
February 2016 | Volume 7 | Article 241

Mini Review
published: 25 February 2016

doi: 10.3389/fpsyt.2016.00024

Frontiers in Psychiatry | www.frontiersin.org

Edited by: 
Vincent David,  

Centre National de la Recherche 
Scientifique (CNRS), France

Reviewed by: 
Jacques Micheau,  

University of Bordeaux 1, France  
Roberto Ciccocioppo,  

University of Camerino, Italy

*Correspondence:
Mark G. Packard  

markpackard@tamu.edu

Specialty section: 
This article was submitted to 

Addictive Disorders,  
a section of the journal  
Frontiers in Psychiatry

Received: 01 December 2015
Accepted: 11 February 2016
Published: 25 February 2016

Citation: 
Goodman J and Packard MG (2016) 

Memory Systems and the 
Addicted Brain.  

Front. Psychiatry 7:24.  
doi: 10.3389/fpsyt.2016.00024

Memory Systems and the 
Addicted Brain
Jarid Goodman and Mark G. Packard*

Department of Psychology, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA

The view that anatomically distinct memory systems differentially contribute to the
development of drug addiction and relapse has received extensive support. The present 
brief review revisits this hypothesis as it was originally proposed 20 years ago (1) and 
highlights several recent developments. Extensive research employing a variety of animal 
learning paradigms indicates that dissociable neural systems mediate distinct types of 
learning and memory. Each memory system potentially contributes unique components 
to the learned behavior supporting drug addiction and relapse. In particular, the shift 
from recreational drug use to compulsive drug abuse may reflect a neuroanatomical shift 
from cognitive control of behavior mediated by the hippocampus/dorsomedial striatum 
toward habitual control of behavior mediated by the dorsolateral striatum (DLS). In addi-
tion, stress/anxiety may constitute a cofactor that facilitates DLS-dependent memory, 
and this may serve as a neurobehavioral mechanism underlying the increased drug use 
and relapse in humans following stressful life events. Evidence supporting the multiple 
systems view of drug addiction comes predominantly from studies of learning and
memory that have employed as reinforcers addictive substances often considered within 
the context of drug addiction research, including cocaine, alcohol, and amphetamines. 
In addition, recent evidence suggests that the memory systems approach may also
be helpful for understanding topical sources of addiction that reflect emerging health 
concerns, including marijuana use, high-fat diet, and video game playing.
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inTRODUCTiOn

Investigators often look to mechanisms of learning and behavior to explain how human psycho-
pathology is acquired and expressed. An example of such an application was provided by Norman  
M. White who employed tenets of classical learning theory and experimental evidence supporting 
the existence of multiple memory systems in the brain to provide a novel, influential approach to 
drug addiction (1). Specifically, White indicated that drugs can play the part of “reinforcers” that, like 
food or water in a learning task, strengthen associations among drug-related stimuli, context, and 
behavior to promote drug taking and, over time, addiction. White also incorporated the emerging 
hypothesis that there are different types of memory that are mediated by dissociable neural systems. 
According to this novel view, drugs can directly modulate multiple neural systems, and these neural 
systems go onto encode distinct components of the drug-related memory that, when expressed, 
promote further drug taking.

The year 2016 marks the 20th anniversary of the multiple memory systems view of drug addiction 
as described by White. The present review revisits this influential hypothesis, while highlighting 
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some important recent developments that have not only substan-
tiated the original hypothesis but have also produced additional 
insights into how multiple memory systems potentially support 
drug addiction.

THe MULTiPLe MeMORY SYSTeMS view 
OF ADDiCTiOn

Converging evidence from studies employing humans and 
lower animals indicates that mammalian memory is medi-
ated by relatively independent neural systems [for reviews, 
see Ref. (2–4)]. The early experiments dissociating multiple 
memory systems were primarily conducted in the radial maze 
and indicated unique mnemonic functions for the hippocam-
pus, dorsal striatum, and amygdala (5, 6). The hippocampus 
mediates a cognitive/spatial form of memory, whereas the 
dorsal striatum mediates stimulus–response (S–R) habit 
memory. The amygdala mediates Pavlovian and stimulus-
affect-associative relationships (6, 7), while also subserving 
the modulatory role of emotional arousal on other types of 
memory (8–12).

