PTSD have limitations. First, they focus on the
fear associated with trauma (fear conditioning) without assess-
ing or treating the hyperarousal caused by trauma or they focus
on stress-induced hyperarousal without assessing or treating fear
conditioning. Second, the majority of animal models rely on group
data, and it is clear that not everyone exposed to trauma develops
PTSD (2, 13, 30, 34, 35). In fact, depending on the population and
on the type of trauma, only 5–25% of exposed people develop
PTSD (1–3).

We have developed an animal model of PTSD in which con-
ditioning and hyperarousal can both be extinguished (36). The
model is based on observations that the eyeblink response becomes
exaggerated as a function of classical conditioning (37–43). The
exaggerated response occurs when the eliciting stimulus such
as an air puff or periorbital electrical stimulation is tested by
itself, and this form of hyperarousal is termed conditioning-
specific reflex modification (CRM). CRM is detected by com-
paring responses to a range of unconditioned stimulus (US)
intensities by themselves before and after classical condition-
ing. This phenomenon has been observed by others in rabbit
eyeblink conditioning (44, 45) and in rat eyeblink condition-
ing (46). We now have strong evidence we can “treat” CRM as
well as extinguish conditioned responses (CRs) to stimuli asso-
ciated with the US. Importantly, high levels of CRM only occur
in 15–25% of rabbits exposed to eyeblink classical conditioning
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Schreurs and Burhans PTSD – a model systems approach

(EBCC) – levels that are consistent with the incidence of PTSD
(2, 3, 35).

EYEBLINK CLASSICAL CONDITIONING
EBCC IN HUMANS
The history of human EBCC dates back to German studies begin-
ning in 1899 and described by Woodruff-Pak and Steinmetz (47)
who referenced an exhaustive bibliography of over 500 human
EBCC studies from 1899 to 1985 compiled by Gormezano (48).
EBCC in the United States was pioneered by Cason in 1922 using
electric shock as the US (49). EBCC was then expanded upon by
Hilgard in a subsequent series of studies in the 1930s with rats,
dogs, monkeys, and humans which were all conducted with what
has become the standard US for EBCC particularly in humans – a
puff of air to the eye (50). The first documented studies of EBCC
to investigate psychiatric disorders were published in the 1950s
by Spence and Taylor when EBCC was assessed in subjects with
anxiety (51) and those with neurosis and psychosis (52, 53).

The first report of EBCC in patients with PTSD was a study
by Ayers and colleagues using delay conditioning in veterans (54).
A number of other studies followed mostly in veterans (55–58)
and one in civilians (59). The consensus of these studies is that
there may be changes in EBCC as a result of PTSD but the effects
are quite variable and may involve personality traits (57). These
studies are reviewed in more detail in the accompanying articles
from the Servatius laboratory.

EBCC IN ANIMALS
As noted above, the history of EBCC in animals began with studies
using dogs in 1935, monkeys in 1936 (50), and rats in 1938 (60).
Perhaps because of the strong focus on human eyelid condition-
ing in the intervening years (48), little if any attention was paid
to EBCC in animals until the 1960s. A return to EBCC in animals
may also have reflected the neurobiological limitations inherent
in and the growing theoretical and methodological controversies
surrounding human EBCC (47, 61, 62). To address these method-
ological issues as well as provide the behavioral basis for studying
learning’s neural substrates, Gormezano and colleagues developed
classical conditioning of a series of related skeletal responses in
the rabbit centered on the eyelid and nictitating membrane (63–
66). These preparations were followed by the development of jaw
movement conditioning, classical conditioning of an appetitive
response (67), and heart rate conditioning, classical conditioning
of an autonomic response (68, 69). In order to overcome the very
limited ability to use invasive techniques in humans and pursue the
growing interest in the neural substrates of learning, Thompson
and colleagues began to use neural recording and lesion tech-
niques to delineate the pathways and substrates of EBCC in the
rabbit (70–72).

REFLEX MODIFICATION
Although the focus of nearly all classical conditioning experiments
has been on the development of a CR (e.g., eyeblink) to the condi-
tioned stimulus (CS, e.g., tone), some attention has also been paid
to the unconditioned response (UR, e.g., eyeblink) to the US. For
example, there is ample evidence that URs may be modified as a
result of non-associative processes. Illustrated in the top panel of

Figure 1 is an example of a non-associative change in the eyeblink
where repeated elicitation of the eyeblink indexed by measuring
the nictitating membrane response (NMR) can lead to a reduction
in the amplitude of the response known as habituation (73–81). In
this example, a rabbit’s response to a strong periorbital electrical
stimulus (2 mA, 100 ms) decreases across four 20-trial blocks of
electrical stimulation presented at different intensities (0.1, 0.25,
0.5, 1.0, and 2.0 mA) and durations (10, 25, 50, 100 ms). URs may

