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In the brain of female mammals, including humans, a number of physiological and 
behavioral changes occur as a result of sex hormone exposure. Estradiol and proges-
terone regulate several brain functions, including learning and memory. Sex hormones 
contribute to shape the central nervous system by modulating the formation and turnover 
of the interconnections between neurons as well as controlling the function of glial cells. 
The dynamics of neuron and glial cells morphology depends on the cytoskeleton and 
its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites 
and dendritic spines, as well as to regulate the diverse functions in astrocytes. The 
expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and 
glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly 
when variations in sex hormone levels occur during the estrous or menstrual cycles or 
pregnancy. Here, we review the changes in structure and organization of neurons and 
glial cells that require the participation of cytoskeletal proteins whose expression and 
activity are regulated by estradiol and progesterone.
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iNTRODUCTiON

Sex steroid hormones are known to play an important role during development and adulthood, 
regulating different functions and features of the central nervous system (CNS), such as brain dif-
ferentiation, reproductive behavior, learning, and memory as well as neuroprotection. Structural 
plasticity is highly involved in the functional adaptation of the CNS in response to different envi-
ronmental and physiological stimuli, including changes in hormone levels. In particular, female sex 
hormones can modify the size, morphology, synaptic density, and function of neuronal cells as well 
as the morphology of glial cells in sex steroid-responsive structures of the CNS (1). These changes 
are due to modifications in the neuronal and glial cytoskeleton where intracellular signals con-
verge to regulate the direction and speed of outgrowth of different cell structures. Actin filaments, 
microtubules (MTs), and intermediate filaments, as well as the proteins associated with them, play a 
major role in synapse and dendritic spine formation (2). Neuronal projections are not only depend-
ent on neuronal activity but also reliant on glial cells. The glia has an essential role in regulating 
the activity of CNS, where a mutual communication between glial cells and neurons exists. The 
activity and modifications in glial cell morphology also affect the formation and maintenance of 
synaptic contacts (3, 4). In this review, we will focus on the effects of female sex hormones on the 
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expression and regulation of cytoskeletal proteins, contributing 
to the remodeling of the adult brain.

SeX HORMONeS AND THe BRAiN

Female sex hormones are known to have a wide range of effects 
in the brain regulating not only reproductive processes but also 
cognitive functions. Estradiol (E2) and progesterone (P4) are 
cholesterol-derived hormones that, given their lipophilic struc-
ture, can easily cross the blood–brain barrier and interact with 
their specific receptors in different target cells of the brain. These 
hormones are also synthesized inside the brain. P4 and E2 levels 
have been detected in different brain areas such as hypothalamus 
and hippocampus with concentration differences between female 
and male animals (5–7), and their synthesis in neurons and glial 
cells have been demonstrated (8, 9). Moreover, pregnenolone, a 
cholesterol metabolite used by neurons for the biosynthesis of P4 
and E2, is also produced by the glia (10, 11). This implies that the 
actions of sex hormones in neuronal plasticity are the result of 
adrenal, gonadal, and brain local synthesis.

E2 and P4 effects depend on the signaling pathway they acti-
vate, which can be either through intracellular receptors (classical 
mechanism) or membrane receptors (nonclassical mechanism) 
(12). Female sex hormone receptors are expressed in different 
brain areas, such as the hippocampus, hypothalamus, cortex, 
cerebellum, medial amygdala, substantia nigra, and ventral 
tegmental area (13–18). In the classical mechanism of action, 
sex hormones enter the cell and interact with their intracellular 
receptors, progesterone receptors A and B (PR-A and PR-B), 
and estrogen receptors α and β (ERα and ERβ). In the cell, the 
receptors are associated with chaperones like the heat shock 
proteins 70 and 90 (Hsp70/90). The ligand–receptor interaction 
induces conformational changes in the latter that promotes the 
receptor phosphorylation, dissociation of the Hsp70/90 complex, 
and dimerization. The active receptor binds to specific DNA 
sequences named hormone response elements (HREs) located 
within the regulatory regions of target genes. The receptor also 
recruits coactivators and chromatin remodeling complexes that 
enhance the attachment of the basal transcription machinery to 
induce gene expression. Genes that lack HRE can be hormonally 
induced through the interaction of the receptor with transcrip-
tion factors like Sp1 and Ap1 (19–22). Once the receptor dissoci-
ates from the DNA, it is marked for degradation through the 26S 
proteasome (23, 24).

Hormone receptor activation can also induce diverse signaling 
pathways like those mediated by MAPKs, PI3K/Akt, and PKC 
(25–27), regulate second messenger cascades (28) or modulate the 
actions of neurotransmitter receptors (29). These mechanisms are 
regulated through PR and ER located in the cytoplasm, nucleus, 
or plasma membrane (30–32) or through other membrane 
receptors that have different biochemical and pharmacological 
properties (33, 34). These signaling pathways may eventually 
induce gene transcription. The different mechanisms of action 
of sex hormones may account for the diverse signaling profiles 
observed in various brain regions.

