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Background: Several lines of evidence implicate dysfunctional neuronal plasticity in the 
pathophysiology of schizophrenia (SCZ). Aberrant glutamatergic and gamma amino- 
butyric acid neurotransmission are thought to underlie core cognitive deficits and nega-
tive symptoms of SCZ. Non-invasive brain stimulation (NIBS) allows for the in vivo study 
of cortical plasticity and excitability at the systems level of the human motor cortex. This 
review will focus on summarizing the available neurophysiological evidence for impaired 
motor cortical plasticity in SCZ assessed by NIBS.

Methods: A search of MEDLINE, Embase, and PubMed was performed on the use of 
NIBS techniques to investigate neuroplasticity in the motor cortex of SCZ patients. The 
relevant articles were summarized.

Conclusion: Our review of the literature reveals evidence for disrupted neuroplasticity 
in SCZ and its close association to alterations in cortical inhibition and dysfunctional 
intracortical connectivity. Further investigations are required to elucidate the neurobio-
logical mechanisms that underlie dysfunctional plasticity in SCZ in order to develop more 
targeted therapeutic interventions for SCZ patients.
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iNTRODUCTiON

Schizophrenia (SCZ) is a serious neuropsychiatric illness characterized by a complex phenotype 
including positive, negative, and cognitive symptoms. This disorder affects nearly 1% of the popula-
tion (1) incurring substantial societal, economic, and personal costs. Despite its societal burden 
the pathophysiological underpinnings of SCZ remain poorly understood. Several lines of evidence 
implicate disturbed neuroplasticity in the pathophysiology of SCZ incorporating alterations in 
neurotransmitter systems and cortical connectivity with clinical observations of cognitive deficits 
and negative symptoms (2–7).

Neuroplasticity refers to the brains ability to reorganize and generate new neuronal pathways in 
response to internal and external stimuli. Neuroplasticity is contingent on neuronal micro- and macro-
connectivity and activity-dependent changes in neuronal synaptic strength (8, 9). The strengthening 
of neuronal connections in highly activated pathways is termed long-term potentiation (LTP). The 
weakening of inadequately activated neuronal pathways is termed long-term depression (LTD). LTP 
and LTD are thought to be the neural mechanisms that underlie learning and memory (10).
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Glutamatergic N-methyl-d-aspartate (NMDA) receptors play 
a crucial role in the molecular processes of LTP and LTD (11). 
Several studies have linked NMDA receptor hypofunction to 
aberrant LTP and LTD in SCZ. Specifically, the administration of 
NMDA receptor antagonists, such as ketamine and phencyclidine, 
provides support for the theory of NMDA receptor hypofunction 
and impaired plasticity in SCZ (4, 12–14). In recent literature, 
dysfunction of glutamatergic NMDA receptors with both a 
hypoglutamatergic and a periodic hyperglutamatergic state in 
SCZ patients has been discussed (2, 15, 16).

Gamma amino-butyric acid (GABA) also plays a critical 
role in the modulation of synaptic plasticity (17). The associa-
tion between glutamate and GABA is well established. NMDA 
receptors are known to modulate the firing rate of GABAergic 
interneurons (18). Evidence for disturbed GABAergic neuro-
transmission in SCZ has been demonstrated through several 
postmortem studies which have shown both decreased density 
of GABAergic interneurons in multiple cortical regions as well 
as alterations in the GABA-synthesizing enzyme glutamic acid 
decarboxylase (3, 19–24).

Non-invasive brain stimulation (NIBS) allows for the investi-
gation of cortical excitability and plasticity at the systems level of 
the human motor cortex (7). In combination with neuroimaging 
techniques, NIBS can be used to explore other cortical regions 
related to mental disorders. NMDA receptor function and cal-
cium homeostasis have proven to be critical for cortical plasticity 
induction following NIBS in healthy subjects (25–28). This makes 
NIBS an ideal investigatory tool to explore NMDA receptor-
dependent cortical plasticity in SCZ patients (29).

Herein we will briefly examine five NIBS techniques before 
summarizing the neurophysiological evidence for motor cortical 
plasticity deficits in SCZ. Following this, the inherent limitations 
of the summarized studies are discussed.

NON-iNvASive BRAiN STiMULATiON

This review will discuss the following five NIBS techniques, 
distinguished from each other by their unique mode of action: 
repetitive transcranial magnetic stimulation (rTMS), paired-
associative stimulation (PAS), use-dependent plasticity (UDP), 
transcranial direct current stimulation (tDCS), and theta-burst 
stimulation (TBS) (refer to Table 1 for an overview).

While all reviewed NIBS techniques have been shown to 
induce LTP-like and LTD-like plasticity there are key differences 
in their mechanisms of response. PAS induces a form of hetero-
topic plasticity as it is dependent on the synchronous activation 
of two different inputs converging on the same cell (30–32). In 
contrast, rTMS, tDCS, and TBS induce a form of homeotopic 
plasticity caused by the repeated activation of the same input (i.e. 
set of synaptic connections) and the effects are dependent on the 
frequency of stimulation (30, 33).

Repetitive Transcranial Magnetic 
Stimulation
Transcranial magnetic stimulation (TMS) is a non-invasive tool 
that allows for the study of cortical excitability and plasticity 

in vivo. TMS relies on the principle of electromagnetic induc-
tion. A TMS coil is used to produce a focal magnetic field that 
in turn induces electrical current in the cortical tissue, resulting 
in transsynaptic activation of cortical neurons (7). The cortical 
plasticity induced by NIBS is demonstrated by alterations in 
motor cortical excitability (17, 34). With regards to the studies 
described below, changes in cortical excitability following NIBS 
have been assessed by two TMS measures: resting motor thresh-
old (RMT), an index of general neuronal membrane excitability, 
and motor-evoked potential (MEP) size, an index of global 
corticospinal pathway excitability (35–37). LTP-like plasticity 
is assessed by an increase in cortical excitability reflected by a 
reduction in RMT and facilitation of MEP size; the reverse is true 
for LTD-like plasticity (17).

A TMS protocol used for the induction of long-lasting cortical 
plasticity in the motor cortex is repetitive transcranial magnetic 
stimulation (rTMS). The direction of cortical excitability change 
following rTMS is dependent on the frequency and pattern of 
stimulation (38, 39). Studies in healthy subjects show that low fre-
quency rTMS (≤1 Hz) induces LTD-like plasticity, whereas high 
frequency rTMS (≥5  Hz) induces LTP-like plasticity (11, 39). 
Large inter-individual variability of the physiological response to 
high and low-frequency rTMS has been observed. This can be 
attributed to several factors that impact cortical plasticity such as 
age, gender, attention level, and genetics (38).

To date, two studies have used rTMS to investigate plasticity 
deficits in SCZ. The first study investigated LTD-like plasticity fol-
lowing 1-Hz rTMS over the left primary motor cortex in 10 medi-
cated and 16 unmedicated SCZ patients compared to 18 healthy 
controls (36). Both patient groups failed to demonstrate LTD-like 
plasticity, assessed by a failure to increase the RMT, as compared 
to the control group. Both patient groups also exhibited reduced 
cortical inhibition, demonstrated by a decrease in GABAergic neu-
rotransmission which is indexed by paired-pulse and single-pulse 
TMS protocols. An association between the reduced plasticity 
response and cortical inhibition was also found (36). Together these 
results show impaired LTD-like plasticity and deficient cortical 
inhibition regardless of medication status in SCZ patients, indica-
tive of a disease-dependent impairment of LTD-like plasticity in 
SCZ. There is evidence expanding the findings of altered cortical 
inhibition in SCZ to areas outside of the motor cortex. Woo et al. 
(40) and Kalus et al. (41) show altered cortical inhibition within 
the anterior cingulate cortex (ACC), a brain region implicated in 
the pathophysiology of SCZ. Investigators also suggest cortical 
inhibition is likely to play a crucial role in the physiologic basis of 
the observed plasticity deficits.

