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Introduction

The problem of function localization in the brain is one of the most fundamental in neuroscience.
There are two opposite paradigms relating to the problem: “modularism,” also known as “localism,”
versus “holism,” which have been discussed for a long time (1, 2). The debate in favor of one or
another view can still be traced at all methodological levels – from the cell to the system. In this
opinion paper we want to raise a question – what is meant nowadays by brain mapping? In addition,
we want to highlight the necessity of being aware of occasionally occurring discontinuity in the
research at different methodological scales. This problem is evident for experts in the field, but not
always sufficiently so for early career researches. We will try to describe the difficulties of modern
brain mapping primarily by looking at one of the currently best-studied functions – motor function.

History of Opposition of Modular Versus Holistic
Conceptions of Brain Organization

A somewhat artificial opposition of “modular” and “holistic” organization of the brain has
been evident in neuroscience from 18th century, and started mostly as a disagreement between
physiologists working on animals and clinicians studying brain lesions in humans (1–3). A
first revision of the term “function” by a clinician and a step away from hardwired local-
ism was performed by the neurologists J. H. Jackson at the end of 19th century who wrote
that “localization of a symptom is not localization of a function” (4). In the beginning of
the 20th century, a paradigm shift occurred toward gestalt psychology, which changed the
trend of research at the macro-scale level towards a more holistic view (2). A prime exam-
ple of a confrontation at the micro-scale at the same time was the debate of Golgi and
Cajal regarding the essence of a neuron (5). In 1937, a neurosurgeon W. Penfield performed
the first cortical cartography in humans and published an iconic description of sensory and
motor homunculi (6). In the second quarter of the 20th century, the concept of a func-
tion as a goal-dependent entity appeared in the form of theory of movements (7) and the-
ory of functional systems (8), both viewing a function as a non-rigid goal-dependent entity.
To date, it is usually postulated that localism and holism have been replaced by “connection-
ism,” with many studies nowadays trying to find interactions between brain regions and not
the function of these regions by themselves (9, 10). However, it seems there is still a ten-
dency to favor localism, especially in the cognitive sciences (11, 12). Perhaps, this is due to
the fact that modern non-invasive methods, such as PET, fMRI or TMS, are mostly associated
with functional mapping of the brain based on M. Minsky’s philosophy that “minds are what
brains do.”
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Discontinuity of the Motor Research of
Different Methodological Scales

The question remains open of how cortical “activation” at the
macro-level, viewed for example with fMRI or EEG, is linked
to micro-scale phenomena such as single neuron activity in the
spinal cord in awake animals (especially in humans) (13, 14).
There is a large community of researches studying ways of acti-
vation of a particular alpha-motor neurons in the spinal cord
(15–17); scientists working on the level of a single neuron usually
associate it to a specific task (16, 18). Thereby, those who work
with slices of the spinal cord are well aware of how to activate
a certain motoneuron (19), but it is still difficult to bridge these
phenomena with activation of the cortex (15). Modern macro-
scale approaches connecting peripheral and central recording,
such as TMS-EEG and corticomuscular coherence, including
biofeedback, are trying to overcome this gap (20).

A good example of a discontinuity in motor research at differ-
ent methodological scales is the phenomena of convergence and
divergence of motor cortex organization. They are well known
in micro- and meso-scale studies. For example, in the invasive
brain–computer interface (BCI) research, principles like neu-
ral degeneracy and neuronal multitasking were formulated (21).
However, these phenomena are still widely overlooked in the
research at the macro-scale level (22). For instance, a commonly
used term in macro-scale research is an “area of a muscle cor-
tical representation” (23, 24), which is suitable for practical use
like presurgical motor mapping (25), but is physiologically dubi-
ous considering the proven fact that some pyramidal cells may
broadly innervate corresponding alpha motoneurons relating to
activation of different muscles, even of different limb segments
(26–28).

Goal-Driven Concept of a
Function – Problem of Awake Versus
Anesthetized Animals

Clearly demonstrated in many studies, context and goal-
dependency of a motor function (29, 30) brings us back to the
necessity to revise the concept of a function as an environment
and goal-dependent entity. Since a large amount of classical map-
ping experiments were performed on anesthetized animals, where
conditions are stable and there is no context or goal directed
behavior, one should be careful when interpreting the results of
these experiments. The data obtained in anesthetized animals are
widely used as a teaching material: the construction of the motor
and sensory homunculus is an essential part of most neuroscience
textbooks (31, 32). However, the experiments on awake animals
raise doubts about this rigid structure (33).

Renaissance of a Goal-Driven Concept
of a Function in Neurorehabilitation

The problem of function localization in the brain is relevant
for the development of new approaches to rehabilitation after
brain damage. Hence, in the 80s and 90s, the popularity of the

idea of long-term brain reorganization resulted in the birth of
neurorehabilitation as a new and fruitful field (34, 35). Nowa-
days, the growing understanding of the on-line instability and
goal-dependency of a function is bringing new trends to this
field. Thus, new approaches in neurorehabilitation are oriented
not toward simple movement training but toward the recov-
ery of a whole goal-oriented action (36, 37). The renaissance
of a systematic view on function resulted in the appearance of
new techniques, comprised of simultaneous application of many
modalities, including visual biofeedback such as mirror therapy
(38, 39) or multimodal biofeedback during motor rehabilita-
tion (40).

Understanding function in a corresponding context necessi-
tates the development of closed-loop approaches of therapeutic
brain stimulation (like TMS), instead of stimulation of different
cortical regions at rest. These closed-loop approaches require the
elaboration of protocols for central-peripheral stimulation cou-
pling for the optimal modulation of the recovering brain (41, 42).
Such task-dependent closed-loop approaches can be combined
with brain-state guided stimulation. The last few years have wit-
nessed an increase in studies identifying brain-states favorable
for stimulation, for example based on pre-stimulus EEG (43, 44).
This is going to lead to the development of new protocols for
therapeutic stimulation with better timing. A similar method-
ology is already successfully used in the field of invasive BCI
combining brain activity recording with cortical stimulation (45,
46). Favorable preconditioning brain-states could also be deliber-
ately achieved using approaches such as transcranial alternating
current stimulation (tACS), allowing brain stimulation with a
specific frequency during a task (47). The dynamic nature of a
function makes evident the impossibility of a one-size-fits-all-
strategy (48), and highlights the need for dynamic revision of the
targets and strategies throughout the recovery process in brain
damage patients.

Conclusion

Despite the fact that the field is moving from the holism–localism
opposition toward a paradigm of connectionism, which can be
seen in the development of such big projects as Connectome or
Human Brain Project (49), we still lack a clear understanding of
how to address the problem of functions localization. We wanted
to highlight the importance of being careful with extrapolations
based on the a priori assumptions, which appear sometimes to
be different at different methodological scales. A promising new
approach which may lead to a new understanding of how to
distinguish networks and areas in the brain may be optogenetics,
a method allowing the stimulation not of the specific regions of
the brain, but of the specific networks and inputs (50). Another
encouraging trend is the growing BCI field which combines
observational and interventional approaches (21).
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