FIGURE 1 | Example of habituation and reflex modification. The top
panel of the figure shows representative nictitating membrane responses
(eyeblink) to a 2.0-mA, 100 ms periorbital electrical stimulus for an individual
rabbit during the first (black, Pretest 1), second (red, Pretest 2), third
(Pretest 3), and fourth (Pretest 4) block of pretesting to periorbital electrical
stimuli of different intensities (0.1, 0.25, 0.5, 1.0, and 2.0 mA) and durations
(10, 25, 50, 100 ms). The onset of the responses are staggered from left to
right to help illustrate the decrease in response amplitude (solid arrows)
known as habituation as a function of repeated stimulus presentations
across the four blocks. The middle panel shows the response on Pretest 1
(black) compared to the response to the same 2.0-mA, 100 ms periorbital
electrical stimulus on the first paired trial (blue, Paired Trial 1) of the tone
conditioned stimulus and the periorbital electrical unconditioned stimulus.
The open arrows indicate the increase in the amplitude of the response
known as reflex facilitation on the paired trial. The bottom panel depicts the
response on the first paired trial of the tone conditioned response and the
periorbital electrical unconditioned stimulus on the first day (blue, Paired
Trial 1 Day 1) compared to the first paired trial on the sixth and last day
(green, Paired Trial 1 Day 6). The diamond arrowheads indicate the decrease
in the amplitude of the response on the later paired trial when a conditioned
response is present (earlier response onset). This decrease in amplitude is
known as conditioned diminution.
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Schreurs and Burhans PTSD – a model systems approach

also be enhanced or undergo sensitization; that is, a response to
a weak stimulus will become larger if it is elicited after a series
of stronger stimulations (82). Although non-associative, sensiti-
zation can also occur during pairings of the CS and US and can
be estimated on the basis of unpaired presentations of these two
stimuli (83). A CS may facilitate the rabbit NMR the first time the
tone and air puff (or periorbital electrical stimulation) are pre-
sented together (that is, before any association could have formed
between the two stimuli). Depicted in the middle panel of Figure 1
is an example of an eyeblink that increased in size in the presence
of a tone CS – a phenomenon known as reflex modification, in
this case reflex facilitation (84–96).

Unconditioned responses may also be modified as a result of
associative processes and there is substantial evidence that a UR
can be modified as a function of CS–US pairings. For exam-
ple, the presence of a CS may decrease the size of the UR after
repeated pairings have resulted in the formation of an association.
This is a phenomenon known as conditioned diminution (85, 89).
The bottom panel of Figure 1 shows an example of conditioned
diminution where there is a decrease in the amplitude of the eye-
blink UR from the first paired trial where there is no CR to a later
paired trial where there is a CR (indicated by the earlier onset
latency compared to the first trial on which only a UR is present).

In all of these aforementioned studies, the focus has been on
changes in the UR that are attributable to the CS. Consequently,
dependent variable measures, such as amplitude of the response,
have been assessed in the presence of the CS as in the case of
the bottom panel of Figure 1. Our original studies were influ-
enced by the hypothesis that classical conditioning alters not only
CS processing but also alters US processing. This hypothesis is
consistent with a local interaction model of learning and mem-
ory in which CS and US inputs interact at a number of local
dendritic sites distributed across a neuronal array (97, 98). It is
from this background that we first observed the changes in the
UR that has come to be termed CRM (37). By way of contrast to
earlier studies where the UR was assessed in the presence of the
CS, the experiments reviewed here focus on the effects of condi-
tioning on responding to the US in the absence of the CS and,
hence, examined conditioning-specific effects that are intrinsic to
US processing and UR production.

CONDITIONING-SPECIFIC REFLEX MODIFICATION
THE BASIC PHENOMENON
Figure 2 shows an example of CRM in which representative NMRs
to a 0.5-mA periorbital electrical stimulus are shown in a rabbit
before (Pretest), 1 day after (Post Test 1), and 1 month (Post Test 2)
after 6 days of EBCC (Paired). The responses show clear increases
in amplitude, area, and peak latency compared to the responses in
a control rabbit after 6 days of explicitly unpaired presentations of
the tone CS and periorbital electrical stimulation US (Unpaired).
Thus, CRM occurs following EBCC and persists for a month but
does not occur following explicitly unpaired stimulus presenta-
tions – the optimal control condition for assessing non-associative
contributors to responding (83). CRM is detected by comparing
responses to a range of US intensities presented by themselves
before and after classical conditioning and has been observed by
others following EBCC in rabbits (44, 45) and rats (46). CRM is

