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Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown 
product kynurenine, are found to be elevated in human immunodeficiency virus type 1 
(HIV-1)-infected patients. Both essential amino acids, tryptophan and phenylalanine, are 
important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated 
amino acid metabolism may be related to disease-associated neuropsychiatric symptoms, 
such as development of depression, fatigue, and cognitive impairment. Increased phenyl-
alanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation 
in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent 
large-scale metabolic studies have confirmed the crucial involvement of tryptophan and 
phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current 
status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss 
how inflammatory stress-associated dysregulation of amino acid metabolism may be part 
of the pathophysiology of common HIV-associated neuropsychiatric conditions.

Keywords: Hiv, tryptophan, kynurenine, indoleamine 2,3-dioxygenase, phenylalanine, tyrosine, phenylalanine 
4-hydroxylase, tetrahydrobiopterin

introduction

Human immunodeficiency virus type 1 (HIV-1) infection is associated with neuropsychopathologic 
disturbances that range from behavioral changes and mild cognitive and motor impairments to 
depression and severe mental problems as reported in patients with manifested AIDS dementia 
complex (1). These conditions are comprehensively termed HIV-associated neurocognitive disorders 
(HAND). Besides the presence and severity of neurocognitive impairment and functional decline, 
the definitional criteria for HAND also comprise a variety of neuropsychiatric relevant comorbid 
conditions (2). Steady deterioration of neurocognitive performance in patients not only impairs their 
quality of life but is also associated with an increased mortality rate. Although it has been reported that 
effective antiretroviral therapy (ART) can partially preserve or even improve neurological function 
and decrease morbidity and mortality (3), neurocognitive disturbances are still highly prevalent in 
HIV patients receiving treatment (4). The development of depressive symptoms is the most frequent 
manifestation (5–8). A number of psychosocial aspects, in addition to pathophysiological factors, 
may contribute to the high rate of depressive illness in these patients (7).

The molecular basis of HAND- and HIV-associated depressive symptoms still remains to be 
elucidated in detail (9). The incomplete clearance of viral load owing to the poor accessibility 
of the central nervous system to antiretroviral drugs or the development of resistant virus 
strains during therapy is suspected to be of importance (10). In addition, neuronal damage 
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may arise from toxic viral products or from activated brain 
macrophages and microglia releasing inflammatory mediators 
(9, 11). Increasing evidence suggests that changes in amino acid 
metabolism occur as a result of these viral and inflammatory 
insults during infection, and that these metabolic changes may 
play a critical role in HAND. This review will cover recent 
advances in the field of inflammatory stress-associated dys-
regulation of amino acid metabolism in HIV and its association 
with neuropsychiatric symptoms.

Metabolic Changes in Hiv Disease

HIV disease is characterized by severe metabolic changes. Anorexia, 
malabsorption, increased resting energy expenditure, and specific 
disturbances in protein turnover are common in HIV and AIDS 
patients (12, 13). However, not only HIV infection itself but also 
effective treatment is associated with the development of severe 
metabolic disorders, such as insulin resistance, diabetes mellitus 
(14), and lipodystrophy syndrome (15).

The immune response and metabolic pathways are highly 
cross-regulated (16). Also, depression and cognitive impairment 
are closely linked to chronic inflammation. Changes in amino acid 
metabolism and neurotransmitter synthesis play a major role in 
the etiology of such conditions (17, 18) and constitute potential 
intervention points for therapeutic strategies. In this regard, 
phenylalanine (Phe) and tryptophan (Trp)  metabolism are among 
the most intensively discussed pathways in the literature (18, 19).

Diminished breakdown of Phe to tyrosine (Tyr) (20) and the 
accelerated conversion of Trp to kynurenine (Kyn) (21) were shown 
to correlate with elevated levels of immune activation markers, 
e.g., neopterin or interferon-γ (IFN-γ), in HIV-infected individuals 
(22, 23). Trp and Tyr are precursor molecules for serotonin and 
dopaminergic neurotransmitters, respectively. Thus, disturbed 
metabolism can negatively affect neuropsychoimmunological 
circuits (24) and can contribute to the pathophysiology of common 
HIV-associated neuropsychiatric symptoms.