The effects of E2 and P4 in the brain depend on hormonal 
levels and receptor expression. The levels of P4 and E2 fluctuate 

throughout the life span of the rat modifying different parts 
of the CNS and causing diverse alterations in brain anatomy, 
physiology, and behavior (35, 36). E2- and P4-induced plasticity 
occurs when neuronal cells dynamically respond to hormonal 
stimuli by modifying its connectivity network and biochemical 
composition. Brain plasticity can be long lasting, and even the 
same stimuli can induce different plastic responses at different 
ages (37). The most dramatic change induced by sex hormones 
in brain is the driving of its sexual differentiation. During the 
fetal–neonatal period, sex hormones permanently modify the 
brain architecture (13, 38). Neurogenesis, cell differentiation, 
synaptogenesis, axon guidance, myelination, cell migration, and 
cell death are some of the main mechanisms occurring during 
sexual differentiation of the brain. These mechanisms alter the 
brain area, volume, cell number, cytoarchitecture, cell activity, 
synaptic connectivity, and neurochemical content (1, 39).

After brain differentiation, sex hormone levels in the brain are 
transitory and fluctuating, and induce the continuous functional 
adaptation of the CNS throughout the life span of the animal, 
particularly in females (35, 40). The main periods where sex 
hormone levels fluctuate during the life span are the beginning of 
puberty, reproductive cycles, pregnancy, and menopause. During 
these phases, alterations in the number of neurons and synapses, 
glial complexity, morphological variations in dendrites and syn-
apses, and changes in neurotransmitter levels have been reported 
(41–44). These changes promote neuronal and glial remodeling 
that is critical for cognition, learning, and memory. For example, 
spatial working memory varies during rat pregnancy, and the 
memory retention enhanced by E2 is maintained by P4 (45, 46). 
Further data show that E2 and P4 modify neuronal morphology 
of the hippocampus of rats and monkeys, an important region 
for memory consolidation (47, 48). It has been recently reported 
that P4 enhances object recognition memory consolidation 
through mTOR and Wnt signaling (49). There is also evidence 
that both E2 and P4 can modulate GABAergic, dopaminergic, 
glutamatergic, and serotoninergic neurotransmission, as well 
as the release of a variety of growth factors from the astroglia 
(50–52). Sex hormones also modify the outgrowth of astrocytic 
processes and the amount of neuronal membranes they can cover, 
facilitating neuronal synaptic connectivity and plasticity (3, 51, 
53). Morphological changes induced by E2 and P4 in the brain as 
well as the cytoskeletal proteins participating in brain plasticity, 
which are modulated by sex hormones, are reviewed in detail in 
the next sections.

SeX HORMONeS MODiFY THe NUMBeR, 
SiZe, AND BiOCHeMiCAL 
CHARACTeRiSTiCS OF DeNDRiTiC 
SPiNeS

The effects of E2 and P4 on neuronal plasticity are related to adap-
tive changes in the structure and function of neurons that may 
contribute to learning, memory, and recovery after diverse insults 
(1). Reorganizational effects of sex hormones on neuronal cir-
cuitry involve different morphological events, including changes 
in dendritic length (54, 55) and neuronal membrane organization 
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related to synaptic and dendritic spine formation (56). Dendritic 
spines, first described by Ramón y Cajal in 1888 (57, 58), are 
small protrusions of the dendritic membrane of neurons that are 
specialized in synaptic transmission. They consist of an actin-rich 
head attached to the neuron by a thin neck and contain the neces-
sary postsynaptic machinery to receive the input of an excitatory 
synapse. Dendritic spines and synapses can be stable or change 
dynamically, even in very short time lapses, in their morphology 
and biochemical composition upon different stimuli (59, 60). Sex 
hormones have been shown to alter the structure and function 
of these neuronal structures through both rapid and long-term 
mechanisms (32, 61).