Within the context of the multiple systems view of memory, 
White (1) suggested that the hippocampus, dorsal striatum, and 
amygdala encode unique components of drug-related memories 
(see Figure  1). The hippocampus encodes explicit knowledge 
pertaining to the relationship between cues and events (i.e., 
stimulus–stimulus associations) in the drug context. Importantly, 
the hippocampus does not encode behavioral responses, but 
rather the information acquired by the hippocampus can be used 
to generate the appropriate behavioral responses to receive drug 
reinforcement. On the other hand, the dorsal striatum encodes 
associations between drug-related stimuli and behavioral 
responses. This may allow the presentation of a drug-related 
cue to activate an automatic behavioral response that results in 
drug taking (e.g., running approach or instrumental lever press). 
The amygdala encodes Pavlovian-associative relationships, thus 
allowing neutral cues in the drug context to become associated 
with the drug reward. Animals later react to these conditioned 
cues similarly to how they originally reacted to the drug. 
Specifically, the conditioned cues activate conditioned emotional 
responses, including internal affective states and conditioned 
approach toward (or in some cases avoidance from) the condi-
tioned cue. Another critical component of White’s hypothesis is 
that drugs can modulate memory function of each of these brain 
regions. Thus, drugs can potentially enhance their own self-
administration via augmenting consolidation of the drug-related 
memories encoded by the hippocampus, amygdala, and dorsal 
striatum (see Figure 1).

Consistent with the multiple memory systems view of drug 
addiction, extensive evidence indicates critical roles for the hip-
pocampus, dorsal striatum, and amygdala in drug addiction and 
relapse for a variety of abused substances [for review, see Ref. (13)]. 
The dorsal hippocampus appears to have a role in the contextual 
control of drug seeking for cocaine (14–16). The lateral region of 
the dorsal striatum (DLS) mediates S–R habitual lever pressing 
for cocaine and alcohol (17, 18), and the basolateral amygdala 

(BLA) mediates conditioned drug seeking for cocaine, alcohol, 
and heroin (19–22). Also consistent with White’s hypothesis, 
substances of abuse can modulate the mnemonic functions of the 
hippocampus, dorsal striatum, and amygdala (23–31).

Recent studies have contributed novel amendments to the 
multiple memory systems approach to drug addiction. Key fea-
tures of this contemporary view include (1) a neuroanatomical 
shift over time to DLS-dependent habit memory, (2) competitive 
interactions between memory systems, (3) the role of stress and 
anxiety in enhancing habitual drug seeking, and (4) the applica-
tion of this hypothesis to new emerging sources of addiction.

THe neUROAnATOMiCAL SHiFT FROM 
COGniTiOn TO HABiT

In experimental learning situations, subjects typically employ 
purposeful behavior when initially solving a task. However, fol-
lowing extensive training, behavior becomes autonomous and 
can be performed with little attention, intention, or cognitive 
effort, constituting a “habit” [for review, see Ref. (32)]. In early 
demonstrations of this shift from cognitive control of behavior to 
habit, rodents were trained using food reward in a dual-solution 
plus-maze task (33–35). In this task, rats were released from the 
same starting position (e.g., the south arm) and had to make a 
consistent body-turn at the maze intersection to receive food 
reward always located in the same goal arm (e.g., always make a 
left turn to find food in the west arm). Rats could solve this task 
by either learning a consistent body-turn response or by making 
whatever response necessary to go the same spatial location. 
To determine which strategy the rats employed, investigators 
implemented a probe test in which animals were released from 
the opposite start arm (e.g., the north arm). If animals made the 
opposite body-turn to go the original goal location, they were 
identified as place learners. If animals made the same body-turn 
as during training (i.e., going to the arm opposite to the original 
goal location), animals were identified as response learners. 
Evidence indicates that after some training, most animals display 
place learning, whereas after extensive training, animals shift to 
habitual response learning (34–36). Interestingly, this shift from 
place learning to response learning may reflect a neuroanatomi-
cal shift. The initial use of place learning in this task is mediated 
by the hippocampus and dorsomedial striatum [DMS (36, 37)], 
whereas the use of response learning after extended training is 
mediated by the DLS (36).