Phenylalanine is converted to Tyr via the tetrahydrobiopterin 
(BH4)-dependent enzyme phenylalanine 4-hydroxylase. Phe turno-
ver is reduced in chronic inflammatory conditions, consequently 
affecting dopamine, adrenaline, and noradrenaline synthesis, as 
tyrosine is the precursor of these neurotransmitters. Also, main-
tenance of adequate levels of tryptophan is essential, as trypto-
phan hydroxylation via the BH4-dependent enzyme tryptophan 
5-hydroxylase is the rate limiting step for 5-hydroxytryptamine 
(serotonin) formation. During inflammation, peripheral Trp levels 
are predominantly dependent on the activity of enzyme (IDO1), 
which is activated mainly via the T helper (Th) type 1 cytokine 
IFN-γ.

In the following, relevant inflammatory stress-related pathways 
(Figure 1) will be introduced followed by describing their altera-
tion in HIV disease in patients on and off therapy.

Tryptophan Metabolism

Breakdown of Trp into Kyn is a crucial biochemical pathway 
within the biosynthesis of nicotinamide adenosine dinucleotides 
(NAD/NADH) that are required cofactors for many enzymes. 

The pathway is also important for the functioning of immune 
responses because during immune activation, Th1 cytokines, 
most importantly, IFN-γ, induce the expression and activation 
of enzyme IDO1 (EC:1.13.11.52) in human monocytes/mac-
rophages and dendritic cells (25). In addition, other cell types, 
such as endothelial, epithelial cells, and fibroblasts, are able to 
activate IDO1 in response to inflammatory stimuli. Deprivation 
of this essential amino acid not only inhibits pathogen growth, 
but also slows down T-cell responses, thereby being a regulatory 
feedback mechanism that protects the immune system from 
overreactions (26). IDO1 activation is associated with the 
generation of a regulatory phenotype in T cells and dendritic 
cells (27, 28), and is involved in tumor immune escape (29). 
Chronic immune stimulation and consecutive IDO activation 
might also facilitate HIV persistence by inducing T cell apoptosis 
and tolerance.

IDO1 is the rate-limiting enzyme in the conversion of Trp to 
Kyn, and thus the Kyn/Trp ratio can be used to estimate IDO1 
activity (21, 30). Accelerated Trp breakdown has been reported 
for several diseases associated with chronic immune activation 
such as infection, autoimmune syndromes, malignancies, and 
neurodegenerative disorders, as well as cardiovascular diseases 
(31). Already in the 90s, accelerated Trp breakdown was shown 
to correlate with elevated levels of IFN-γ and the immune 
activation marker neopterin in HIV patients (21–23, 32), and 
an inflammatory stress-related Trp decrease was suggested to 
be involved in the development of neuropsychiatric symptoms 
(33). In 2008, another study demonstrated that HIV-infected 
patients with depression presented with higher plasma neopterin 
concentrations, a higher degree of tryptophan degradation, and 
lower quality of life scores than non-depressive patients (34). 
Interestingly, correlations between enhanced depression and 
quality of life scores on the one hand, and tryptophan degrada-
tion and neopterin levels on the other hand, were only found in 
patients without antidepressant medication. In line with these 
findings, Martinez and colleagues reported recently that depres-
sion severity in HIV patients was associated with a decrease in 
plasma Trp concentration and an increase in Kyn/Trp. In the 
12-month follow-up study in a cohort of 504 patients, ART was 
able to partially reduce Trp breakdown, which went along with 
improvement of depressive symptoms (35).

Downstream Metabolites of the Trp-Kyn 
Pathway

In addition to the depletion of Trp, Kyn downstream products 
may be involved in immunoregulation and in the pathogenesis of 
depression. Kyn itself is an endogenous ligand of the arylhydro-
carbon receptor and activation of arylhydrocarbon signaling is 
involved in T-cell differentiation and the development of tolerance 
(36, 37). 3-hydroxyanthranilic (3-HAA) and quinolinic acid (QA) 
were shown to selectively induce apoptosis in mouse thymocytes 
as well as in Th1, but not Th2, cells in vitro (38, 39).