Recent studies show that E2 can modify synaptic plasticity 
and dendritic spine formation in hippocampal neurons through 
rapid signaling cascades, such as MAPKs, PI3K/Akt, and PKC 
(43, 62), which can also involve the activation of ERα (63–65). 
Signaling pathways such as ERK1/2 and Akt have been reported 
to be essential for E2-mediated spinogenesis in primary corti-
cal neurons, and the activation of ERβ can mimic the rapid 
E2-induced spinogenesis and synaptogenesis. These results sug-
gest that in cortical neurons, E2 via ERβ promotes neuronal cell 
remodeling by increasing the number of excitatory synapses (66). 
The same study showed that 30 min of E2 treatment induces the 
recruitment of postsynaptic density protein 95 (PSD-95) to the 
newly formed dendritic spines, while in the nascent, synapses 
promotes the recruitment of the N-methyl-d-aspartate (NMDA) 
receptor subunit GluN1 (66). These proteins are essential for 
the formation of new synaptic contacts, suggesting that E2 pro-
motes the recruitment of the required proteins to allow pre and 
postsynapses to form connections. Other studies show that E2 
promotes the phosphorylation of NMDA receptors through the 
activation of the src tyrosine kinase/MAPK pathway, and thus 
enhances long-term potentiation (LTP) of synapse transmission 
(67). Also, cyclic changes in E2 levels during the estrous cycle 
of rats are associated with changes in the state of NR2 subunit 
tyrosine phosphorylation of NMDA receptors in the hippocam-
pus and alter LTP (68). In addition to E2, rapid effects of P4 have 
been reported in primary cultures of cortical neurons, where P4 
increases the density and number of dendritic spines through 
changes in cell cytoskeleton components (69). The rapid effects of 
P4 on dendritic spines have been proposed to occur through the 
activation of GABA receptors and through the recently described 
PR membrane component 1 (65, 70).

Non-rapid effects of sex hormones in the brain have also been 
observed, and reports show that they induce the formation of 
excitatory synapses both in vitro and in vivo (47, 48), thus modu-
lating LTP (71, 72). For example, ovariectomized rats treated with 
E2 for 48 h showed an enhanced density of apical dendritic spines 
in the CA1 region of the hippocampus that was related to an 
increase in the number of functional synapses (73). Interestingly, 
the density of dendritic spines in the hippocampal pyramidal 
cells changes during the estrous cycle of the rat; more spines are 
observed during the afternoon of the proestrus and the morning 
of the diestrus when E2 and P4 levels are high (5, 74). Moreover, 
Kato and colleagues demonstrated that the concentration of E2 
in the hippocampus correlates with the serum concentration 
observed during the estrous cycle (5). However, hormone levels 

in the brain vary between newborn female and male animals (7, 
75), suggesting the importance of considering the developmental 
stage and sex of the animal for a better evaluation of the observed 
hormone effects. Other studies show that adult male rats have 
more spines than female animals in the medial nucleus of the 
amygdala, and that the density of these spines varies throughout 
the estrous cycle of virgin rats, showing fewer spines during the 
proestrus and estrus phases when compared to diestrus (76, 77). 
Remarkably, the inhibition of E2 synthesis in females but not in 
males results in LTP and synapse loss in hippocampal slices (78, 
79), which points toward an important effect of local E2 synthesis 
on synaptic plasticity.

E2 also induces the formation of neural pathways during fetal 
and neonatal life that modulate the activity of synapses in adult-
hood (80). The role of P4 in synaptic plasticity is less studied, 
but it has been reported that in cerebellar slices of neonatal rats, 
P4 promotes dendritic outgrowth and synaptogenesis in Purkinje 
neurons contributing to the formation of new neuronal connec-
tions in this structure (81). Immature cerebellar Purkinje cells 
treated with P4 for 24 h increased the dendritic length and spine 
density but this effect was not observed in mature cells. The effect 
was blocked when cells were treated with PR antagonist RU486, 
which suggest a classical mechanism of action for this hormone 
in the cerebellum (70). Interestingly, chronic treatment with P4 
(60 days) decreases hippocampal synaptic transmission and LTP 
in hippocampal slices from ovariectomized adult rats (65). These 
data suggest that in mature cells, P4 effects on dendritic spine 
formation and LTP are less clear than for E2. With respect to the 
importance of the glia, primary cultures of rat astrocytes treated 
with P4 for 24 h express higher levels of agrin, a protein shown to 
be important for synapse formation. The P4-induced increase in 
agrin in astrocytes enhances synapse formation in hippocampal 
neurons (82). These data show the strong relation between glia 
and neurons that can be modulated by sex hormones. Many of 
these changes observed in the adult brain eventually converge on 
the cell cytoskeleton. Neuronal and glial cytoskeletal reorganiza-
tion depends on its own dynamic nature and on the expression, 
regulation, and activity of the proteins associated with it.