FIGURE 2 | Example of conditioning-specific reflex modification (CRM).
Representative nictitating membrane responses (eyeblink) to 0.5-mA
periorbital electrical stimulation (black arrowhead) averaged over four
durations (10, 25, 50, 100 ms) in an individual rabbit before (dashed line,
Pretest), 1 day after (red line, Post Test 1), and 1 month after (blue line, Post
Test 2) 6 days of conditioned stimulus–unconditioned stimulus pairings
(eyeblink classical conditioning, Paired). The responses show clear
increases in amplitude, area, and peak latency (double arrow, CRM)
compared to the responses of a control rabbit to 0.5-mA periorbital
electrical stimulation (black arrowhead) averaged over four durations (10, 25,
50, 100 ms) before (dashed lined, Pretest), 1 day after (red line Post Test 1),
and 1 month after (blue line, Post Test 2) 6 days of explicitly unpaired
presentations of the conditioned stimulus and unconditioned stimulus
(Unpaired). The gray arrowhead indicates where a 2.0-mA shock would have
occurred during conditioned stimulus–unconditioned stimulus pairings.
Although there is a slight increase in the amplitude of the response in the
rabbit in the Unpaired group 1 month after explicitly unpaired presentations
of the conditioned stimulus and unconditioned stimulus, it is not as large as
the response seen in the rabbit from the Paired group nor is there a shift to
the right in the peak latency.

not idiosyncratic to EBCC because we have also found CRM of
heart rate as a result of heart rate classical conditioning (42, 99,
100). Thus, the effect appears to exist in at least two species and
in both the autonomic and the skeletal response systems. Given
the subject of the present focus topic, this review will be limited
to changes in the rabbit unconditioned NMR that occur as the
result of EBCC because CRM of HR is obtained at conditioning
parameters (i.e., long interstimulus intervals) that do not nor-
mally support EBCC. The NMR serves as a convenient index of
the eyeblink as it is a component of the defensive response system
consisting of closure of the upper eyelid, retraction of the eye-
ball, and sweep of the nictitating membrane which are very highly
correlated (63, 65, 101).

BEHAVIORAL LAWS
Rabbit EBCC has yielded a large number of behavioral “laws” that
have been enumerated and detailed elsewhere (63,66,69,102,103).
Chief among these “laws” is the relationship between the strength
and rate of EBCC and a number of parameters including CS and
US intensity and duration, interstimulus interval, and number of
stimulus pairings (66). In a series of experiments reviewed pre-
viously (40, 42), we have found that CRM is also a function of a
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Schreurs and Burhans PTSD – a model systems approach

number of parameters including the nature (air puff and perior-
bital electrical stimulation) and intensity of the US (39, 104), the
interstimulus interval (105), and the number of pairings (37, 38).

STIMULUS GENERALIZATION
Another important phenomenon in rabbit EBCC that has been
observed in other species and behavioral paradigms is generaliza-
tion – responding to stimuli similar to the stimulus used during
EBCC (106–108). CRM by its very nature is generalization along
the intensity dimension of the US for both electrical stimulation
and air puff (39). Due to a ceiling effect for the highest intensities
of periorbital electrical stimulation, the strongest levels of CRM
are detected below the training intensity (37–39). This is not the
case for the weaker stimulation afforded by air puff where CRM
occurs at high as well as moderate stimulus intensities (39). We
have found that CRM can generalize from periorbital electrical
stimulation to air puff but does not generalize from air puff to
periorbital shock which seems to reflect the need for an intense
US to support CRM (39) making it relevant for modeling PTSD.

CONTEXT
Previous experiments suggest that CRM obeys behavioral laws
similar to those of classical conditioning and, like classical condi-
tioning, CRM is sensitive to a shift in context (41). In a series of
experiments the auditory, olfactory, tactile, and visual properties
of the context in which rabbits were given EBCC and CRM test-
ing were manipulated to determine the effects of context on the
level of CRM. An initial experiment demonstrated that when CRM
was tested in a novel context, CRM levels were as strong as when
testing occurred in the familiar, EBCC training context. To factor
out differences in the amount of exposure to the different con-
texts that may have explained the results of the first experiment,
exposure to all contexts was equated in a second experiment. The
results showed that there was less CRM when testing took place in
a context that was equally familiar but different from the EBCC
training context. A context-dependent reduction in responding
during EBCC has been demonstrated in rabbits that showed a
drop in conditioned responding of 50% when given pairings in a
different context where the visual, tactile, and olfactory character-
istics had been altered from the original training context (109). The
reduction in responding as a result of a context shift during rabbit
EBCC has been reported in other learning paradigms including
fear conditioning (110, 111), taste aversion learning (112), and
conditioned suppression (113). Consistent with this context shift
effect, our context experiments show that if exposure to the con-
texts is equated (111), CRM can be significantly reduced, but not
eliminated, by a shift in the context from training to testing.