Furthermore, a number of kynurenine breakdown products 
have been reported to be neuroactive. Deregulated production of 
3-HAA, 3-hydroxykynurenine (3-HK), and QA has been observed 
in several neurologic and psychiatric disorders (40).
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While some metabolites such as kynurenic acid (KA) can be 
neuroprotective (41–43), QA released by activated macrophages 
was shown to exert excitotoxicity (44), thereby contributing to 
brain injury [see also review by Kandanearatchi and Brew (45)]. 
When submicromolar concentrations of QA were infused for 
a longer period into the brain of rats, neuronal loss occurred 

preferentially in the striatum and the hippocampus – the regions 
that are involved in HAND neuropathologically (46).

Elevated QA levels were shown in brain tissue of patients with 
HIV-1-associated dementia (47, 48), and cerebrospinal fluid 
(CSF) levels of QA were shown to increase during HIV infection 
and to correlate with HAND severity (49–51). Also, in macaques 

FiGURe 1 | inflammation-associated biochemical pathways: 
interferon-γ (iFN-γ) signaling activates enzymes indoleamine 
2,3-dioxygenase (iDO1) and GTP-cyclohydrolase (GCH1), which 
convert tryptophan to kynurenine, and GTP to neopterin or 
tetrahydrobioterin (BH4), respectively. In contrast to other cell types and 
macrophages of other species, human macrophages (huMΦ) produce 
predominantly neopterin (EC, endothelial cells; FB, fibroblasts). Also, BH4 is 

sensitive to oxidation, thus levels decrease under oxidative stress conditions. 
Absence of BH4, an important cofactor for several monooxygenase, impairs 
the function of the nitric oxide (NO)-producing enzyme inducible nitric oxide 
synthase (iNOS), and of tryptophan 5-hydroxylase (TPH), which is involved in 
serotonin synthesis. Also, phenylalanine 4-hydroxylase (PAH) and aromatic 
l-amino acid decarboxylase, which are both involved in catecholamine 
synthesis, need BH4 as a cofactor.
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infected with simian immunodeficiency virus (SIV), the severity 
of neurological symptoms was related to their CSF QA levels 
(41). Of note, the HIV-1 proteins Nef and Tat are also able to 
induce the synthesis of QA by macrophages (52). In a mouse 
model of peripheral immune activation, which was induced by 
bacille Calmette-Guerin, IDO activation and upregulation of the 
quinolinic acid synthesizing enzyme 3-hydroxyanthranilic acid 
oxygenase (3-HAO) in the brain was shown to play a key role in 
the development of depressive-like behavior in mice (53). Similarly, 
a single intracerebroventricular injection of the HIV-1 protein 
Tat induced depressive-like behavior in exposed mice, and IDO 
expression was demonstrated in the CNS tissue of the same mice 
4 and 24 h after treatment (54). In a recent study on longitudinal 
changes of Trp-Kyn metabolism in the brains of SIV-infected 
macaques, Drewes and colleagues confirmed the predictive 
potential of QA/Trp ratios for CNS associated symptoms (55). 
Further, while effective combination ART was able to stabilize Trp 
metabolite concentrations in the CSF of most of these animals, 
levels could not be restored in the striatum, indicating the only 
partial effectiveness of the therapy. Interestingly, inhibition of 
QA formation by 6-chloro-d-tryptophan in HIV-infected mac-
rophages was demonstrated to prevent neuronal damage in human 
fetal brain aggregate cultures (56).

Furthermore, increased 3-HK levels and elevated kynureninase 
(KYNU) activity in the frontal cortex of HIV-infected individuals 
have also been reported, whereby levels were increased in both 
non-demented and demented HIV patients compared to controls, 
with the increases being more pronounced for the latter (57).