In addition to early demonstrations using the plus-maze (34, 
35), the behavioral shift to habit memory was later demonstrated 
using operant lever pressing paradigms (38–42). In these instru-
mental learning tasks, animals initially lever press purposefully in 
order to obtain the outcome and will cease lever pressing once the 
food outcome is devalued. However, following extensive training 
animals will shift to habitual responding and will continue press-
ing the lever even after the food outcome has been devalued (40). 
As originally demonstrated in the plus-maze (36), the transition 
from cognition to habit in instrumental learning tasks might also 
be attributed to a neuroanatomical shift. The initial cognitive con-
trol of behavior in these instrumental learning tasks is mediated 

http://www.frontiersin.org/Psychiatry/archive
http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org


FiGURe 1 | white’s (1) multiple memory systems view of drug addiction. Like natural reinforcers, addictive drugs possess several “reinforcer actions,” 
including the ability to invoke positive/negative affect, approach, and modulation of memory systems. The amygdala, caudate–putamen (i.e., dorsal striatum), and 
hippocampus mediate dissociable memory systems, and each memory system presumably encodes unique components of drug-related memories. Given their 
memory modulatory properties, addictive drugs can potentially enhance their own self-administration by enhancing the function of these systems. (Reprinted from 
White with permission from John Wiley & Sons.)
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by the hippocampus and DMS (43, 44), whereas later habitual 
responding is mediated by the DLS (18, 45, 46).

Numerous investigators have suggested that the neuro-
anatomical shift to habit memory demonstrated in maze and 
instrumental learning tasks might also underlie the shift from 
recreational drug use to compulsive drug abuse (13, 47–50). 
Consistent with this hypothesis, investigators have demonstrated 
for a variety of abused substances that the DMS mediates goal-
directed responding for drug reinforcement and the DLS medi-
ates habitual responding for drug reinforcement (18, 31, 51–53).

Considering the high abuse potential of some drugs, investi-
gators have suggested that addictive drugs might enhance DLS-
dependent habit memory function and thereby accelerate the shift 
from cognitive to habitual control of behavior. Consistent with 
this hypothesis, repeated exposure to amphetamine or cocaine 
facilitates the shift from goal-directed to habitual responding 
for food reinforcement in instrumental lever pressing tasks (31, 
54–59). In addition, lever pressing for addictive substances (e.g., 
alcohol or cocaine) versus food reward has been associated with 
greater habitual responding versus goal-directed responding (24, 
60, 61). In humans, alcohol-dependent individuals show greater 
habitual responding in an instrumental learning task, relative to 
non-dependent control individuals (62). This enhancement of 
DLS-dependent habit memory by addictive drugs has also been 
observed in rodent maze learning tasks. Cocaine, amphetamine, 
and alcohol exposure have been associated with enhanced learning 
in DLS-dependent maze tasks or greater use of DLS-dependent 
response strategies in dual-solution versions of the maze (25, 63, 

64). In humans, the use of abused substances, including alcohol 
and tobacco, has been correlated to the greater use of dorsal 
striatum-dependent navigational strategies in a virtual maze (65). 
Thus, some drugs of abuse might enhance DLS-dependent habit 
memory, and this heightened engagement of the DLS memory 
system might accelerate the transition from recreational drug use 
to habitual drug abuse. This proposed mechanism is consistent 
with White’s (1) original contention that drugs of abuse might 
sometimes facilitate their own self-administration by enhancing 
function of memory systems.

COMPeTiTiOn BeTween MeMORY 
SYSTeMS

Although it is possible that addictive drugs enhance habit 
memory directly by enhancing function of the DLS [e.g., Ref. 
(29)], another possibility is that drugs of abuse enhance habit 
memory indirectly via modulation of other memory systems. 
This alternative mechanism invokes the hypothesis that in 
some learning situations, memory systems compete for control 
of learning and that by impairing the function of one memory 
system, function of another intact system might be enhanced 
(11, 66). Notably, the hippocampus and DLS might sometimes 
compete for control of learning, whereby lesion of the hip-
pocampus enhances DLS-dependent memory function (5, 6, 
67, 68). Competitive interactions can also be demonstrated in 
dual-solution tasks, when impairing one memory system results 
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in the use of a strategy mediated by another intact system. For 
instance, animals given DMS lesions display DLS-dependent 
habitual responding for food reward in instrumental learning 
tasks (44).