RESILIENCE AND SUSCEPTIBILITY
Examination of individual subject data across CRM studies
revealed CRM is not an all-or-none phenomenon with consid-
erable between-subject variability in the presence and degree
of CRM. Although some CRM occurs in over 50% of rabbits,
high levels of CRM (one standard deviation above mean percent
change) only occur in 15–25% of rabbits even though all reach
conditioning levels in excess of 85% CRs. Figure 3 shows an exam-
ple of the extremes in responding by two different rabbits to the

FIGURE 3 | Susceptibility and resilience of conditioning-specific reflex
modification. Representative nictitating membrane responses (eyeblink) to
0.5-mA periorbital electrical stimulation averaged over four durations (10,
25, 50, 100 ms) in two individual rabbits that show very different responses
to the same 0.5-mA US on Post Test after having been given 6 days of
conditioned stimulus–unconditioned stimulus pairings (eyeblink classical
conditioning) at the same time to essentially the same high levels (100 vs.
98.5% conditioned responses). The rabbit with the larger, later response
(red line) is considered “Susceptible” with a 2000% increase in response
amplitude whereas the rabbit with a response that did not differ from
Pretest is designated “Resilient” (dashed line). Figure adapted from
Smith-Bell et al. (43), Copyright 2012 by the American Psychological
Association.

same 0.5-mA periorbital electrical stimulus. Despite high, almost
identical levels of EBCC (100 vs. 98.5% CRs), these two subjects
show profound differences in their responses to the periorbital
electrical stimulus on Post Test. The first subject shows particu-
larly strong CRM and would be considered “susceptible” whereas
the second subject shows no CRM at all and would be consid-
ered “resilient.” In 135 subjects trained with our standard EBCC
paradigm consisting of 80 daily presentations of a 400-ms, 82-dB,
1,000 Hz tone CS that coterminates with a 100-ms, 2.0-mA, 60-Hz
periorbital electrical stimulus, we found the strongest predictor of
CRM (indexed by an increase in response magnitude and area) was
short CR onset latency (43). We also found that during periorbital
electrical stimulation on Pretest, the strongest predictor of subse-
quent CRM was response onset and peak latency – the faster the
rabbit’s response, the more likely it was to develop CRM. Therefore,
the speed with which a rabbit responds to the CS during training
and to the periorbital electrical stimulus during pretest are good
predictors of CRM and are indices of susceptibility. This would
correspond to differences in reaction time in PTSD – something
that is not often observed (114–116) but has been reported (117).

INCUBATION
The symptoms of PTSD do not always occur immediately after
trauma and can become more pronounced over time. A delay in
the onset of symptoms by as much as 6 months has been incor-
porated into previous diagnostic criteria of PTSD (118, 119), but
there is now debate about whether delayed-onset PTSD actually
exists in either veterans or civilians with evidence for both points of

Frontiers in Psychiatry | Systems Biology April 2015 | Volume 6 | Article 50 | 4

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schreurs and Burhans PTSD – a model systems approach

view (118–124). In our animal model of PTSD symptoms, rabbits
do not show a delay in onset of CRM, but there is a window
during which incubation exacerbates CRM. The results are con-
sistent with clinical data in which exacerbation or reactivation of
prior symptoms accounts for 38.3% of military cases of PTSD and
15.3% of civilian cases (120, 125). In one set of experiments, we
have observed the exacerbation of symptoms as a function of a
period of incubation (126). CRM typically requires at least 3 days
of EBCC when levels of conditioning reach or exceed 85% CRs
(37, 39). We carried out an experiment (Figure 4) in which rabbits
were given EBCC for just 1 day resulting in mean conditioning
levels of only 45% CRs, and saw little evidence of CRM when
tested the next day. However, if left in their home cages for 6 days,
there was a significant amount of CRM which persisted for a week
after testing (126). The incubation effect was not strong following
10 days in the home cage and did not persist. These data suggest
there may be no delay in CRM onset but there is a window for
incubation to exacerbate CRM.

RESPONSE GENERALIZATION
One of the most interesting aspects of our initial CRM experi-
ments was the observation that, in individual subjects, responses
to weak periorbital electrical stimulus intensities appeared to have
a significantly different topography after EBCC than they do before
EBCC and that the topography was reminiscent of the CR (37, 40).
This observation was even more clearly articulated by Gruart and
Yeo (44) when they first reported changes in the rabbit eyelid UR

FIGURE 4 | Incubation of conditioning-specific reflex modification.
Representative nictitating membrane responses (eyeblink) to a 0.25-mA
periorbital electrical stimulus averaged over four durations (10, 25, 50,
100 ms) in individual rabbits before (dashed line) and after 1, 6, or 10 days of
incubation in the home cage (red line) following a single session of
conditioned stimulus–unconditioned stimulus pairings (eyeblink classical
conditioning) which supported a level of only 45% conditioned responses.
The blue lines depict nictitating membrane responses to 0.25-mA periorbital
electrical stimulation 7 days (of incubation) after Post Test 1. Although there
is some suggestion of conditioning-specific reflex modification after 1 and
10 days of incubation, there was very clear and strong conditioning-specific
reflex modification that occurred after 6 days of incubation and persisted a
week later. Figure adapted from Schreurs et al. (126), used with permission
from Elsevier.