Accelerated tryptophan breakdown in the periphery and 
neuropsychiatric changes in the brain are closely linked as brain 
Kyn metabolite levels are influenced by fluctuations in the con-
centrations of circulating Trp, Kyn, and 3-HK, which can cross 
the blood–brain barrier (58). Also, microglial cells and blood-
borne cells in the brain can be stimulated to activate the Trp-Kyn 
pathway during peripheral immune activation (40). Interestingly, 
IDO activity was significantly increased in the frontal cortex of 
post-mortem brains of demented HIV-patients compared to 
age-matched controls, while the activity was only slightly but not 
significantly elevated in non-demented HIV-patients (57). This 
finding was consistent with the report of increased enzyme activity 
in the cerebral cortex of retrovirus-infected macaques (59).

Taken together, the above studies strongly indicate that IDO 
activation and consecutive accumulation of neurotoxic metabolites 
play an important role in the development of neurocognitive 
disturbances. Accordingly, targeting IDO or p38 MAPK expres-
sion was proposed by Fu and coworkers as a promising therapy 
approach to prevent/treat comorbid depressive disorders in HIV-
1-infected patients (60).

However, although the conversion to Kyn is the major break-
down route of Trp, accounting for about 90% of Trp metabolism 
(61, 62), there are also alternative pathways that do not involve 
the oxidative cleavage of the indole ring, such as the formation 
of the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) 
via tryptophan 5-hydroxylase (TPH, EC:1.14.16.4). Thus, low 
Trp availability due to persistent immune activation is linked to 
impaired synthesis of serotonin and can contribute to neurotrans-
mitter imbalance. Indeed, CSF levels of serotonin were found to 

be significantly lower in a group of 21 asymptomatic, early disease 
stage HIV-positive patients compared to healthy controls (63). In 
this study, no correlation was found for 5-HT levels and CD4 cell 
count or depressive behavior, which could be due to the early stage 
of disease. In the SIV-infected macaque model, striatal serotonin 
concentrations decreased during acute and chronic infection and 
could be partially restored by combined ART, while no correlation 
of serotonin levels with Trp-Kyn pathway activation marker QA/
Trp or encephalitis severity could be observed (55).

The antidepressant paroxetine, which elevates serotonin avail-
ability, has previously been applied in different clinical settings with 
the aim to improve mood and cognitive symptoms (64). Results 
from patients on IFN-α therapy suggested that cell-mediated 
immunity and Trp-Kyn pathway activation is not affected by the 
drug (17). Recently, a combination of fluconazole and paroxetine 
were shown to be potentially neuroprotective in the SIV-infected 
macaque model of HIV-associated CNS disease (65). However, 
although markers of neurodegeneration were decreased in the 
frontal cortex, serotonin levels could not be significantly elevated 
and circulating markers of neuroinflammatory origin were not 
affected. Also, other psychiatric medications are frequently used 
as adjunct therapies for HIV-associated psychiatric comorbidities 
and HAND; and trial data on depression and psychosis treatments 
in HIV-infected patients reported a beneficial effect of selective 
serotonin reuptake inhibitors (SSRIs) and tricyclic antidepres-
sants (66). However, there are concerns with respect to adverse 
effects such as worsening of metabolic syndrome when combining 
antidepressant/antipsychiotic therapies with antiretrovirals (67).

vitamin Status, Nutrition, and 
inflammatory Stress

Inflammatory disorders are characterized by oxidative stress con-
ditions, which lead to low plasma levels of antioxidants, thus also of 
vitamins. Nutritional imbalances and deficiencies may contribute 
to neuropsychiatric disturbances and immune dysregulation 
associated with HIV-1 infection (68).

For example, low vitamin B6 status is related to altered 
neuropsychiatric function, and the normalization of vitamin B6 
status in HIV-infected patients was found to be associated with a 
decline in psychological distress (69). High Trp turnover leads to 
an increased demand for vitamin B6 for downstream processing. 
Enzymes of the Trp–Kyn pathway that use vitamin B6 (pyridoxal 
5′-phosphate, PLP) as a cofactor are KYNU, which converts Kyn 
to anthranilic acid (AA), and 3-HK to 3-HAA, and kynurenine 
aminotransferases (KAT), which convert Kyn to KA and 3-HK 
to xanthurenic acid (70). Low vitamin B6 status is associated 
with altered excretion of tryptophan metabolites (71, 72). Also, 
aromatic-l-amino-acid decarboxylase (AADC), which catalyzes 
the decarboxylation of l-3,4-dihydroxyphenylalanine (l-DOPA) 
to dopamine and of 5-hydroxytryptophan (5-HPT) to serotonin, 
uses PLP as cofactor (73).