Considering the competitive interactions that sometimes arise 
between memory systems, one possibility is that some drugs of 
abuse might enhance DLS-dependent habit memory indirectly by 
impairing cognitive memory mechanisms mediated by the DMS 
and hippocampus. As noted previously, alcohol is associated with 
greater use of DLS-dependent habit memory in maze and operant 
lever pressing paradigms (24, 61, 62, 64, 65). Evidence also indi-
cates that alcohol impairs learning in hippocampus-dependent 
spatial memory tasks [(64, 69–72); for review, see Ref. (73)], 
as well as in DMS-dependent reversal learning tasks (74–77). 
Consistent with a competitive interaction between memory 
systems, it has been hypothesized that alcohol may facilitate 
DLS-dependent habit memory indirectly via impairing cognitive 
memory mechanisms (78).

It should be noted that aside from alcohol, numerous drugs 
have been associated with cognitive memory deficits. Exposure 
to morphine, heroin, methamphetamine, MDMA (ecstasy), or 
chronic cocaine similarly produces hippocampus-dependent 
spatial memory impairments across a variety of tasks (79–89). 
It is tempting to speculate that, as suggested for alcohol, cogni-
tive memory impairments produced by addictive drugs might 
indirectly enhance DLS-dependent habit memory, and that this 
might be one mechanism allowing drug self-administration to 
become habitual in human drug abusers. On the other hand, it is 
also possible that spatial learning deficits produced by addictive 
drugs might occur indirectly via enhancement of DLS-dependent 
memory processes. Consistent with this hypothesis, stimulating 
CREB activity in the DLS impairs hippocampus-dependent 
spatial memory (90), whereas inhibition of CREB activity in 
the DLS reverses the spatial memory impairments produced by 
morphine (91).

ROLe OF STReSS AnD AnXieTY

An additional consideration regarding the multiple memory sys-
tems approach to drug addiction is the role of stress. Converging 
evidence indicates that robust emotional arousal facilitates DLS-
dependent habit memory in rodents and humans [for reviews, see 
Ref. (9–12)]. Administration of anxiogenic drugs enhances DLS-
dependent response learning in the water plus-maze (92–97). This 
enhancement of DLS-dependent habit memory is also observed 
following exposure to unconditioned behavioral stressors [e.g., 
chronic restraint, tail shock, predator odor, etc. (98–101)] and 
exposure to fear-conditioned stimuli [tone previously paired with 
shock (102, 103)]. Although originally demonstrated in rodents 
(92), this enhancement of habit memory induced by robust emo-
tional arousal has also been demonstrated extensively in humans 
(99, 104–110).

The mechanisms allowing stress/anxiety to facilitate habit 
memory remain largely unknown; however, evidence indicates a 
critical modulatory role of the BLA (93–95, 100). Consistent with a 
competitive interaction between memory systems, some evidence 
also suggests that stress/anxiety might enhance DLS-dependent 

habit memory indirectly by impairing hippocampal function (94, 
95).

Enhancement of habit memory following stress or anxiety 
may be relevant to understanding some prominent factors 
leading to drug abuse. Namely, stressful life events or chronic 
prolonged periods of stress/anxiety are associated with increased 
vulnerability to drug addiction and relapse in humans (111–117), 
and similar observations have been made in animal models of 
drug self-administration [for review, see Ref. (118)]. Investigators 
have suggested that consistent with the influence of emotional 
arousal on multiple memory systems (10), acute or chronic stress 
may enhance drug addiction and relapse in humans by engaging 
DLS-dependent habit memory processes (9, 49, 119). Consistent 
with this suggestion, stress in cocaine-dependent individuals 
is associated with decreased blood-oxygen-level-dependent 
(BOLD) activity in the hippocampus and increased activity in the 
dorsal striatum, and these BOLD activity changes are associated 
with stress-induced cocaine cravings (120).

eMeRGinG SOURCeS OF ADDiCTiOn

Aside from drugs of abuse, the multiple memory systems 
hypothesis has also been recently employed for understand-
ing other emerging sources of addiction. For instance, the rise 
in obesity over the past few decades has led to a comparable 
surge in experimental interest, with many investigators drawing 
parallels between drug addiction and overeating [for review, see 
Ref. (121–123)]. Some recent evidence has suggested that like 
drug addiction, food addiction might be partially attributed to 
heightened engagement of DLS-dependent habit memory. In rats, 
binge-like food consumption facilitates the shift from cognitive 
to habitual control of behavior (124, 125). Moreover, habitual 
behavior in bingeing animals is associated with increased DLS 
activity and may be prevented by blocking AMPA or dopamine 
D1 receptors in the DLS (125). Diet-induced obesity has also been 
recently associated with the use of habit memory in a Y-maze 
task (126).