following EBCC. The marked alteration in response topography is
somewhat lost in the averaging that takes place when presenting
group data especially when, as noted above, not all rabbits show
CRM. Figure 5 shows the strong similarity between a CR that
occurs during EBCC and a UR to periorbital stimulation by itself
assessed after EBCC compared to an UR assessed before EBCC.
These early observations lead to the hypothesis that CRM is a CR
that generalized from the CS–US pairings to the US itself (40, 44).
A series of experiments were conducted to test this hypothesis by
altering the topography of the CR by presenting two shocks during
CS pairings or by presenting CS–US pairings with two different
interstimulus intervals (38). The results provided evidence both
for and against the hypothesis so a final experiment was designed
to eliminate CRs by presenting the CS by itself during extinction
(38). If the exaggerated responses to the US after EBCC (CRM)
were generalized CRs, it was reasoned that eliminating the CRs
should eliminate CRM. The results of this experiment were more
conclusive. Despite reducing CRs to essentially baseline levels of
less than 10% by presenting the CS by itself, Figure 6 shows CRM
remained virtually intact. A number of control groups actually
proved to be even more instructive. First, presentations of the US
by itself completely eliminated CRM as shown in Figure 6 but left
CRs relatively intact. Thus, the extinction of CRs left strong levels
of CRM and the extinction of CRM left strong levels of condi-
tioned responding. Second,combining presentations of the CS and
the US in an explicitly unpaired manner resulted in elimination of

FIGURE 5 |Topographical similarity between a conditioned response
and conditioning-specific reflex modification. Representative nictitating
membrane responses (eyeblinks) in the same rabbit to a tone paired with
shock during the third day of conditioned stimulus–unconditioned stimulus
pairings (eyeblink classical conditioning, blue line, Paired Trial) and 0.5-mA
periorbital electrical stimulation presented by itself before (dashed line,
Pretest), and after (red line, Post Test) 6 days of conditioned
stimulus–unconditioned stimulus pairings. The response after eyeblink
classical conditioning shows a strong similarity in response amplitude, peak
latency, and overall topography compared to the response before eyeblink
classical conditioning. The responses are shifted in time so that their onsets
coincide even though the response on the paired trial is to the conditioned
stimulus that overlaps with the periorbital electrical stimulus and the
responses on the Pretest and Post Test trial are to 0.5-mA periorbital
electrical stimulation by itself.
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FIGURE 6 | Extinction of conditioning-specific reflex modification.
Averaged nictitating membrane responses (eyeblink) to a periorbital
electrical stimulus of 1.0 mA averaged over four durations (10, 25, 50,
100 ms) for four groups of rabbits before 6 days of conditioned
stimulus–unconditioned stimulus pairings (eyeblink classical conditioning)
(dashed lines, Pretest) and 6 days after (red line, Post Test) either exposure
to the training chamber with no further stimulus presentations (Sit),
presentations of the conditioned stimulus alone (CS-alone), explicitly
unpaired presentations of the conditioned stimulus and unconditioned
stimulus (Unpaired), or presentations of the unconditioned stimulus alone
(US-alone). The level of conditioning-specific reflex modification (CRM) was
highest in the Sit group, followed by the CS-alone group, and the Unpaired
group with virtually no CRM in the US-alone group. Although there was
residual CRM in the Unpaired group, rabbits in this group showed no
responding to the conditioned stimulus unlike rabbits in the Paired and
US-alone groups suggesting that only unpaired presentations of the
conditioned stimulus and unconditioned stimulus were able to significantly
reduce CRM as well as eliminate conditioned responses to the conditioned
stimulus. Figure adapted from Schreurs et al. (38), in the public domain.

CRs and a reduction in the level of CRM (Figure 6). It was these
experiments that led to a further exploration of treatments that
eliminate both CRs and CRM as a possible treatment strategy for
PTSD.

EXTINCTION OF CRM
There is a significant body of evidence from both clinical and
basic research that repeated presentation of feared stimuli does
not prevent fear from returning – a phenomenon referred to as
“relapse” (127, 128). Nevertheless, fear extinction is a cornerstone
of many approaches to the treatment of PTSD (3, 28, 129–137).
However, the renewal of fear or relapse may be “thwarted” by
unpaired presentations of both the feared stimulus and the event
producing the fear (38, 138–140). Experiments drawn from a large
number of different conditioning paradigms including human
and rabbit EBCC (36, 39, 141–144), as well as conditioned bar-
press suppression in rats (138, 139), and human discriminative
fear conditioning (140) show unpaired presentations of the CS
and US produce extinction of a CR. In the human discrimina-
tive fear study, Vervleit and coworkers found that compared to
normal extinction, only unpaired extinction prevented renewal of

fear responses in people trained to discriminate one of two pictures
paired with shock (140).