Several approaches to influence the synthesis of serotonin 
and catecholamine neurotransmitters via administration of the 
appropriate precursor amino acids have been reported (74–76). 
However, regarding a direct supplementation of tryptophan, it 
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should be considered that there is a risk of elevating concen-
trations of neurotoxic catabolites (77). Moreover, selective 
supplementation unlikely results in long-term influence on 
immunopathogenesis, and thus on the clinical course of cogni-
tive disorders. A multitude of oxidative sensitive molecules are 
simultaneously affected by inflammatory stress, leading to lower 
levels of plasma antioxidants (78, 79). Otherwise, more complex 
dietary interventions might bear a great potential to increase the 
clinical benefits of HIV patients. Certainly, nutritional and meta-
bolic parameters play an important role in the pathophysiology of 
HIV infection and might have therapeutic implications (13, 68), 
which is particularly relevant for individuals suffering from severe 
nutritional deficiencies (80). For example, in a study cohort of 504 
HIV-infected patients undergoing first ART, low protein nutrition 
was associated with severity of depression (35). It should also be 
mentioned that about 95% of the body’s serotonin resides in the 
gut (81) and a number of food-derived antioxidants have been 
shown to suppress IDO1 activity in vitro (82, 83).

In addition to IDO1, hepatic enzyme tryptophan 2,3-dioxyge-
nase (TDO2, EC 1.13.11.11) is able to metabolize Trp. TDO2 activity 
is regulated by tryptophan levels and by glucocorticoids (84, 85). 
To relate increased Trp breakdown rates to inflammation-induced 
IDO1, the concomitant estimation of pro-inflammatory molecules 
is required. Thereby, the pteridine neopterin has turned out to be a 
reliable biomarker for inflammation-induced oxidative stress (86).

Neopterin/Biopterin Metabolism and 
inflammatory Stress

Activation of both IDO1 and GCH1 is highly responsive to IFN-γ 
signaling (87). Neopterin levels are increased in several disorders 
associated with chronic immune activation (86). In addition, 
elevated neopterin concentrations are predictive for the develop-
ment of AIDS and survival in HIV-1 seropositives (23, 33). Also, 
higher neopterin was shown to correlate with lower levels of plasma 
antioxidants (79). Of note, the peripheral monocytes of patients 
with HIV-associated dementia were shown to express lower levels 
of the antioxidant protein thioredoxin, as well as of enzymes per-
oxiredoxin and sodium oxide dismutase compared to patients with 
normal cognition (88). These altered functions of immune cells 
and the decreased expression of antioxidant defense systems may 
contribute to inflammation-induced neuronal damage.

Neopterin is formed by the enzyme GTP-cyclohydrolase 
(GCH1, EC 3.5.4.16). GCH1 converts guanosine-5′-triphosphate  
(GTP) to 7,8-dihydroneopterintriphosphate, the precursor of 
neopterin, 7,8-dihydroneopterin, and 5,6,7,8-tetrahydrobiop-
terin (BH4) (86). Most cell types predominantly produce BH4 
upon activation of GCH1 and lower amounts of 7,8-dihydrone-
opterin and neopterin. BH4 is highly sensitive to oxidation 
and its concentrations rapidly decrease under oxidative stress 
conditions (89, 90). In addition, human monocyte-derived mac-
rophages lack sufficient 6-pyruvoyltetrahydropterin synthase 
(PTPS, EC 4.2.3.12), the enzyme responsible for the formation 
of BH4 from 7,8-dihydroneopterintriphosphate. Therefore, 
these cells produce large amounts of 7,8-dihydroneopterin/
neopterin in a relatively constant ratio of 3:1 (91–93).