A second study used the same 1-Hz rTMS protocol to inves-
tigate intracortical connectivity in SCZ by stimulating the left 
premotor cortex to assess ipsilateral cortical excitability changes 
in the left primary motor cortex (42). Healthy controls displayed 
LTD-like plasticity indexed by a reduction in cortical excitability 
following 1-Hz rTMS. This result is consistent with previous 
studies in healthy subjects that also demonstrated a suppression 
of motor cortical excitability following 1-Hz rTMS over the 
premotor cortex (43, 44). Conversely, SCZ patients demonstrated 
LTP-like plasticity as opposed to LTD. SCZ patients also showed 
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TABLe 1 | NiBS-induced cortical plasticity investigated in the motor cortex of SCZ patients.

Stimulation Plasticity Patients Main result Reference

1-Hz rTMS (left M1) LTD-like 16 medicated SCZ Reduced LTD-like plasticity in medicated and unmedicated patients and 
impaired cortical inhibition

Fitzgerald 
et al., 2004 
(36)

10 unmedicated SCZ
18 HC

1-Hz rTMS (left PMC) LTD-like 12 SCZ Reversed plasticity (LTP-like) plasticity in SCZ patients unlike controls and 
reduced cortical inhibition

Oxley et al. 
(42)12 HC

PAS 25 (left M1) LTP-like 15 SCZ Deficient LTP-like plasticity in SCZ patients associated with impaired motor 
learning and reduced cortical inhibition

Frantseva  
et al. (47)15 HC

UDP LTP-like 14 medicated SCZ Both patient groups failed to show an LTP-like plasticity response indicating 
a disturbed cortical reorganizational process

Daskalakis  
et al. (9)6 unmedicated SCZ

20 HC

Anodal tDCS (left M1) LTP-like 9 RO-SCZ ME-SCZ, not RO-SCZ, demonstrated impaired LTP-like plasticity following 
anodal-tDCS indicating a disease-course-dependent effect on plasticity; 
reduced cortical inhibition was only enhanced in RO-SCZ after anodal tDCS

Hasan et al. 
(52)13 ME-SCZ

22 HC

Cathodal tDCS (left M1) LTD-like 21 SCZ SCZ patients showed reduced LTD-like plasticity and enhanced cortical 
inhibition

Hasan et al. 
(53)21 HC

Cathodal tDCS (left M1) LTD-like 18 SCZ SCZ patients demonstrated reduced LTD-like plasticity on the stimulated 
hemisphere and abolished LTD-like plasticity on the non-stimulated 
hemisphere indicating an association between impaired plasticity and 
connectivity

Hasan et al. 
(54)18 HC

Cathodal tDCS (left M1) LTD-like 15 SCZ SCZ patients and first-degree relatives demonstrated abolished LTD-like 
plasticity in the stimulated hemisphere. SCZ patients showed abolished 
LTD-like plasticity in the non-stimulated hemisphere, whereas first-degree 
relatives displayed reversed plasticity

Hasan et al. 
(55)12 Relatives

20 HC

Unilateral cathodal 
tDCS (left M1), Bilateral 
(cathodal left M1, and 
anodal right M1)

LTD-like (left M1) 10 SCZ SCZ patients failed to show LTP and LTD-like plasticity following both 
unilateral and bilateral stimulation paradigms. HC demonstrated LTD-like 
plasticity (cathodal left M1) after unilateral stimulation and LTP-like plasticity 
induction (anodal right M1) following bilateral stimulation.

Hasan et al. 
(56)10 HCLTP-like (right M1)

TBS (left M1) LTP-like (cTBS300) 10 SCZ SCZ patients showed impaired LTD-like plasticity following cTBS600 
stimulation and reversed plasticity following cTBS300

Hasan et al. 
(60)10 HCLTD-like (cTBS600)

M1, primary motor cortex; SCZ, schizophrenia patients; ME-SCZ, multi-episode schizophrenia patients; RO-SCZ, recent-onset schizophrenia patients; HC, healthy control subjects; 
tDCS, transcranial direct current stimulation; Relatives, unaffected first-degree relatives of schizophrenia patients; PAS, paired-associative stimulation; rTMS, repetitive transcranial 
magnetic stimulation; PMC, primary motor cortex; UDP, use-dependent plasticity; TBS, theta burst stimulation; LTP, long-term potentiation; LTD, long-term depression.
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cortical inhibition deficits compared to controls (42). This study 
provides indirect evidence for a close association between dys-
functional plasticity, reduced cortical inhibition, and functional 
premotor–motor connectivity in SCZ patients.

Paired Associative Stimulation
Paired associative stimulation (PAS) is another TMS paradigm 
used to induce reversible LTP and LTD-like cortical plasticity. It 
requires pairing of slow-rate, repetitive, low-frequency electrical 
stimulation of the peripheral median nerve with TMS stimulation 
of the contralateral motor cortex. The electrical stimulus precedes 
the TMS stimulus by either 25  ms to induce LTP or by 10  ms 
to induce LTD (45, 46). One study investigated PAS-induced 
LTP-like plasticity and its association with motor skill learning 
in 15 medicated patients suffering from SCZ or schizoaffective 
disorders and  15  healthy controls (47). In contrast to controls 
SCZ patients failed to demonstrate LTP-like plasticity assessed by 
a failure to increase MEP size. Motor skill learning was evaluated 
using a rotary pursuit task. The task required subjects to track 
a spot target on a revolving wheel with a stylus. On repeated 

exposure, the total amount of contact time on target per trial 
was used as an index of motor learning (47). The investigators 
found LTP-like plasticity and motor skill learning to be positively 
correlated among patients and controls. This finding highlights 
the close association between impaired plasticity and learning and 
memory deficits in SCZ patients.

Use-Dependent Plasticity
Use-dependent plasticity (UDP) is a TMS protocol that enables 
evaluation of motor cortical reorganizational processes thought 
to index a form of neuroplasticity (9). The neurobiological basis 
of cortical excitability changes induced by UDP are similar to 
that of LTP. Pharmacological studies in healthy subjects have 
shown a reduction in UDP after administration of dextrometho-
rphan (NMDA receptor blocker) and lorazepam (GABAA recep-
tor positive allosteric modulator) (25, 48). The UDP protocol 
involves measuring the spontaneous direction of TMS-induced 
thumb movement before and after a 30-min training period in 
which participants practice thumb movements in the opposite 
direction of baseline. Healthy subjects have demonstrated 
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TMS-induced thumb movements in the direction of training 
immediately after training; this effect has been shown to taper 
off within 40 min (49).