THe CYTOSKeLeTON iN NeURONAL 
PLASTiCiTY

The neuronal cytoskeleton is divided into three specific structural 
complexes with different properties: neurofilaments (NFs) or 
intermediate filaments, MTs, and microfilaments (MFs), each one 
with a specific composition and organization, and even a particu-
lar cell type or subcellular localization. NFs are heteropolymers 
composed of heavy, medium, and light NFs protein chains. NFs 
are very abundant in neuronal axons and have extremely elastic 
fibrous properties that help to maintain the asymmetrical shape 
of the neuronal cell and to regulate the axon diameter and growth 
(83). In addition to NFs, MTs are mainly located in the neuronal 
axon, where microtubule-associated proteins (MAPs) like Tau 
help to stabilize them. MTs are composed of heterodimers of α 
and β tubulin that give them an intrinsic polarity important for 
their dynamic nature (84). MTs and their MAPs (MAP1B, MAP2, 
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etc.) participate in the promotion of neurite extension, the induc-
tion of distinctive morphologies between axons and dendrites, 
axonal transport, neuronal plasticity, and neuronal degeneration 
(85). Lastly, MFs are constituted by actin filaments, and their 
polymerization dynamic is closely associated with the activity of 
actin-binding proteins (ABPs) like drebrin and ADF/cofilin. MFs 
are involved in a broad range of aspects that are crucial for the 
establishment and the correct function of synapses, axonal cones 
growth, shape, size, remodeling of dendritic spines, and protein 
trafficking (86).

The neuronal cell shape, the dendritic spines, and synapse 
morphology, as well as the speed of synapse growth, can be 
hormonally modulated (87–89). Morphological changes depend 
on the cell cytoskeleton, and its dynamic regulation helps to 
shape these diverse neuronal structures. Experimental evidence 
suggests that MFs and MTs play a prominent role in the estab-
lishment and stability balance in neuronal structures, such as 
synapses and dendritic spines, which are constantly constructed 
and modified throughout life (90, 91). Dendrites and their spines 
have important implications in neuronal activity. Cytoskeleton 
studies show that MFs are highly accumulated in the dendrite 
spines where a pool of dynamic MFs is located at the tip of the 
spine, while a pool of stable drebrin–actin filaments is located in 
the spine core. These stable drebrin–actin filaments interact with 
dynamic MTs whose presence is enhanced by synaptic activity. 
The interplay between MFs and MTs is therefore important for 
the temporal and local regulation of spine morphology (2, 92, 93). 
These cytoskeleton rearrangements are controlled by members 
of the Rho family of GTPases (e.g., RhoA, Rac1), which regulate 
the activity of different cytoskeleton-associated proteins such as 
MAPs and ABPs (94, 95).

Synaptic connections are very important for neuronal com-
munication, so they are highly regulated. Astrocytes are active 
players in neuronal transmission and plasticity. They can extend 
their projections to surround neuronal somata, dendrites, and 
synapses. Actually, the majority of synapses are ensheathed 
by astrocytes providing the support for the organization and 
well functioning of the synaptic connections (Figure  1) (96). 
Astrocytic processes have in their structure bundles of intermedi-
ate filaments constituted by glial fibrillary acidic protein (GFAP). 
These projections gradually form a network that infiltrates the 
brain tissue in order to effectively associate with neuronal syn-
apses (97, 98).

Different cytoskeletal proteins are modified when morpho-
logical plastic changes occur in the brain in response to diverse 
stimuli. Gonadal sex hormones are known to affect diverse mor-
phological processes as mentioned in the text, so we will further 
review the effects of E2 and P4 on three of the main cytoskeletal 
proteins present in CNS cells.

e2 AND P4 PROMOTe THe ReMODeLiNG 
OF THe ACTiN CYTOSKeLeTON

Actin is a highly conserved protein involved in many important 
cellular processes, including contraction, cytokinesis, transport 
of vesicles and organelles, cell signaling processes, establishment 

and maintenance of cell junctions and cell shape, cell move-
ment, and synaptic plasticity (99, 100). These actin features are 
mainly attributed to filamentous actin, which represents the 
major cytoskeletal component of dendritic spines (101). Hence, 
the morphological changes in spine shape, size, and number are 
determined by local actin dynamics (102). The overall process of 
cytoskeleton remodeling, including the formation of new MFs 
and their interaction with the plasma membrane, depends on the 
participation of diverse ABPs.