In rabbit experiments designed to extinguish EBCC, compara-
ble extinction of responding to the CS occurs following CS-alone
or unpaired CS and US presentations (38). However, as noted
above and shown in Figure 6, unpaired presentations were able
to extinguish CRM better than CS-alone presentations (38). The
ability of unpaired presentations to diminish both CRs and exag-
gerated URs (i.e., CRM) suggests it may be relevant for treating
both the conditioned fear and hyperarousal symptoms of PTSD
(41, 42, 104). However, no matter how effective unpaired extinc-
tion might be in extinguishing fear and hyperarousal in animal
models, it would be ethically unacceptable for treating PTSD
because the US intensity used in unpaired extinction has always
been the same as that used to induce classical conditioning (36,
39, 138–144). The repeated presentation of a traumatic event
responsible for PTSD in order to treat it is untenable.

UNPAIRED EXTINCTION THAT IS CLINICALLY RELEVANT
To address concerns about using a traumatic stimulus during
unpaired extinction and make an unpaired extinction procedure
more clinically relevant, rabbit EBCC experiments were conducted
in which unpaired extinction sessions employed periorbital elec-
trical stimulation of reduced intensity that was presented for
different numbers of days (36). Specifically, rabbits received US
testing (Pretest), EBCC, another session of US testing to deter-
mine the size of CRM (Post Test 1), and then 1, 3, or 6 days of
unpaired CS and US presentations with a weak (0.25 mA), mod-
erate (1.0 mA), or strong (2.0 mA) US followed by a final session
of US testing to determine the effect of unpaired presentations
on CRM (Post Test 2). The results revealed extinction of both
CRs and CRM was a function of the US intensity used during
unpaired stimulus presentations and the number of days of those
unpaired stimulus presentations (36). The levels of CRs declined
from 95% to less than 20% within 3 days of unpaired stimulus
presentations. Figure 7 shows CRs during acquisition and 1, 3,
or 6 days of unpaired extinction in which the US intensity was
eight times weaker (0.25 mA) than the intensity used during pair-
ings (2.0 mA). Figure 8 depicts sample responses from different
rabbits before and after EBCC (Pretest and Post Test 1, respec-
tively) and again after unpaired stimulus presentations (Post Test
2) with a 0.25-mA US that were delivered for either one, three,
or six daily sessions (days). The sample responses in the middle
and right illustrate that after as few as three sessions of unpaired
presentations with a weak US, any CRM seen after EBCC (red
lines) was largely eliminated (blue lines). In contrast, the sample
responses on the left show clearly that CRM was actually enhanced
after a single session of unpaired presentations with a weak US.
Taken together, these data suggest that both CRs and CRM seemed
to be diminished, if not eliminated, most effectively with at least
3 days of mild US presentations but one session of stimulus pre-
sentations actually appears to exacerbate responding. Of note, and
of particular clinical relevance, was the finding that extinction of
CRs and CRM occurred even though the weak US produced rela-
tively low levels of responding (rabbits blinked to the weak US on
less than 25% of occasions). Analysis of rabbit heart rate during
these sessions indicated that this weak US did not produce any
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FIGURE 7 | Extinction of conditioned responding with unpaired
presentations of a conditioned stimulus and weak unconditioned
stimulus. Mean (±SEM) conditioned responses to the conditioned
stimulus during 6 days of pairings of a conditioned stimulus and a 2.0-mA
unconditioned stimulus (Acquisition) and during one (square), three (circle),
or six (triangle) subsequent days of unpaired conditioned
stimulus–unconditioned stimulus presentations (Unpaired Extinction) with a
0.25-mA unconditioned stimulus. Conditioned responding increased to
asymptotic levels of 95% during Acquisition and fell to less than 20%
following 3 days of unpaired presentations (Unpaired Extinction). Figure
adapted from Schreurs et al. (36), used with permission from Elsevier.

change in heart rate, suggesting it was not unduly stressful (36).
One important implication of these data is that treatment must
not be brief because brief treatment using unpaired stimulus pre-
sentations may not just be ineffectual; it may actually heighten the
symptoms of PTSD.