Only one study has investigated UDP in SCZ patients. This 
study included 14 medicated, 6 unmedicated SCZ patients, and 
20 healthy controls (9). In this study both patient groups failed 
to reorient TMS-induced thumb movements in the direction 
of training, the controls did not. The failure to reorient thumb 
movements could not be accounted for by training differences 
between groups (9). These results provide additional neurophysi-
ological evidence for plasticity deficits in SCZ, independent of 
their medication status, emphasizing the link between disturbed 
plasticity and motor learning deficits in SCZ patients.

Transcranial Direct Current Stimulation
Cortical excitability modulation using the aforementioned TMS 
protocols is dependent on depolarization of cortical neurons in 
response to a suprathreshold TMS pulse. Transcranial direct cur-
rent stimulation (tDCS) involves applications of continuous low 
direct current via two electrodes (anodal and cathodal) to induce 
intracortical current flow and subsequent modulation of the neu-
ronal resting membrane potential (7, 27). The direction of excit-
ability changes is dependent upon the stimulation protocol used; 
the duration of excitability changes is dependent on the length 
and intensity of stimulation (27, 50, 51). For anodal tDCS the 
anodal electrode is placed over the motor cortex and the cathodal 
electrode is placed over the contralateral orbit as a reference; this 
placement is reversed for cathodal tDCS (27). In the summarized 
studies below 9 min of cathodal tDCS at an intensity of 1 mA was 
used to induce LTD-like plasticity, and 13 min of anodal tDCS at 
an intensity of 1 mA was used to induce LTP-like plasticity in the 
motor cortex of SCZ patients.

A cross-sectional study explored non-focal LTP-like plastic-
ity following anodal tDCS in the left primary motor cortex of 9 
recent-onset SCZ, 13 multi-episode SCZ patients, and 22 healthy 
controls (52). Only the multi-episode group displayed deficient 
LTP-like plasticity when compared to recent-onset SCZ patients 
and healthy controls. Both patient groups also exhibited cortical 
inhibition deficits but only the recent-onset group demonstrated 
an enhancement of cortical inhibition. These findings underscore 
a possible link between duration and severity of SCZ and impaired 
plasticity (52). This has significant implications for the use of 
NIBS techniques as both an investigatory and therapeutic tool.

LTD-like plasticity following cathodal tDCS has been exten-
sively explored in the motor cortex of SCZ patients. The first 
of these studies examined the LTD-like plasticity aftereffects 
of cathodal tDCS in the left primary motor cortex of 21 SCZ 
patients and 21 healthy subjects (53). In this study SCZ patients 
demonstrated abolished LTD-like plasticity and alterations in 
cortical inhibition compared to controls. This finding of deficient 
LTD-like plasticity in the left primary motor cortex of SCZ 
patients was successfully replicated in three subsequent studies 
by the same group. In addition to replicating this finding, these 
studies provided indirect evidence for the relationship between 
impaired plasticity and dysfunctional interhemispheric connec-
tivity in SCZ patients. For instance, SCZ patients demonstrated 
reduced LTD-like plasticity in the stimulated (left) and abolished 

LTD-like plasticity in the non-stimulated (right) hemisphere 
following cathodal tDCS to the left primary motor cortex (54). 
Additionally a pilot study, using the same cathodal-tDCS pro-
tocol, provided preliminary neurophysiological evidence for the 
impact of a genetic liability for SCZ on LTD-like plasticity (55). 
In this study unaffected and unmedicated first-degree relatives of 
SCZ patients also demonstrated abolished LTD-like plasticity in 
the stimulated hemisphere and an unexpected reversal of plastic-
ity in the non-stimulated hemisphere. This finding further sup-
ports the trait-dependent impairment of neuroplasticity in SCZ. 
There are several possible physiological mechanisms that could 
account for the observed reversal of cortical excitability. The 
investigators speculate that the observed plasticity could be due to 
deficient interhemispheric inhibition, an imbalance in inhibitory 
interhemispheric M1-to-M1 connection within the plasticity–
connectivity network, or homeostatic mechanisms (55). More 
recently, one proof-of-concept study investigated the efficacy of 
bilateral tDCS (cathode left M1, anode right M1) in SCZ patients 
(56). The premise of this study was based on the recent finding 
of LTP- and LTD-like alterations in cortical excitability on the 
anodal and cathodal stimulation sites following bilateral tDCS in 
healthy subjects (57). This result was not replicated in this study, 
as healthy controls only demonstrated LTP-like plasticity induc-
tion following bilateral stimulation. In contrast to controls, SCZ 
patients failed to demonstrate both LTP- and LTD-like plasticity 
following bilateral tDCS. The consistent LTD-like plasticity defi-
cits observed in the aforementioned studies are suggested to play 
a crucial role in the pathophysiology of cognitive and memory 
deficits in SCZ (7).

Theta-Burst Stimulation
Theta-burst stimulation (TBS), a recently developed rTMS 
protocol, has also been used to induce cortical plasticity. Using 
high frequency stimulation, TBS modulates cortical excitability; 
the direction of cortical excitability change is dependent on the 
pattern of stimulation used. TBS requires a significantly reduced 
stimulation period compared to the standard rTMS protocols 
discussed previously (58, 59). Intermittent TBS (iTBS) involves 
the delivery of short 2 s trains repeated at 10 s intervals for 20 
cycles; continuous TBS (cTBS) involves a single stimulation train 
of 40 s. These stimulation protocols induce LTP- and LTD-like 
plasticity respectively (58, 59). The LTP- and LTD-like plasticity 
changes following TBS are shown to be critically dependent on: 
NMDA receptors, calcium homeostasis, and the balance between 
excitatory and inhibitory interneuronal networks (59–62).

A proof-of-concept study investigated TBS-induced LTP 
and LTD-like plasticity in the left primary motor cortex of 10 
SCZ patients and 10 healthy controls (60). In healthy subjects 
cTBS300 and cTBS600 induce LTP- and LTD-like cortical excit-
ability changes in the motor cortex (58–60, 63). The duration 
of the stimulation protocol determines the direction of cortical 
plasticity changes; cTBS300 delivers high frequency stimulation 
in a continuous train lasting 20  s, whereas cTBS600 lasts 40  s 
(60). As expected, SCZ patients did not show LTD-like plastic-
ity unlike healthy controls. Following cTBS300 SCZ patients 
demonstrated reverse plasticity in contrast to healthy controls 
who demonstrated a numeric, but non- significant, increase in 
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cortical excitability. In total a larger extent of healthy subjects 
than SCZ patients displayed the expected plastic response fol-
lowing both cTBS paradigms (60). These preliminary findings 
provide additional evidence for dysfunctional cortical plasticity 
in SCZ patients.

DiSCUSSiON

The reviewed articles generated three main themes. First, all 
studies demonstrated disturbed cortical plasticity in SCZ patients 
regardless of the investigatory NIBS technique used. Second, 
glutamatergic NMDA receptor dysfunction and alterations in 
GABAergic neurotransmission are speculated to play a key role 
in the neurobiological mechanisms underpinning the observed 
plasticity deficits in SCZ. It is well known that enhanced dopa-
minergic transmission is implicated in the pathophysiology of 
SCZ. Altered dopamine transmission has been shown to modu-
late glutamate and GABA among other neurotransmitter systems 
(18). The dopamine-dependent modulation of cortical plasticity 
is complex and further complicated in SCZ patients due to antip-
sychotic use (53). Third, the summarized studies lend support 
to the dysconnectivity hypothesis by providing indirect evidence 
for plasticity-dependent inter- and intra-hemispheric cortical 
connectivity disturbances. This hypothesis, set forth by Stephan 
et  al. (5), postulates that dysfunction of NMDA receptors, and 
subsequent impairment of NMDA receptor-mediated plasticity, 
impacts long-range connections in the developing brain. As a 
result of these developmental aberrations, learning and memory 
processes can become impaired as they require precise control of 
synaptic activity and inhibition (17).