P4 and E2 are key modulators of cell morphology and move-
ment in diverse cellular types, including neurons (103–106). Most 
of the events leading to cytoskeletal rearrangement are rapidly 
performed by changes in the phosphorylation state of ABPs. A 
key protein that controls actin remodeling is the WASP-family 
verprolin homologous protein 1 (WAVE1) whose activation by 
phosphorylation is essential to regulate actin polymerization 
through the actin-related protein Arp2/3 complex (107, 108). 
In this regard, E2 and P4 administration to rat cortical neurons 
leads to WAVE1 phosphorylation on 310, 397, and 441 serine 
residues. Phospho-WAVE1 is then redistributed toward the cell 
membrane at the sites of dendritic spine formation. An ERα rapid 
extranuclear signaling activates GTPase Rac1, which recruits the 
cyclin-dependent kinase 5 triggering WAVE1 phosphorylation. 
E2 also induces actin remodeling via the activation of ABP 
moesin through the RhoA and ROCK2 pathway (109). Moesin 
phosphorylation on Thr558 is essential to link the actin cytoskel-
eton to a variety of membrane-anchoring proteins, such as CD43 
and CD44 (110, 111). Rat cortical neurons treated with E2 and P4 
exhibit an increase in phosphorylation of moesin, which impacts 
the formation of neuronal spines (69, 109). Actin polymerization 
in dendritic spines of rat hippocampal slices has been linked to 
E2 activation of RhoA pathway that leads to the inhibition of 
the filament-severing protein cofilin (112). Interestingly, treat-
ment of hippocampal slices with aromatase inhibitor letrozole 
promotes actin filaments depolymerization as a result of cofilin 
activation, thus leading to synapse loss (113). Also, it has been 
reported a transient spine density increase in cortical neurons 
treated with E2 dependent on a Rap/AF-6/ERK1/2 pathway 
(114). Another study reported that E2 induced an increase in the 
length of dendrites in the central nucleus of the amygdala and 
in the hypothalamic ventromedial nucleus that was due to the 
inactivation of cofilin and variations in the composition of GluA1 
and GluA2 subunits of the AMPA receptors (87). The changes 
in the actin cytoskeleton suggest a possible relation between 
dendrite and dendritic spine remodeling and changes in animal 
behavior regulated by E2.

There is evidence that demonstrates that P4 increases the out-
spread of the neuronal growth cones of dorsal ganglia neurons, 
an effect related to morphological changes in the components 
of the actin cytoskeleton. The enhanced cytoskeletal dynamic 
within the growth cone after P4 treatment occurred through a 
classical mechanism of action because the effect was blocked by 
the administration of PR antagonist RU486 (115). These data 
show that E2 and P4 induce morphological changes in shape, 
size, and number of neuronal spines, and that these changes are 
determined by actin dynamics, suggesting a continuous plastic 
transformation (Figure 1).
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e2 AND P4 eFFeCTS ON  
MiCROTUBULe-ASSOCiATeD PROTeiN 2 
AND TAU eXPReSSiON

Microtubule-associated proteins regulate MTs dynamics by 
selectively binding to distinct conformations of polymerized and 
unpolymerized tubulin. Among them, the structural MAPs stabi-
lize the MTs by binding along the length of the MT (116). In the 
brain, the main structural MAPs are MAP1, MAP2, and Tau, each 
one presenting several isoforms. Neuronal MAPs are differen-
tially expressed during brain development: MAP1B is expressed 
in early stages of newly forming axons, MAP1A is expressed in 
mature axons, and both MAP2 and Tau isoforms are expressed 
during development and adulthood, predominantly in dendrites 
and axons, respectively (117, 118). In particular, Tau isoforms are 
of clinical relevance, given that they are the major component of 
paired helical filaments found in Alzheimer’s disease (AD) and 
other brain diseases (85, 119).

It has been reported that MAP2 is preferentially located at 
the shaft of dendrites, where it may have the capacity to regulate 
morphological plasticity at a slow rate when compared to the 

FiGURe 1 | estradiol and progesterone regulate the expression of cytoskeletal proteins and promote neuronal plasticity. Cytoskeletal proteins are 
indicated as follows: microtubules at dendritic spines, soma, and axon; intermediate filaments along the axon; actin filaments at dendrites; Tau along the axon, 
MAP2 at dendrites and dendritic spines; and GFAP in astrocytes. After estradiol (E2) and/or progesterone (P4) treatments, cytoskeletal proteins increase their 
content in a region-specific manner and this correlates with an increase in the number of dendrites, dendritic spines, and synaptic contacts. Hormonal stimuli also 
increase astrocytes ensheathing the synapses providing the support for the organization and well functioning of synaptic connections.

rapid morphological changes regulated by actin filaments in 
dendritic spines (91). In the CA1 region of the hippocampus of 
MAP2-deficient mice, apical dendrites were shorter than those 
of wild-type animals (120, 121), suggesting an important role for 
MAP2 in dendrite elongation.

The expression pattern of MAPs and their correlation with 
ultrastructural changes induced by ovarian steroids have been 
observed in different brain areas and under specific hormonal 
and developmental conditions (89, 122–124). In medial basal 
hypothalamic neurons maintained for 4 days in vitro (DIV), E2 
increased the levels of the 58-kDa Tau isoform but it did not 
change that of tubulin; by 7 DIV, E2 also increased the content 
of MAP1 and MAP2 (125). In cultured hypothalamic dissociated 
neurons, E2 exerted differential effects on neurite outgrowth 
depending on gender: the induction and differentiation of axons 
occur later in time, and cells develop fewer and shorter primary 
neurites in female fetuses compared with neurons taken from 
male fetuses. A comparable increase in Tau and MAP2 expression 
was observed in neuronal cultures obtained from both female 
and male rats (126). Another study showed that in dissociated 
cell cultures form embryonic rat medial amygdala, E2 induces 
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the differentiation of axons after 21 DIV and increases the total 
dendritic length of the cultured neurons. These changes were cor-
related with the respective increase in Tau and MAP2 expression 
but not with that of α-tubulin (127).