VIRTUAL REALITY
If weakened versions of the initiating trauma are to be used as
part of PTSD therapy, there would be very few such events that
could or even should be repeated or recreated. The advent of cred-
ible virtual reality (VR) environments that have been developed to
treat PTSD provide a feasible way around this stricture (145–151).
Given the unpaired extinction data reviewed above, one could
imagine a treatment situation in which a PTSD patient could be
asked to describe a specific trigger or set of triggers for unwanted
memories (150) and present the trigger(s) in an unpaired man-
ner with a weakened version of an aversive event. A weakened but
still stressful version of an explosion might be strongly shaking
a driver’s seat in a virtual Humvee which is part of a VR sce-
nario in which the sights and sounds of combat are also presented
(149–151). The VR environment could be programed to present
these events in a separate, unpaired manner and the prediction
would be that, with a number of repetitions over more than one
session, PTSD symptoms would abate. For example, the sights,
sounds of a previously traumatic context could be presented, and
then the goggles and headphones would go blank and silent for
a period of no stimulation which would then be followed by the
driver’s seat being strongly shaken. The sequence of these series
of events would be randomized so that they would never occur

together to reflect the explicitly unpaired procedure (83). Impor-
tantly, given that CRM has been shown to generalize from stressful
periorbital electrical stimulation to what would be considered less
stressful air puffs, the weakened versions of stressful events used
in an unpaired extinction procedure may not need to involve the
traumatic event. Psychophysiological indices including heart rate,
skin conductance, respiration, and cortisol levels could be used to
assess stress levels and titrate the intensity of the stimulation.

METHODOLOGICAL ADDENDUM
STIMULUS DELIVERY AND RESPONSE MEASUREMENT
The experiments described in this review require precise control
and calibration of stimulus parameters particularly intensity and
timing of the US. This is relatively straightforward for perior-
bital electrical stimulation through the use of programmable shock
delivery equipment and the use of digital computer control. On
the other hand, the delivery of air puff requires more elaborate
equipment and techniques including a digitally controlled, pro-
grammable pressure regulator and an accurate digital manometer
to ensure that the intensity of the air puff reflects the air striking
the cornea and not the pressure at the source. Response detection
is also of importance especially if response characteristics such as
latency, amplitude, and area are to be determined in addition to
simply registering if a response occurs or not. As a result, transduc-
tion and recording of the eyeblink response becomes important.
Researchers may wish to consider the advantages and disadvan-
tages of remotely sensing versus directly measuring the closure
of the eyelid using mechanical coupling. For example, infrared
reflectance measures may not be capable of completely quantifying
the peak latency of a response whereas mechanical couple may pro-
duce drag that subtly alters the latency and amplitude of a response
(152). EMG recording of the orbicularis oculi muscle may have
advantages but the electrical noise induced by periorbital electrical
stimulation as well as time constants of integration affecting onset
latency and difficulty in determining units of response amplitude
present limitations in quantifying the UR.

DATA ANALYSIS
Even if the UR is transduced accurately, questions remain about
the analysis of data, particularly when responses are at the limits
of detectability as the result of very weak stimulation. By conven-
tion and due, in part, to the limits of analog instrumentation, an
NMR or eyeblink response has been defined as movement of at
least 0.5 mm (61, 66, 153, 154). How then is a change in response
amplitude and latency from pretest to post test determined if there
is no response on pretest but a significant response on post test
as often occurs after EBCC? The main issue has always been what
to do about the lack of a response on pretest or post test. We
have addressed this in several ways including analyzing individual
subject data only for US parameters at which responses occurred
(37–39, 104), averaging topographies across subjects and analyz-
ing for changes in skew and kurtosis (41, 155), and calculating
percent change where a response on a test was considered to be a
100% change if there was no response on the other test (43). Most
recently, two additional measures, magnitude of the response and
magnitude of the response area, have been calculated to overcome
the limitations of empty data cells on pretest or post test resulting
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FIGURE 8 | Extinction of conditioning-specific reflex modification with a
weak unconditioned stimulus. Representative nictitating membrane
responses (eyeblink) to a range of periorbital electrical stimulus intensities
(0.1, 0.25, 0.5, 1.0, and 2.0 mA) averaged over four durations (10, 25, 50,
100 ms) in individual rabbits before (dashed line) and 6 days after (red line)
conditioned stimulus–unconditioned stimulus pairings (eyeblink classical
conditioning), and again after (blue line) 1, 3, or 6 days of explicitly unpaired
stimulus presentations of the conditioned stimulus and a weak unconditioned
stimulus (0.25 mA) that was 87.5% weaker than the periorbital electrical
stimulation previously used to establish eyeblink classical conditioning
(2.0 mA). Conditioning-specific reflex modification (CRM) was established as

a result of the 6 days of eyeblink classical conditioning [comparison of Pretest
(dashed lines) to Post Test 1 (red lines) for intensities below the training
intensity of 2.0 mA]. Following as few as three subsequent days of explicitly
unpaired stimulus presentations of the conditioned stimulus and weak
unconditioned stimulus, the levels of CRM (Post Test 2, blue lines) were all
lower than after conditioning (Post Test 1, red lines) and in many cases
returned toward baseline levels (Pretest, dashed lines). Importantly, the level
of CRM increased significantly (asterisks) after just 1 day of explicitly unpaired
stimulus presentations of the conditioned stimulus and weak unconditioned
stimulus. Figure adapted from Schreurs et al. (36), used with permission from
Elsevier.

from subthreshold URs, particularly at lower US intensities and
durations (36, 43, 126). Magnitude of the response and magnitude
of the response area have included the amplitudes and areas of all
nictitating membrane movements above baseline and provide the
most procedurally neutral estimates of responding (154).