LTD plays a crucial role in regulating the signal-to-noise ratio 
and memory functions in the human brain (64, 65). The reduced 
cortical inhibition and deficient LTD-like plasticity demonstrated 
by SCZ patients in the reviewed studies lends support to the 
theory of a reduced signal-to-noise ratio and disturbed filter-
function in SCZ (7, 52). A reduction in cortical inhibition may 
cause an enhancement of cortical noise, resulting in decreased 
spike-timing-dependent plasticity and non-focal plasticity. As a 
corollary, enhancement of cortical nose may cause a reduction in 
the signal-to-noise ratio and filter-function of the brain. This is 
thought to underlie the observed cognitive deficits and memory 
impairments in SCZ patients (7, 52).

Apart from being used as an investigatory tool to study the 
neurophysiological and neurobiological underpinnings of SCZ, 
NIBS has also been used as a therapeutic tool. However, clinical 
trials using NIBS techniques to treat SCZ symptoms, such as 
treatment-refractory auditory hallucinations, cognitive deficits, 
and negative symptoms have produced both promising and 
equivocal results (66–70). The following three major unsolved 
issues must be addressed before NIBS becomes a routine clinical 
application in the treatment of SCZ. First, optimal stimulation 
protocols need to be established (11). In this regard, rTMS- 
and tDCS-based protocols may be preferred to PAS and UDP 
because these protocols are easier to use in a clinical setting. 
Future studies comparing different stimulation techniques are 
needed to address this issue (11). Second, the optimal cortical 
region must be determined for the target symptom. Several brain 

regions are implicated in the pathophysiology of SCZ such as the 
prefrontal cortex, temporoparietal cortex, and the cerebellum. It 
has been discussed that the symptomatology of the patient should 
determine the area of stimulation (11). For instance, targeting the 
temporoparietal cortex for treatment-resistant auditory halluci-
nations (71). Finally, consideration must be given to the duration 
of illness when considering NIBS. Evidence exists for a process 
of progressive brain change, indexed by tissue volume decrease 
after onset in SCZ patients (72). Additional neurophysiological 
evidence suggests a link between chronicity of SCZ and disturbed 
plasticity (52). For future treatment intervention during early 
phases (i.e., first-episode patients) appears to be a promising 
target.

Several limitations of this review warrant further discus-
sion. First, apart from the cathodal-tDCS studies, the majority 
of studies included here have not been replicated in large and 
independent samples (11). A second limiting factor is the impact 
of antipsychotic medication on cortical plasticity induction fol-
lowing NIBS. The mechanism of action for atypical antipsychot-
ics and neuroleptics is critically dependent on the modulation 
of dopaminergic transmission. Pharmacological studies using 
single administration of dopamine agonists and antagonists in 
healthy subjects demonstrate the crucial role of dopamine levels 
on cortical plasticity induction following PAS, tDCS, and UDP 
protocols (11, 48, 53). D2-receptor antagonism has been shown 
to eliminate both anodal-tDCS and cathodal-tDCS plasticity 
aftereffects (73). Additionally, several tDCS studies have shown 
a non-linear and dose-dependent effect of dopamine modulation 
on cortical excitability and plasticity (11, 52).

The dopamine receptor antagonist haloperidol has been 
demonstrated to suppress plasticity induction following both PAS 
and UDP protocols (48). Apart from dopamine, pharmacological 
alterations in other neuromodulators such as catecholamines, 
acetylcholine, and serotonin have also been observed to modu-
late cortical plasticity induction following tDCS, PAS, and UDP 
protocols (11, 48). The effects of pharmacological modulation 
on PAS- and tDCS-induced plasticity have been explored to a 
greater extent than rTMS (11). Even though the mechanisms that 
underlie plasticity aftereffects of PAS, tDCS and rTMS may not be 
identical, it is very likely that modulation of the aforementioned 
neuromodulatory systems will also impact rTMS-induced plas-
ticity (11, 48).

One should note that the cited studies discussed in the preced-
ing paragraph investigated drug administration in healthy sub-
jects. The translation of these studies’ findings to SCZ patients is 
debatable. First, SCZ patients and healthy subjects have a different 
distribution of neurotransmitters and their related receptors. It is 
well known that enhanced dopaminergic transmission is impli-
cated in the pathophysiology of SCZ (74). Hence antipsychotics 
are more likely to normalize dopamine levels in SCZ patients 
rather than induce a hypodopaminergic state as they would in 
healthy subjects (53, 56). Second, studies have largely focused on 
acute drug effects, usually single-dose administration. It is very 
likely that these studies may not reflect the pharmacokinetic and 
pharmacodynamic properties of chronic antipsychotic use in 
SCZ patients (53) and definitely do not reflect clinical practice. 
Studies have also demonstrated a link between chronic exposure 
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to antipsychotic medication and volumetric brain changes 
(75–77), suggesting that single-dose medication studies do not 
capture the long-term changes that accompany chronic SCZ. 
Further research is needed to address the impact of acute versus 
chronic antipsychotic use on NIBS-induced plasticity.

Two NIBS studies have demonstrated disturbed cortical 
plasticity in both medicated and unmedicated SCZ patients (9, 
36). In another study, unaffected and unmedicated first-degree 
relatives of SCZ patients also showed abolished LTD-like plastic-
ity following cathodal-tDCS (55). These findings underscore the 
fact that antipsychotic medications may account for a part of the 
cortical plasticity disturbances observed in SCZ patients but they 
cannot account for it all.

An intrinsic limitation in the methodology of the reviewed 
studies is the difficulty of translating the results from the motor 
system (premotor and primary motor cortex) to other parts of 
the brain that may be more associated with the pathophysiology 
of SCZ. For example, the dorsolateral prefrontal cortex is an area 
involved in cognitive and executive functioning known to be 
impaired in SCZ. The decision to stimulate the motor cortex to 
explore cortical plasticity in SCZ patients was based on the use 
of TMS and surface electromyogram to measure cortical excit-
ability before and after the administration of NIBS protocols. 
Variations in cortical architecture, neurotransmitter distribution, 
and receptor density exist between brain regions outside of and 
those comprising the motor system (11). It is possible that these 
fundamental neurobiological differences between brain regions 
may result in a different pathophysiological response to NIBS 
compared to that elicited from the motor cortex (11). However, 
it is important to note that neuropathological studies in SCZ 
patient have shown that alterations in the primary motor cortex 
are related to the dorsolateral prefrontal cortex and ACC (11, 20). 
In addition, a separate study has provided neurophysiological 
evidence for a correlation between the extent of cortical inhibi-
tion in the motor cortex and the dorsolateral prefrontal cortex in 
healthy subjects (78). These studies provide evidence supporting 
the translatability of motor cortical studies to other brain regions. 
However, further work still needs to be done in other brain 
regions using neuroimaging techniques due to factors such as 
cortical thickness, neuron density, and cortical excitability that 
may differ between regions.