BH4 is an important cofactor for several monooxygenases 
including nitric oxide synthase (NOS) (Figure 1). Lack of BH4 
formation by activated human macrophages may be one reason for 
the low activity of inducible NOS (iNOS) in immune cells and the 
generally lower nitrite/nitrate levels in human plasma compared 
with those in rodents (94).

However, NOS function in other cell types might not be affected 
in this extent. Interestingly, an increase of serum nitrate in HIV 
patients has been reported; however, statistical significance of 
changes differed among these studies depending on disease stage 
and viral replication and presence of opportunistic infection 
(95–97). Boven et  al. reported elevated levels of nitrotyrosine, 
indicating the increased formation of peroxynitrite, in brain sec-
tions of demented HIV patients compared with non-demented 
patients (98). The origin of these NOx species is yet unknown. 
An involvement of neuronal (nNOS) or endothelial NOS (eNOS) 
in nitric oxide (NO) production could play a role. Importantly, 
endothelial dysfunction and increased risk of cardiovascular 
disease are frequently associated with HIV-disease and therapy 
(99, 100). Of note, NO was shown to strongly inhibit IDO1 activity 
(101). Both the origin and the functional consequences of changing 
NO levels in HIV disease have yet to be investigated in more detail.

BH4 Deficiency, Phenylalanine Metabolism, 
and Catecholamine Synthesis

In addition to being required for NOS activity, BH4 is also cofactor 
for the enzyme phenylalanine 4-hydroxylase (PAH, EC:1.14.16.1). 
Insufficient cofactor availability impairs the functioning of PAH, 
resulting in reduced production of catecholamine neurotransmit-
ters dopamine, norepinephrine (noradrenaline), and epinephrine 
(adrenaline). The precursor amino acid for catecholamines is Tyr, 
which is formed from Phe by PAH. Also, the conversion of Tyr 
to l-DOPA via tyrosine 3-monooxygenase (alternative name: 
tyrosine 3-hydroxylase, TH) requires BH4 as cofactor (92).

Dysregulation of Phe metabolism was found in patients with 
cancer, patients with multiple trauma with sepsis, and in the elderly, 
as well as in patients with HIV-1 infection (19, 20, 102–104). 
Plasma Phe/Tyr ratio measured in HIV-1-infected individuals was 
found to be increased and to correlate with the concentrations of 
the immune activation marker neopterin, as well as with HIV-RNA 
levels and CD4+ counts (20). In the same study, it was shown 
that effective ART could reduce plasma concentrations of Phe and 
neopterin. The Phe/Tyr ratio is a convenient way to determine 
PAH activity in the absence of a reliable methodology for BH4 
measurements (105). Thus, the increase of Phe/Tyr ratio found in 
HIV-1-infected individuals is a strong indication of BH4 deficiency, 
which is most probably due to oxidative loss of the oxidation-
sensitive cofactor in the state of chronic immune activation.

Changes in dopaminergic neurotransmission have been 
reported for HIV-infection in a number of studies. Decreased 
availability of dopamine in the central nervous system is correlated 
with low performance in neuropsychological functions and cannot 
be fully rescued by highly active ART (HAART) treatment (106, 
107). Also, increased dopamine catabolism can contribute to 
dopamine deficiency. Monoamine oxidase activity was reported to 
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be enhanced in specific brain regions of HIV-infected individuals 
and this was associated with HIV encephalitis (108).

Of note, the activity of the enzyme involved in serotonin 
synthesis, TPH, is also dependent on BH4 levels, suggesting that 
potential decreases in BH4 during HIV infection may contribute 
to the losses in serotonin levels as well as to the dysregulation of 
dopamine and other catecholamine neurotransmitters.

Metabolomic and Proteomic Approaches 
for Biomarker identification

In recent times, a number of new metabolites with potential 
prognostic value have been identified in large-scale metabolome 
biofluid analysis of HIV patients (109). Importantly, several studies 
confirmed the changes in metabolism of the above-mentioned 
amino acids Trp, Phe, and Tyr.