In the hippocampus of ovariectomized rats, an increase 
in MAP2 protein content has been reported after the treat-
ment with E2, P4, or both hormones for 24 and 48 h, with no 
changes in the frontal cortex. Interestingly, these hormones did 
not modify MAP2 mRNA content in the hippocampus. These 
data suggest that MAP2 is involved in the structural changes 
induced by E2 and P4 in hippocampus and that its expression is 
regulated at a postranscriptional level (123). Interestingly, it has 
been demonstrated that the chronic administration of ovarian 
hormones immediately after ovariectomy modifies the content 
of MAP2 and Tau in the hippocampus and prefrontal cortex of 
the rat. Short- (2 weeks) and long-term (18 weeks) treatments 
with E2 or P4 had different and even opposing effects on MAP2 
and Tau expression. None of the proteins changed its content 
in the prefrontal cortex in response to E2, but remarkably, P4 
decreased MAP2 after short-term treatment and increased both 
MAP2 and Tau in this brain region after a long-term treatment. 
In the hippocampus, short- and long-term treatments with E2 
increased MAP2 content, while P4 did it only after a short-term 
treatment (128). These data suggest that P4 regulates MAP2 
expression depending on the brain region and the exposure 
time to the hormone, and it would be interesting to study P4 
effects in E2-primed animals. Other authors have found similar 
tissue-specific effects with P4. For instance, in ovariectomized 
rats, an acute injection of P4 had no effect on Tau expression in 
the hypothalamus after 24 h, while it induced a decrease in the 
cerebellum (129). Another study reported that after P4 treat-
ment for 3 days, the loss of MAP2 induced by acute spinal cord 
injury was attenuated, suggesting that P4 is partially respon-
sible for preserving neuronal ultrastructure at the peripheral 
level (130). These studies highlight the importance of the type 
and length of treatment, the doses of E2 and P4 used and as 
well as the brain region studied; a summary of these results are 
shown in Table 1.

During pregnancy, circulating sex hormones are increased in 
the rat; E2 levels are two-fold and P4 three-fold higher compared 
with the hormone levels during proestrus day (131, 132). The 
brain displays diverse morphophysiological changes during 
pregnancy including cell plasticity (36, 45, 133). Furthermore, in 
the medial preoptic area (POA), late pregnant rats have bigger 
neuronal somata than ovariectomized rats (134), suggesting 
that E2 and P4 play an important role in neuronal morphology. 
Changes in the expression of MAP2 and Tau in the hippocampus 
and POA were evaluated during rat gestation and the beginning 
of lactation. In the hippocampus of pregnant rats, the content of 
MAP2 decreased during pregnancy, contrary to ovariectomized 
rats treated with P4 during 2 weeks (128, 132). These differences 
in P4 effects suggest a very fine regulation of MAP2 protein 
expression that depends on the characteristics of the hormonal 
stimulus. In addition, no significant changes in MAP2 content 
were detected in POA through rat pregnancy, suggesting that 
tissue-specific factors are involved in the regulation of MAP2 
expression (132), which could be related to the different roles 

that have specific brain areas in the behavioral patterns observed 
throughout pregnancy.

Differences in Tau protein content and in its phosphorylation 
pattern in different brain regions may be related to Tau key role in 
the dynamic remodeling of neuronal cytoskeleton observed dur-
ing gestation. Tau content and its phosphorylation are modified 
in a tissue-specific manner in the pregnant rat (132). In the hypo-
thalamus, the hippocampus, and the cerebellum, Tau content 
diminished on gestation day 14 compared to gestation day 2, and 
only in the cerebellum and the hippocampus, this decrease was 
sustained until day 18 of pregnancy. Phosphorylated Tau at Ser396 
(PhosphoTau) progressively augmented in the hippocampus, 
the hypothalamus, and the cerebellum throughout pregnancy, 
whereas in POA, the content of PhosphoTau decreased on day 
21 of gestation (135). Tau phosphorylation at Ser396 results in 
tubulin depolymerization and MTs destabilization (136). Recent 
data show that Tau has an important role in synaptic plasticity in 
the hippocampus and that Ser396 phosphorylation is required 
for long-term depression (LTD), which is associated with the 
weakening of synaptic connections (137). LTD is important 
for certain cognitive processes like novelty discrimination and 
behavioral flexibility (138), which are fundamental for the 
pregnant rat.