Recent technological advancements have allowed investiga-
tors to combine neuroimaging techniques, such as the electroen-
cephalogram (EEG) and functional magnetic resonance imaging, 
with NIBS methods to investigate cortical excitability, plasticity, 
and connectivity outside of the motor system, bypassing this 
intrinsic limitation of NIBS techniques (11). For instance, using a 
PAS–EEG protocol, Rajji et al. (79) were able to effectively induce 
plasticity in the dorsolateral prefrontal cortex and measure the 
output using cortical-evoked activity instead of MEP. Future 
studies using a combination of neuroimaging and NIBS tech-
niques have the potential to index plasticity from regions more 
closely associated with the pathophysiology of SCZ, allowing us 
to study SCZ in a more clinically relevant manner.

Another limitation is the influence of disease course and 
severity on NIBS-induced cortical plasticity. Longitudinal neuro-
imaging studies have emphasized a neuroprogressive component 
of SCZ. In one such study, a subset of SCZ patients showed a 
progressive postonset reduction in several gray and white matter 
regions, with greatest severity in the frontal lobes and a concomi-
tant increase in cerebrospinal fluid in the lateral ventricles and 
frontal, temporal, and parietal sulci (72). Another study showed 
an association between longer durations of psychosis, gray matter 
volume loss, ventricle volume increases, and greater reduction 
in total brain and cerebellar volume (80). This has important 
implications for using NIBS to investigate cortical plasticity in 
SCZ patients as there is a close association between cortical thick-
ness and the extent of NIBS-induced plasticity (81). One study 
has shown a positive correlation between cortical thickness and 
the extent of PAS-induced LTP-like cortical excitability changes 
in healthy subjects. Subjects with thicker gray matter in the left 
sensorimotor cortex exhibited stronger PAS aftereffects than 
those with thinner gray matter (81). These findings emphasize 
the importance of addressing the duration and severity of SCZ 
when using NIBS protocols.

Several other determinants influencing NIBS-induced corti-
cal plasticity have been identified. These include gender, physical 
activity, and attention (38, 81) – an extensive analysis of the limi-
tations is beyond this paper’s scope. These, among several other 
important issues, must be considered in the design and execution 
of future NIBS studies that seek to elucidate the pathophysiology 
of SCZ.

CONCLUSiON

This review summarizes the neurophysiological evidence 
for disrupted motor cortical plasticity in SCZ, regardless of 
medication status, and its close association with alterations in 
cortical inhibition and dysfunctional intracortical connectivity. 
Dysfunction of glutamatergic NMDA receptors and alterations 
in GABAergic neuronal networks comprise part of the larger 
neurobiological framework underpinning the observed plas-
ticity deficits in SCZ. NIBS provide a valuable avenue toward 
elucidating the neurobiological mechanisms that underlie 
dysfunctional plasticity in SCZ.

AUTHOR CONTRiBUTiONS

AB and DB were responsible for the completion and design of the 
review. AB acquired the data and AB and DB analyzed and inter-
preted the data and drafted the manuscript. All authors revised 
the manuscript critically for important intellectual content. All 
authors approved the version of the manuscript to be published.

FUNDiNG

This work was funded in part by the Temerty Family Foundation 
through the CAMH Foundation.

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


7

Bhandari et al. Impaired Neuroplasticity in Schizophrenia

Frontiers in Psychiatry | www.frontiersin.org March 2016 | Volume 7 | Article 45

ReFeReNCeS

1. Perala J, Suvisaari J, Saarni SI, Kuoppasalmi K, Isometsa E, Pirkola S, et al. 
Lifetime prevalence of psychotic and bipolar I disorders in a general popula-
tion. Arch Gen Psychiatry (2007) 64(1):19–28. doi:10.1001/archpsyc.64.1.19 

2. Paz RD, Tardito S, Atzori M, Tseng KY. Glutamatergic dysfunction in 
schizophrenia: from basic neuroscience to clinical psychopharmacol-
ogy. Eur Neuropsychopharmacol (2008) 18(11):773–86. doi:10.1016/j.
euroneuro.2008.06.005 

3. Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M. 
Regulation of the GABA cell phenotype in hippocampus of schizophrenics 
and bipolars. Proc Natl Acad Sci U S A (2007) 104(24):10164–9. doi:10.1073/
pnas.0703806104 

4. Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell 
Mol Neurobiol (2006) 26(4–6):365–84. doi:10.1007/s10571-006-9062-8 

5. Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from 
abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 
(2009) 35(3):509–27. doi:10.1093/schbul/sbn176 

6. Schmitt A, Hasan A, Gruber O, Falkai P. Schizophrenia as a disorder of discon-
nectivity. Eur Arch Psychiatry Clin Neurosci (2011) 261(2):150–4. doi:10.1007/
s00406-011-0242-2 

7. Hasan A, Falkai P, Wobrock T. Transcranial brain stimulation in schizophre-
nia: targeting cortical excitability, connectivity and plasticity. Curr Med Chem 
(2013) 20(3):405–13. doi:10.2174/092986713804870738 

8. van Mier H, Tempel LW, Perlmutter JS, Raichle ME, Petersen SE. Changes in 
brain activity during motor learning measured with PET: effects of hand of 
performance and practice. J Neurophysiol (1998) 80(4):2177–99. 

9. Daskalakis ZJ, Christensen BK, Fitzgerald PB, Chen R. Dysfunctional 
neural plasticity in patients with schizophrenia. Arch Gen Psychiatry (2008) 
65(4):378–85. doi:10.1001/archpsyc.65.4.378 

10. Hebb DO. The Organization of Behaviour. New York, NY: Wiley (1949).
11. Hasan A, Wobrock T, Rajji T, Malchow B, Daskalakis ZJ. Modulating 

neural plasticity with non-invasive brain stimulation in schizophrenia. 
Eur Arch Psychiatry Clin Neurosci (2013) 263(8):621–31. doi:10.1007/
s00406-013-0446-8 

12. Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R. Study of a new 
schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry (1959) 
81(3):363–9. doi:10.1001/archneurpsyc.1959.02340150095011 

13. Schmidt A, Bachmann R, Kometer M, Csomor PA, Stephan KE, Seifritz E, 
et al. Mismatch negativity encoding of prediction errors predicts S-ketamine-
induced cognitive impairments. Neuropsychopharmacology (2012) 37:856–75. 
doi:10.1038/npp.2011.261 

14. Corlett PR, Honey GD, Krystal JH, Fletcher PC. Glutamatergic model psy-
choses: prediction error, learning, and inference. Neuropsychopharmacology 
(2011) 36(1):294–315. doi:10.1038/npp.2010.163 

15. Konradi C, Heckers S. Molecular aspects of glutamate dysregulation: 
implications for schizophrenia and its treatment. Pharmacol Ther (2003) 
97(2):153–79. doi:10.1016/S0163-7258(02)00328-5 

16. Paz RD, Andreasen NC, Daoud SZ, Conley R, Roberts R, Bustillo J, et  al. 
Increased expression of activity-dependent genes in cerebellar glutamatergic 
neurons of patients with schizophrenia. Am J Psychiatry (2006) 163(10):1829–
31. doi:10.1176/appi.ajp.163.10.1829 

17. Voineskos D, Rogasch NC, Rajji TK, Fitzgerald PB, Daskalakis ZJ. A review of 
evidence linking disrupted neural plasticity to schizophrenia. Can J Psychiatry 
Rev Can Psychiatr (2013) 58:86–92. 