By analyzing the profile of oral metabolites in HIV-infected 
individuals, including ART-experienced and ART-naïve patients, 
in comparison to healthy controls, Ghannoum et al. reported differ-
ences in levels of metabolites that belong to especially carbohydrate 
and amino acid metabolism (110). In this study, Trp, Phe, and Tyr, as 
well as several downstream metabolites of these amino acids, were 
found to be upregulated in HIV-infected individuals compared to 
controls. Both Trp and Phe concentrations were somewhat higher 
in the oral wash of therapy-naïve versus experienced individuals. 
In line with previous results (20), the Phe/Tyr ratio was a reliable 
marker for the monitoring of the immune status during infection 
in this study. Otherwise, while in the circulation Trp breakdown via 
the increased activity of IDO1 in immune cells is highly accelerated 
(21), the consistently elevated levels of Trp in the oral wash samples 
indicate distinct metabolic properties in the oral cavity (110). Oral 
wash is an interesting body fluid for non-invasive diagnostics, but 
serum or plasma may still represent a better alternative when 
investigating immunological parameters. Although less accessible, 
CSF, which is close to the site of inflammation and linked to the 
neuropathology, may be best suited for assessing the association 
of various molecules in particular with disease-associated central 
nervous system-related symptoms (111, 112). A recent study assess-
ing CSF metabolites in HIV patients with neurocognitive impair-
ments reported alterations in Kyn levels, however, only for patients 
not on ART (113). In the same study, Phe and Tyr metabolism 
associated metabolite sets were enriched in patients with cognitive 
impairments. Besides oxidative stress and mitochondrial function, 
metabolite profiles revealed aging-related pathways to be associated 
with neurocognitive deficits.

Using a proteomic approach, Laspiur et al. (114) identified 
several molecules that are uniquely present in CSF of HIV 
patients with cognitive impairments. Among those molecules 
were sodium oxide dismutase, an antioxidant enzyme that was 
previously reported to be upregulated in the brains of HIV-
demented patients compared to control patients (98), and migra-
tion inhibitory factor-related protein 14 (also known as protein 
S100A9), which is involved in the regulation of inflammatory 
processes and the immune response (114). In addition, other 
proteome studies have identified potential markers that might be 
associated with neuronal damage and inflammation (115, 116).

Therapeutics and Future Directions

A number of in vitro and animal studies are currently evaluat-
ing the potential of targeting IDO to limit HIV infection in 
combination with antiretroviral treatment. Blockade of IDO 
by 1-methyl-d-tryptophan reduced viral loads in the plasma 
and lymph nodes of SIV-infected macaques that were also 
treated with ART (117). Whether long-term treatment with 
this combination is well tolerated, and whether it is effective at 
preventing neuronal damage or depression and/or at facilitat-
ing immune reconstitution still needs to be investigated. In 
fact, in animal tumor models, IDO1 inhibition by chemical or 
genetic interventions has been associated with the (re)activa-
tion of therapeutically relevant anticancer immune responses 
(118). Similar effects could be beneficial for immunodeficient 
patients.

Other treatment options are also currently being investi-
gated. In a pilot study involving treatment of four HIV infected 
patients, high dose nicotinamide was effective at increasing 
tryptophan concentrations of patients (119). In addition, 
Lebouche and colleagues are investigating the effects of 
combined ART and niacin treatment on neurocognition and 
immune status, as well as on lipid metabolism of HIV-infected 
patients (120).

Recently, the combination of fluconazole and paroxetine 
(FluPar) was suggested as a therapeutic strategy for the treatment/
prevention of neurological damage in HIV-infected patients. 
FluPar was shown to be protective against HIV gp120- and Tat-
mediated neurotoxicity in a macaque model of SIV infection. Also, 
treatment of patients with ART and paroxetine (or another SSRI) 
was proposed as adjunctive neuroprotective and neuroregenerative 
therapy to treat HIV-infected individuals (121).

The CCR5 inhibitor maraviroc was shown to inhibit CNS rep-
lication of SIV in infected macaques, as well as to lower monocyte 
and macrophage activation, and to exert neuroprotective effects 
(122). In a study with 15 HIV-infected individuals, this drug 
improved the neurocognitive performance of the patients (123).