Another emerging behavioral disorder that parallels some 
features of drug addiction is pathological video game playing 
or video game addiction [for review, see Ref. (127)]. Like drug 
addiction, long-term excessive video game playing has been 
associated with reduced dopamine D2 receptor binding in the 
dorsal striatum (128). Videogame playing is also correlated to 
increased activation of the dorsal striatum (129, 130), and greater 
dorsal striatal volumes predict higher levels of video game skill 
(131). People who regularly play action video games are more 
likely to use dorsal striatum-dependent habit memory in a vir-
tual maze (132), and pre-training video game playing leads to 
habitual responding over goal-directed responding in a two-stage 
decision-making task (133). Thus, as proposed for drugs of abuse, 
playing video games might enhance video game addiction via 
engaging the DLS-dependent habit memory system.

Finally, the multiple memory systems approach might also be 
useful for understanding marijuana addiction. Although mari-
juana may have lower abuse potential than other illicit substances 
classically considered within the context of drug addiction 
research (e.g., cocaine, morphine, heroin, etc.), heavy cannabis 
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use can nevertheless promote drug dependence and withdrawal 
symptoms as observed with other drugs of abuse (134–137). It 
has recently been suggested that marijuana addiction might be 
partially attributed to increased engagement of DLS-dependent 
habit memory (138). Whereas acute cannabinoid exposure 
impairs DLS-dependent memory function (139, 140), repeated 
cannabinoid exposure leads to greater DLS-dependent habitual 
responding in an instrumental learning task (141). In addition, 
heavy cannabis users display greater activation of the dorsal stria-
tum, relative to non-users, when performing a marijuana version 
of the implicit association task (142), and participants with a 
history of cannabis use are more likely to use dorsal striatum-
dependent habit memory in the virtual maze (65).

Given the successful application of the memory systems 
approach to emerging sources of addiction, it is reasonable to 
hypothesize that multiple memory systems might also be impli-
cated in other behavioral pathologies associated with addiction, 
such as compulsive shopping, Internet addiction, and sex addic-
tion. Indeed, whether the memory systems approach might be 
useful for understanding pathological gambling has also received 
some attention (143, 144).

COnCLUSiOn

Twenty years of experimental evidence has largely corroborated 
White’s (1) multiple memory systems approach to drug addic-
tion. Evidence indicates that the hippocampus mediates contex-
tual control of drug self-administration, the DLS mediates S–R 
habitual responding for drug reinforcement, and the amygdala 
mediates conditioned drug seeking. In addition, subsequent 
research has led to additional insights regarding the multiple 

memory systems view of drug addiction including the shift to 
habit memory, competition between memory systems, and the 
role of stress and anxiety.

Future research should attempt to integrate the memory sys-
tems approach with other theories of addiction, such as opponent 
motivational processes (145). It would also be useful to incorporate 
into the memory systems view additional features of addiction, 
such as drug dependence, tolerance, and withdrawal. Although 
the present review predominantly focused on the brain regions 
originally considered by White (i.e., the hippocampus, dorsal 
striatum, and amygdala), it should be noted that additional brain 
regions related to learning and memory have also been critically 
implicated in drug addiction and relapse, including the medial 
prefrontal cortex and nucleus accumbens [for review, see Ref. 
(13)]. Finally, although beyond the scope of the present review, 
it should be acknowledged that extensive evidence suggests that 
cellular and molecular changes in the midbrain dopaminergic 
system also contribute to addiction (146).

Although habit memories might be especially difficult to con-
trol, some evidence indicates that DLS-dependent memory, once 
acquired, can in some circumstances be suppressed (147) or even 
reversed (148, 149). Thus, it is possible that the pharmacological 
manipulations and behavioral procedures leading to the reversal 
or suppression of habit memory in animal models of learning 
might potentially be adapted to treat drug addiction and relapse 
in humans.
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