18. Daskalakis ZJ, Fitzgerald PB, Christensen BK. The role of cortical inhibition 
in the pathophysiology and treatment of schizophrenia. Brain Res Rev (2007) 
56(2):427–42. doi:10.1016/j.brainresrev.2007.09.006 

19. Benes FM. Regulation of cell cycle and DNA repair in post-mitotic GABA 
neurons in psychotic disorders. Neuropharmacology (2011) 60(7–8):1232–42. 
doi:10.1016/j.neuropharm.2010.12.011 

20. Hashimoto T, Bazmi HH, Mirnics K, Wu Q, Sampson AR, Lewis DA. 
Conserved regional patterns of GABA-related transcript expression in the 
neocortex of subjects with schizophrenia. Am J Psychiatry (2008) 165(4):479–
89. doi:10.1176/appi.ajp.2007.07081223 

21. Krystal JH, Mohghaddam B. Contributions of Glutamate and GABA Systems 
to the Neurobiology and Treatment of Schizophrenia. 3rd ed. Weinberger DR, 
Harrison PJ, editors. Oxford: Wiley-Blackwell (2010).

22. Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizo-
phrenia. Nat Rev Neurosci (2005) 6(4):312–24. doi:10.1038/nrn1648 

23. Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL. Deficits in 
small interneurons in prefrontal and cingulate cortices of schizophrenic 
and schizoaffective patients. Arch Gen Psychiatry (1991) 48(11):996–1001. 
doi:10.1001/archpsyc.1991.01810350036005 

24. Benes FM. Model generation and testing to probe neural circuitry in the 
cingulate cortex of postmortem schizophrenic brain. Schizophr Bull (1998) 
24(2):219–30. doi:10.1093/oxfordjournals.schbul.a033322 

25. Butefisch CM, Davis BC, Wise SP, Sawaki L, Kopylev L, Classen J, 
et  al. Mechanisms of use-dependent plasticity in the human motor 
cortex. Proc Natl Acad Sci U S A (2000) 97(7):3661–5. doi:10.1073/
pnas.050350297 

26. Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach 
to the mechanisms of transcranial DC-stimulation-induced after-effects 
of human motor cortex excitability. Brain (2002) 125(Pt 10):2238–47. 
doi:10.1093/brain/awf238 

27. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. 
Transcranial direct current stimulation: state of the art 2008. Brain Stimulat 
(2008) 1(3):206–23. doi:10.1016/j.brs.2008.06.004 

28. Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J. Mechanisms of 
enhancement of human motor cortex excitability induced by interven-
tional paired associative stimulation. J Physiol (2002) 543(Pt 2):699–708. 
doi:10.1113/jphysiol.2002.023317 

29. McClintock SM, Freitas C, Oberman L, Lisanby SH, Pascual-Leone A. 
Transcranial magnetic stimulation: a neuroscientific probe of cortical 
function in schizophrenia. Biol Psychiatry (2011) 70(1):19–27. doi:10.1016/j.
biopsych.2011.02.031 

30. Zamir O, Gunraj C, Ni Z, Mazzella F, Chen R. Effects of theta burst stimulation 
on motor cortex excitability in Parkinson’s disease. Clin Neurophysiol (2012) 
123(4):815–21. doi:10.1016/j.clinph.2011.07.051 

31. Zhang L, Tao HW, Holt CE, Harris WA, Poo M. A critical window for cooper-
ation and competiion among developing retinotectal synapses. Nature (1998) 
395:37–44. doi:10.1038/25665 

32. Wolters A, Schmidt A, Schramm A, Zeller D, Naumann M, Kunesch E, 
et al. Timing-dependent plasticity in human primary somatosensory cortex. 
J Physiol (2005) 565(Pt 3):1039–52. doi:10.1113/jphysiol.2005.084954 

33. Udupa K, Chen R. Motor cortical plasticity in Parkinson’s disease. Front 
Neurol (2013) 4:128. doi:10.3389/fneur.2013.00128 

34. Fitzgerald PB, Daskalakis ZJ. A review of repetitive transcranial magnetic 
stimulation use in the treatment of schizophrenia. Can J Psychiatry (2008) 
53(9):567–76. 

35. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W. Effects of antiepileptic drugs 
on motor cortex excitability in humans: a transcranial magnetic stimulation 
study. Ann Neurol (1996) 40(3):367–78. doi:10.1002/ana.410400306 

36. Fitzgerald PB, Brown TL, Marston NA, Oxley T, De Castella A, Daskalakis 
ZJ, et  al. Reduced plastic brain responses in schizophrenia: a transcranial 
magnetic stimulation study. Schizophr Res (2004) 71(1):17–26. doi:10.1016/j.
schres.2004.01.018 

37. Ziemann U. TMS and drugs. Clin Neurophysiol (2004) 115(8):1717–29. 
doi:10.1016/j.clinph.2004.03.006 

38. Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity 
by non-invasive brain stimulation in healthy subjects. J Physiol (2010) 588 
(Pt 13):2291–304. doi:10.1113/jphysiol.2010.190314 

39. Ziemann U, Paulus W, Nitsche MA, Pascual-Leone A, Byblow WD, Berardelli 
A, et al. Consensus: motor cortex plasticity protocols. Brain Stimulat (2008) 
1(3):164–82. doi:10.1016/j.brs.2008.06.006 

40. Woo TW, Walsh JP, Benes FM. Density of glutamic acid decarboxylase 67 
messenger RNA-containing neurons that express the N-methyl-d-aspartate 
receptor subunit NR2A in the anterior cingulate cortex in schizophrenia 
and bipolar disorder. Arch Gen Psychiatry (2004) 61:649–57. doi:10.1001/
archpsyc.61.7.649 

41. Kalus P, Senitz D, Beckmann H. Altered distribution of parvalbumin- 
immunoreactive local circuit neurons in the anterior cingulate cortex of 
schizophrenic patients. Psychiatry Res (1997) 75(1):49–59. doi:10.1016/
S0925-4927(97)00020-6 