In a recent study in Wistar rats, facilitated transport of 
efavirenz (a non-nucleoside reverse transcriptase inhibitor) 
across the blood–brain barrier using phenylalanine-anchored 
solid lipid nanoparticles was shown to improve bioavailability 
and maintain therapeutic levels in the brain for an extended 
period of time, probably enabling a significant eradication of 
the viral load (124).

However, as discussed in Section “Vitamin Status, Nutrition, 
and Inflammatory Stress,” nutritional interventions supporting 
drug therapy might be a first and very effective step to personalized 
treatment with less side effects.

Conclusion

A major issue in the treatment of HIV/AIDS is the development 
of neurocognitive disturbances in individuals despite effective 
therapy, although symptoms develop in a milder form or with 
changed dynamics (4, 10, 125). Several factors are suggested to be 
involved in the progression of HAND, including the inability of 
drugs to effectively cross the blood–brain barrier, the development 
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of resistant viral strains, and neuronal toxicity induced by viral 
proteins or chronic inflammation.

Elevations in Phe/Tyr, Kyn/Trp, and neopterin levels were 
shown in patients with HIV-1 infection, with the levels of neop-
terin in HIV-1 seropositives providing predictive information 
for the progression of AIDS and survival (20, 23). The cellular 
immune system is activated during HIV-1 infection, which 
leads to the activation of IFN-γ-dependent pathways including 
neopterin production via GCHI and tryptophan catabolism via 
IDO1. The concentrations of these biomarkers have been found 
to be altered in mental disorders and in disease-associated 
mood disturbances, and to correlate with depressive symptoms, 
especially, in long-lasting chronic diseases (31, 126). Of note, 
higher neopterin and Kyn/Trp were demonstrated in patients with 
HIV-infection (34) and accelerated Trp breakdown was shown to 
correlate with neuropsychiatric symptoms in HIV-patients (21, 
33). In addition, chronic immune activation correlates with the 
decreased turnover of Phe (19), which has also been reported 
in HIV infection (20). Tyr and Trp are important precursors of 
serotonin and the dopaminergic neurotransmitters. The increased 
production of neopterin at the expense of BH4 and the lability of 
BH4 molecule under oxidative stress conditions (92) provides a 
rational link for the decreased activity of TPH and PAH enzymes, 
which use BH4 as a cofactor.

Recent metabolome and proteome analyses of changes 
occurring in the course of HIV-1 infection and therapy could 
confirm the dysregulation of amino acid metabolism and iden-
tify further pathways and molecules involved in HIV-associated 
neuroinflammation.

Numerous studies have reported an association between changes 
in immunologic parameters, such as the impaired activities of 

immunocompetent cells or increases in inflammatory mediators, 
and cytokine production with the activation of neuroendocrine 
pathways, altered neurotransmitter metabolism, and thus changes 
in behavior (17, 127). Current clinical parameters used to guide 
HIV-treatment are viral load and CD4 counts. These can probably 
deliver more diagnostic information when used in combination 
with an estimation of amino acid levels in patient serum. The 
targeted measurement of the well-established biomarkers neop-
terin, Kyn/Trp, and Phe/Tyr could be used to monitor the course 
of disease and judge the effectiveness of treatments in a reliable 
and relatively cost-effective manner. Although it was reported that 
ART could beneficially influence Phe/Tyr (20) and Kyn/Trp ratios 
(127), it still remains to be investigated whether a therapy-induced 
stabilization of amino acid levels also improves mood and quality 
of life in patients.

Concluding Remarks

Changes in mood status can be observed in the very early 
stages of HIV-1 infection (5) and, notwithstanding ART, HIV-
1-infected individuals may develop cognitive impairment (10). 
The molecular changes underlying these infection-associated 
disturbances have not yet been characterized. Changes in the 
metabolism of the amino acid tryptophan and phenylalanine 
have been associated with HIV disease and were of predictive 
value. Both amino acids are precursors for neurotransmit-
ter biosynthesis, providing a link to the development of 
disease-associated neurocognitive impairments. Therefore, 
monitoring amino acid metabolism in HIV-1-infected patients 
during ART could be useful in adapting personalized treat-
ment regimens.
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