Changes in MAP2 and Tau expression have been seen even 
after days of E2 or P4 treatment (1 day and 18 weeks), suggesting 
a classical mechanism of action where intracellular PR and ER 
are involved. However, not only MAP2 and Tau are under sex 
hormones influence, there are other proteins involved in synap-
togenesis (neuroligins) or in spine density formation (PSD-95), 
whose expression also depends on P4 and E2 levels. Neuroligin-2 
expression in the uterus is upregulated after 3 days of treatment 
with E2, P4, or E2 + P4 (139). Six-hour of E2 treatment stimulates 
the phosphorylation of Akt, as well as the phosphorylation of the 
translation initiation factor 4E binding protein 1. In turn, the 
activation of these signaling intermediates promotes the increase 
in the translation of PSD-95 in cultured neuronal cells (140). 
These data demonstrate that E2 and P4 induce the expression 
of different proteins involved in neuronal plasticity by different 
mechanisms of action.

SeX HORMONeS AND THeiR iMPACT ON 
GLiAL FiBRiLLARY ACiDiC PROTeiN 
eXPReSSiON

Nowadays, it is evident that astrocytes respond to various 
stimuli by increasing their intracellular calcium levels, releasing 
gliotransmitters (141) or rapidly extending their projections (97). 
The large astrocytic processes have bundles of intermediate fila-
ments that have GFAP as one of their principal constituent. GFAP 
has been implicated in cell motility (142), astrocyte proliferation 
(143), directional mobility of vesicles (144), the integrity of the 
blood–brain barrier, myelination (145), neuroprotection, and 
brain plasticity (146, 147).

Glial fibrillary acidic protein expression can be modified by 
factors such as neuronal damage, stress, age, or hormones (148). 
Sex hormones can regulate the astrocyte number during rat 
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TABLe 1 | Changes in MAP2A and Tau protein content in the hippocampus and frontal cortex of ovariectomized rats after acute and chronic e2 and P4 
treatments.

Brain area Time of treatment e2 Time of treatment P4 Reference

MAP2A Tau MAP2A Tau

Hippocampus 48 h Increase Increase 24 h Increase Increase Reyna-Neyra et al. (123)

Frontal cortex NC NC NC NC

Hippocampus 2 weeks Increase NC 2 weeks Increase NC Camacho-Arroyo et al. (128)

Frontal cortex NC NC Decrease NC

Hippocampus 18 weeks Increase NC 18 weeks NC NC Camacho-Arroyo et al. (128)

Frontal cortex NC NC Increase Increase

The study of two brain regions and the modifications in protein content after acute (24 and 48 h) and chronic (2 and 18 weeks) hormone treatments.
NC, no change in protein content.
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hippocampal development (149), enhance the extension of GFAP 
immunoreactive processes in astrocytes from hippocampal slices 
in vitro (150), and modulate astrocyte reaction after brain injury 
(151, 152). Interestingly, GFAP fluctuates during the estrous 
cycle of the rat and has a marked sex difference, at least in the 
hippocampus. The CA1, CA3, and dentate gyrus regions of the 
hippocampus had an increase in GFAP immunoreactivity during 
proestrus (high levels of P4 and E2) compared to male animals 
and diestrus females. During proestrus, astrocyte morphol-
ogy changed to rounded cell bodies with numerous and short 
processes, whereas cells with stellate shape with few and long 
processes were present in the hippocampus of males and diestrus 
females (153).

During pregnancy and the beginning of lactation, a differential 
expression pattern of GFAP was found in the brain. Gómora-
Arrati and coworkers analyzed GFAP expression on days 2, 14, 
18, and 21 of gestation and the second day of lactation (L2) of the 
rat because of the marked changes in E2 and P4 levels observed in 
these days. It was found that in the hippocampus, GFAP content 
showed a constant increase of 25% throughout pregnancy and L2, 
while in the cerebellum, it first decreased more than 30% during 
pregnancy and later increased on L2 (41%). Interestingly, GFAP 
content increased in the frontal cortex and hypothalamus on ges-
tational days 14 and 18, respectively. Then, a subsequent decrease 
was observed in the following days of pregnancy that persisted 
until L2 in the hypothalamus, in the cortex increased (42%) in 
L2. Contrary, a dramatic decrease in GFAP content was observed 
in POA on day 14 followed by an increase that was maintained 
throughout the rest of the studied days. These data suggest a 
differential expression of GFAP that should be associated with 
changes in brain function during these reproductive stages (154). 
Other reports showed that the chronic administration of P4 in 
ovariectomized rats resulted in a reduction of GFAP content in 
the hippocampus (128). This result contrasts with that observed 
under physiological conditions, highlighting the importance of 
hormonal concentration and exposure time on the content of 
GFAP in the brain.