42. Oxley T, Fitzgerald PB, Brown TL, de Castella A, Daskalakis ZJ, Kulkarni 
J. Repetitive transcranial magnetic stimulation reveals abnormal plastic 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive
http://dx.doi.org/10.1001/archpsyc.64.1.19
http://dx.doi.org/10.1016/j.euroneuro.2008.06.005
http://dx.doi.org/10.1016/j.euroneuro.2008.06.005
http://dx.doi.org/10.1073/pnas.0703806104
http://dx.doi.org/10.1073/pnas.0703806104
http://dx.doi.org/10.1007/s10571-006-9062-8
http://dx.doi.org/10.1093/schbul/sbn176
http://dx.doi.org/10.1007/s00406-011-0242-2
http://dx.doi.org/10.1007/s00406-011-0242-2
http://dx.doi.org/10.2174/092986713804870738
http://dx.doi.org/10.1001/archpsyc.65.4.378
http://dx.doi.org/10.1007/s00406-013-0446-8
http://dx.doi.org/10.1007/s00406-013-0446-8
http://dx.doi.org/10.1001/archneurpsyc.1959.02340150095011
http://dx.doi.org/10.1038/npp.2011.261
http://dx.doi.org/10.1038/npp.2010.163
http://dx.doi.org/10.1016/S0163-7258(02)00328-5
http://dx.doi.org/10.1176/appi.ajp.163.10.1829
http://dx.doi.org/10.1016/j.brainresrev.2007.09.006
http://dx.doi.org/10.1016/j.neuropharm.2010.12.011
http://dx.doi.org/10.1176/appi.ajp.2007.07081223
http://dx.doi.org/10.1038/nrn1648
http://dx.doi.org/10.1001/archpsyc.1991.01810350036005
http://dx.doi.org/10.1093/oxfordjournals.schbul.a033322
http://dx.doi.org/10.1073/pnas.050350297
http://dx.doi.org/10.1073/pnas.050350297
http://dx.doi.org/10.1093/brain/awf238
http://dx.doi.org/10.1016/j.brs.2008.06.004
http://dx.doi.org/10.1113/jphysiol.2002.023317
http://dx.doi.org/10.1016/j.biopsych.2011.02.031
http://dx.doi.org/10.1016/j.biopsych.2011.02.031
http://dx.doi.org/10.1016/j.clinph.2011.07.051
http://dx.doi.org/10.1038/25665
http://dx.doi.org/10.1113/jphysiol.2005.084954
http://dx.doi.org/10.3389/fneur.2013.00128
http://dx.doi.org/10.1002/ana.410400306
http://dx.doi.org/10.1016/j.schres.2004.01.018
http://dx.doi.org/10.1016/j.schres.2004.01.018
http://dx.doi.org/10.1016/j.clinph.2004.03.006
http://dx.doi.org/10.1113/jphysiol.2010.190314
http://dx.doi.org/10.1016/j.brs.2008.06.006
http://dx.doi.org/10.1001/archpsyc.61.7.649
http://dx.doi.org/10.1001/archpsyc.61.7.649
http://dx.doi.org/10.1016/S0925-4927(97)00020-6
http://dx.doi.org/10.1016/S0925-4927(97)00020-6


8

Bhandari et al. Impaired Neuroplasticity in Schizophrenia

Frontiers in Psychiatry | www.frontiersin.org March 2016 | Volume 7 | Article 45

response to premotor cortex stimulation in schizophrenia. Biol Psychiatry 
(2004) 56(9):628–33. doi:10.1016/j.biopsych.2004.08.023 

43. Chen WH, Mima T, Siebner HR, Oga T, Hara H, Satow T, et al. Low-frequency 
rTMS over lateral premotor cortex induces lasting changes in regional activa-
tion and functional coupling of cortical motor areas. Clin Neurophysiol (2003) 
114(9):1628–37. doi:10.1016/S1388-2457(03)00063-4 

44. Gerschlager W, Siebner HR, Rothwell JC. Decreased corticospinal excitability 
after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology (2001) 
57(3):449–55. doi:10.1212/WNL.57.3.449 

45. Weise D, Mann J, Ridding M, Eskandar K, Huss M, Rumpf JJ, et al. Microcircuit 
mechanisms involved in paired associative stimulation-induced depression of 
corticospinal excitability. J Physiol (2013) 591(Pt 19):4903–20. doi:10.1113/
jphysiol.2013.253989 

46. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity 
in the human motor cortex by paired associative stimulation. Brain (2000) 
123(Pt 3):572–84. doi:10.1093/brain/123.3.572 

47. Frantseva MV, Fitzgerald PB, Chen R, Moller B, Daigle M, Daskalakis 
ZJ. Evidence for impaired long-term potentiation in schizophrenia and 
its relationship to motor skill learning. Cereb Cortex (2008) 18(5):990–6. 
doi:10.1093/cercor/bhm151 

48. Ziemann U, Meintzschel F, Korchounov A, Ilic TV. Pharmacological mod-
ulation of plasticity in the human motor cortex. Neurorehabil Neural Repair 
(2006) 20(2):243–51. doi:10.1177/1545968306287154 

49. Classen J, Liepert J, Wise SP, Hallett M, Cohen LG. Rapid plasticity of human 
cortical movement representation induced by practice. J Neurophysiol (1998) 
79(2):1117–23. 

50. Utz KS, Dimova V, Oppenlander K, Kerkhoff G. Electrified minds: transcra-
nial direct current stimulation (tDCS) and galvanic vestibular stimulation 
(GVS) as methods of non-invasive brain stimulation in neuropsychology – a 
review of current data and future implications. Neuropsychologia (2010) 
48(10):2789–810. doi:10.1016/j.neuropsychologia.2010.06.002 

51. Nitsche MA, Paulus W. Excitability changes induced in the human motor 
cortex by weak transcranial direct current stimulation. J Physiol (2000) 527 
(Pt 3):633–9. doi:10.1111/j.1469-7793.2000.t01-1-00633.x 

52. Hasan A, Nitsche MA, Rein B, Schneider-Axmann T, Guse B, Gruber O, 
et  al. Dysfunctional long-term potentiation-like plasticity in schizophrenia 
revealed by transcranial direct current stimulation. Behav Brain Res (2011) 
224(1):15–22. doi:10.1016/j.bbr.2011.05.017 

53. Hasan A, Nitsche MA, Herrmann M, Schneider-Axmann T, Marshall L, Gruber 
O, et al. Impaired long-term depression in schizophrenia: a cathodal tDCS 
pilot study. Brain Stimulat (2012) 5(4):475–83. doi:10.1016/j.brs.2011.08.004 

54. Hasan A, Aborowa R, Nitsche MA, Marshall L, Schmitt A, Gruber O, et al. 
Abnormal bihemispheric responses in schizophrenia patients following cath-
odal transcranial direct stimulation. Eur Arch Psychiatry Clin Neurosci (2012) 
262(5):415–23. doi:10.1007/s00406-012-0298-7 

55. Hasan A, Misewitsch K, Nitsche MA, Gruber O, Padberg F, Falkai P, et  al. 
Impaired motor cortex responses in non-psychotic first-degree relatives of 
schizophrenia patients: a cathodal tDCS pilot study. Brain Stimulat (2013) 
6(5):821–9. doi:10.1016/j.brs.2013.03.001 

56. Hasan A, Bergener T, Nitsche MA, Strube W, Bunse T, Falkai P, et  al. 
Impairments of motor-cortex responses to unilateral and bilateral direct cur-
rent stimulation in schizophrenia. Front Psychiatry (2013) 4:121. doi:10.3389/
fpsyt.2013.00121 

57. Mordillo-Mateos L, Turpin-Fenoll L, Millan-Pascual J, Nunez-Perez N, 
Panyavin I, Gomez-Arguelles JM, et al. Effects of simultaneous bilateral tDCS 
of the human motor cortex. Brain Stimulat (2012) 5(3):214–22. doi:10.1016/j.
brs.2011.05.001 

58. Cardenas-Morales L, Nowak DA, Kammer T, Wolf RC, Schonfeldt-Lecuona 
C. Mechanisms and applications of theta-burst rTMS on the human motor 
cortex. Brain Topogr (2010) 22(4):294–306. doi:10.1007/s10548-009-0084-7 

59. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimu-
lation of the human motor cortex. Neuron (2005) 45(2):201–6. doi:10.1016/j.
neuron.2004.12.033 