CONDITIONED RESPONSE DEFINITION
Another issue in data analysis turns upon the practice of catego-
rizing responses as CRs if they are “adaptively timed,” a term based
on the onset latency of responses (this is probably wrong anyway
because one should be looking at the latency of the peak to coincide
with US delivery but that would require CS-alone test trials that are
un-confounded with the UR to the US which many experiments do
not include). The concept of adaptively timed responses is based
on the notion that CRs lessen or even avoid the aversiveness of
the US when the maximum closure of the eyelid coincides with
the occurrence of the US. This adaptive response may therefore be
argued as being reinforcing, adding an instrumental component

to CRs also known as the “law of effect” (156–158). Coleman has
reviewed the literature on the “law of effect” and conducted an
experiment showing quite clearly that, at least in rabbit EBCC, the
imposition of a contingency between the occurrence of a CR and a
reduction in the intensity of a shock US results in less rather than
more responding – a finding that completely contradicts a “law
of effect” prediction (156). In other experiments, including tail
flexion in the rat (159), appetitive jaw movement conditioning in
rabbits (160) and human EBCC (157), the lack of significant effect
and even inferior conditioning of subjects explicitly designed to
benefit from the “law of effect” is clear (157, 159, 160). In contrast,
early experiments by Schlosberg were interpreted as “successful”
only if CRs modified the US (60, 161). In fact, Schlosberg used
the term “adaptive” in describing responses that had an effect on
the US and “non-adaptive” for those that did not (p. 383). The
pervasiveness of this assumption about the “role” of the occur-
rence and timing of CRs and its periodic reintroduction (162) may
account for more modern EBCC experiments in which responses
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are only considered to be CRs if they occur within an interval that
is characterized as “adaptive.”

The use of onset latencies to detect adaptively timed CRs and
hence, “true CRs” can be traced to another period in the history
of EBCC where latencies were used to identify and eliminate the
data of “voluntary responders” (62, 163, 164). Voluntary respon-
ders were subjects who were “rejected” from experiments based on
the occurrence of short-latency eyeblinks that occurred between
200 and 300 ms after CS onset and were judged to have the same
appearance as subjects who were instructed to blink or by subjects
who reported they were blinking “voluntarily” to avoid the air puff
(165). This practice has been explicitly adopted by a number of
laboratories especially during trace conditioning where there was
a long interval between the offset of the CS and the onset of the US
because it “corrected for both voluntary and random blinks that
could occur as a result of the longer trace intervals” (166, 167).

In our view, an empirical approach to determining onset latency
needs to be neutral with respect to characterizing responses. We
endorse the complete characterization of all responses using a
range of dependent variables including onset and peak latency and
presenting all response onsets on a latency histogram without any
preconceptions of how responses should look or be distributed.
Publication of such histograms together with any interpretation
of what are considered responses whether they be “adaptive” or
not would allow readers to interpret the data for themselves.

SUMMARY AND CONCLUSION
There is a crucial need to know how responding to stressful
events changes as a function of trauma for those who suffer from
PTSD. A number of treatment strategies for PTSD are capable
of treating only some of the symptoms because the extinction
of fear does not deal with the various forms of hyper-vigilance
and hyperarousal experienced by people with PTSD, especially
in combat veterans. Based on our work on conditioning of the
rabbit’s NMR, we have developed a preclinical EBCC model of
PTSD that addresses both CRs to trauma-associated cues as well
as hyperarousal (CRM). Animal models of EBCC are particularly
useful here because EBCC is one of the few behavioral para-
digms in which there is a one-to-one correspondence between
animals and humans. We have demonstrated that CRM follows
many of the same behavioral rules as EBCC, can generalize across
stimulus modalities, shows sensitivity to context manipulations,
and can be exacerbated after an incubation period. Importantly,
CRM does not develop in all animals just as PTSD does not
develop in all those exposed to trauma, with some individuals
demonstrating susceptibility while others show resilience. We have
shown that CRs and CRM can be simultaneously extinguished
by unpaired stimulus presentations, even when US intensity is
reduced to the point where it is barely capable of eliciting a
response. This is important because presenting strong uncondi-
tioned stimuli as a therapeutic approach would be untenable.
These unpaired procedures with attenuated stimuli have direct
implications for the treatment of PTSD and could be implemented
in a VR environment.
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