E2 also modulates astrocytic form and function in the hypo-
thalamus of rodents during development and adulthood. In the 
developing arcuate nucleus, E2 increased stellation of astrocytes 
through increases in neuronal GABA synthesis (155). Likewise, 
E2 positively regulates the length of GFAP-positive processes 
through ERα activation in astrocytes of ovariectomized animals 

(156). Still, there is no evidence whether E2-induced changes in 
astrocytes morphology are indirect effects of the E2 stimulation 
of neighboring neurons. Other reports show that in ovariec-
tomized rats with entorhinal cortex lesions, E2 replacement 
inhibits the increase in GFAP (mRNA and protein level) and 
enhances neurite outgrowth. It is proposed that the decrease 
in GFAP alters the organization of laminin and this increases 
the fibrillary extracellular matrix supporting axonal growth 
(157). In adult castrated male rats, GFAP expression increased 
in the hippocampus, however, high levels of E2 prevented this 
castration-induced increase in GFAP (148). Interestingly, as 
evidence described herein shows that most of the effects of 
steroid hormones on GFAP expression are long term, and the 
data suggest that both P4 and E2 dynamically modify both the 
content and the distribution of GFAP.

SeX HORMONeS iN NeUROGeNeSiS, 
NeUROPROTeCTiON AND DiSeASe

E2 and P4 have been shown to exert both neuroprotective and 
neuroregenerative roles in several models of brain damage 
(158–161). Neurogenesis in the adult animal occurs in the cells 
lining the subventricular zone and the dentate gyrus of the hip-
pocampus, where cells can remain quiescent or be activated to 
finally produce neuronal progenitor cells that later migrate into 
diverse brain regions (37, 162). It has been observed that neuro-
genesis in the dentate gyrus is higher in female animals than in 
males, probably because of the variations in gonadal hormones 
(163). Also, chronic treatment (21 days) of ovariectomized rats 
with E2 + P4 increased neurogenesis in the dentate gyrus (164). 
Regarding brain damage, E2 can induce neurogenesis post stroke 
in the adult animal (165) that could be through the activation of 
ERs (166, 167), and P4 has been reported to increase neurological 
functions after a traumatic brain injury (168). As a prerequisite 
for neuronal transmission, the new neurons need to have a 
well-defined axon and dendrites, which is known as neuronal 
polarization. The cytoskeleton is fundamental for the process 
of neuronal polarization (169) and as described in this review, 
sex hormones can modulate the expression and regulation of 
important proteins of the cytoskeleton.

The neuroprotective effects of sex hormones have been 
observed under different brain insults and diseases. In an 
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ischemic model, P4 reduces neurite growth inhibitory proteins 
like RhoA and Nogo-A, and E2 diminishes the loss of neurons 
and synapses from de CA1 hippocampal region (170, 171). In 
neurodegenerative diseases like AD, E2 administration reduces 
the expression of β-amyloid precursor protein, which is cleaved 
into amyloid beta (Aβ) and accumulated in plaques in the brain 
(172, 173). Aβ is involved in the generation of AD and it has been 
reported that estrogens can reduce its concentrations in the brain 
(174). Also, the formation of tangles of Tau protein caused by 
its abnormal phosphorylation, another AD characteristic, has 
been shown to be counteracted by E2 (175, 176). In fact, some 
studies have demonstrated that E2 therapy reduces the risk of 
presenting this neurodegenerative disease in women as well as 
diminishes the cognitive impairment associated with it (177, 
178). Neuroprotective properties of E2 and P4 have also been 
observed in  vitro in neuronal models of cell death induced by 
glutamate in hippocampal and cortical neurons (179, 180). Both 
E2 and P4 can induce recovery from neurodegeneration by 
increasing the synthesis of myelin components in both Schwann 
cells and oligodendrocytes (10, 181, 182). In fact, P4 promotes the 
expression of the myelin basic protein in cultured rat oligoden-
drocytes (183, 184). Taken together, sex hormones promote the 
recovery of brain tissue upon an insult and also protect against 
neurodegenerative diseases.

CONCLUSiON

E2 and P4 play a key role in different neuronal and glial cell func-
tions that involve changes in synaptic plasticity, and therefore in 
cell structure (Figure 1). These sex steroids induce changes in the 
brain cells cytoskeleton in addition to the content and activity of 
cytoskeletal proteins, such as MAP2, TAU, and GFAP. However, 
these changes significantly vary depending on sex, age, cerebral 
region, as well as the dose and length of exposure to these hormones.

PeRSPeCTiveS

There are several promising research areas that will give us a better 
understanding of the participation of sex steroid hormone action 
in cytoskeletal proteins regulation. The knowledge of the action 
mechanisms used by sex hormones to modulate cytoskeleton and 
therefore synaptic plasticity will be important to understand how 
learning and memory skills change during puberty, reproductive 
cycle, pregnancy, lactation, and menopause.
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