60. Hasan A, Brinkmann C, Strube W, Palm U, Malchow B, Rothwell JC, et al. 
Investigations of motor-cortex cortical plasticity following facilitatory 
and inhibitory transcranial theta-burst stimulation in schizophrenia: a 
proof-of-concept study. J Psychiatr Res (2015) 61:196–204. doi:10.1016/j.
jpsychires.2014.12.006 

61. Huang YZ, Chen RS, Rothwell JC, Wen HY. The after-effect of human theta 
burst stimulation is NMDA receptor dependent. Neurophysiol Clin (2007) 
118(5):1028–32. doi:10.1016/j.clinph.2007.01.021 

62. Wankerl K, Weise D, Gentner R, Rumpf JJ, Classen J. L-type voltage-gated 
Ca2+ channels: a single molecular switch for long-term potentiation/
long-term depression-like plasticity and activity-dependent meta-
plasticity in humans. J Neurosci (2010) 30(18):6197–204. doi:10.1523/
JNEUROSCI.4673-09.2010 

63. Gentner R, Wankerl K, Reinsberger C, Zeller D, Classen J. Depression of 
human corticospinal excitability induced by magnetic theta-burst stimula-
tion: evidence of rapid polarity-reversing metaplasticity. Cereb Cortex (2008) 
18(9):2046–53. doi:10.1093/cercor/bhm239 

64. Gladding CM, Fitzjohn SM, Molnar E. Metabotropic glutamate receptor- 
mediated long-term depression: molecular mechanisms. Pharmacol Rev 
(2009) 61(4):395–412. doi:10.1124/pr.109.001735 

65. Kemp A, Manahan-Vaughan D. Hippocampal long-term depression: master or 
minion in declarative memory processes? Trends Neurosci (2007) 30(3):111–8. 
doi:10.1016/j.tins.2007.01.002 

66. Wobrock T, Hasan A, Falkai P. Innovative treatment approaches in schizo-
phrenia enhancing neuroplasticity: aerobic exercise, erythropoetin and 
repetitive transcranial magnetic stimulation. Curr Pharm Biotechnol (2012) 
13(8):1595–605. doi:10.2174/138920112800784763 

67. Aleman A, Sommer IE, Kahn RS. Efficacy of slow repetitive transcranial 
magnetic stimulation in the treatment of resistant auditory hallucinations 
in schizophrenia: a meta-analysis. J Clin Psychiatry (2007) 68(3):416–21. 
doi:10.4088/JCP.v68n0310 

68. Slotema CW, Blom JD, de Weijer AD, Diederen KM, Goekoop R, Looijestijn 
J, et al. Can low-frequency repetitive transcranial magnetic stimulation really 
relieve medication-resistant auditory verbal hallucinations? Negative results 
from a large randomized controlled trial. Biol Psychiatry (2011) 69(5):450–6. 
doi:10.1016/j.biopsych.2010.09.051 

69. Brunelin J, Mondino M, Gassab L, Haesebaert F, Gaha L, Suaud-Chagny M, 
et al. Examining transcranial direct-current stimulation (tDCS) as a treatment 
for hallucinations in schizophrenia. Am J Psychiatry (2012) 169(7):719–24. 
doi:10.1176/appi.ajp.2012.11071091 

70. Mondino M, Jardri R, Suaud-Chagny MF, Saoud M, Poulet E, Brunelin 
J. Effects of fronto-temporal transcranial direct current stimulation on 
auditory verbal hallucinations and resting-state functional connectivity of the 
left temporo-parietal junction in patients with schizophrenia. Schizophr Bull 
(2016) 42(2):318–26. doi:10.1093/schbul/sbv114 

71. Hoffman RE, Hawkins KA, Gueorguieva R, Boutros NN, Rachid F, Carroll 
K, et al. Transcranial magnetic stimulation of left temporoparietal cortex and 
medication-resistant auditory hallucinations. Arch Gen Psychiatry (2003) 
60(1):49–56. doi:10.1001/archpsyc.60.1.49 

72. Andreasen NC, Nopoulos P, Magnotta V, Pierson R, Ziebell S, Ho BC. 
Progressive brain change in schizophrenia: a prospective longitudinal study of 
first-episode schizophrenia. Biol Psychiatry (2011) 70(7):672–9. doi:10.1016/j.
biopsych.2011.05.017 

73. Nitsche MA, Lampe C, Antal A, Liebetanz D, Lang N, Tergau F, et  al. 
Dopaminergic modulation of long-lasting direct current-induced cortical 
excitability changes in the human motor cortex. Eur J Neurosci (2006) 
23(6):1651–7. doi:10.1111/j.1460-9568.2006.04676.x 

74. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version 
III  –  the final common pathway. Schizophr Bull (2009) 35(3):549–62. 
doi:10.1093/schbul/sbp006 

75. Konopaske GT, Dorph-Petersen KA, Pierri JN, Wu Q, Sampson AR, Lewis 
DA. Effect of chronic exposure to antipsychotic medication on cell numbers 
in the parietal cortex of macaque monkeys. Neuropsychopharmacology (2007) 
32(6):1216–23. doi:10.1038/sj.npp.1301233 

76. Fusar-Poli P, Smieskova R, Kempton MJ, Ho BC, Andreasen NC, 
Borgwardt S. Progressive brain changes in schizophrenia related 
to antipsychotic treatment? A meta-analysis of longitudinal MRI 
studies. Neurosci Biobehav Rev (2013) 37(8):1680–91. doi:10.1016/j.
neubiorev.2013.06.001 

77. Dazzan P, Morgan KD, Orr K, Hutchinson G, Chitnis X, Suckling J, et  al. 
Different effects of typical and atypical antipsychotics on grey matter in 
first episode psychosis: the AESOP study. Neuropsychopharmacology (2005) 
30(4):765–74. doi:10.1038/sj.npp.1300603 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive
http://dx.doi.org/10.1016/j.biopsych.2004.08.023
http://dx.doi.org/10.1016/S1388-2457(03)00063-4
http://dx.doi.org/10.1212/WNL.57.3.449
http://dx.doi.org/10.1113/jphysiol.2013.253989
http://dx.doi.org/10.1113/jphysiol.2013.253989
http://dx.doi.org/10.1093/brain/123.3.572
http://dx.doi.org/10.1093/cercor/bhm151
http://dx.doi.org/10.1177/1545968306287154
http://dx.doi.org/10.1016/j.neuropsychologia.2010.06.002
http://dx.doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x
http://dx.doi.org/10.1016/j.bbr.2011.05.017
http://dx.doi.org/10.1016/j.brs.2011.08.004
http://dx.doi.org/10.1007/s00406-012-0298-7
http://dx.doi.org/10.1016/j.brs.2013.03.001
http://dx.doi.org/10.3389/fpsyt.2013.00121
http://dx.doi.org/10.3389/fpsyt.2013.00121
http://dx.doi.org/10.1016/j.brs.2011.05.001
http://dx.doi.org/10.1016/j.brs.2011.05.001
http://dx.doi.org/10.1007/s10548-009-0084-7
http://dx.doi.org/10.1016/j.neuron.2004.12.033
http://dx.doi.org/10.1016/j.neuron.2004.12.033
http://dx.doi.org/10.1016/j.jpsychires.2014.12.006
http://dx.doi.org/10.1016/j.jpsychires.2014.12.006
http://dx.doi.org/10.1016/j.clinph.2007.01.021
http://dx.doi.org/10.1523/JNEUROSCI.4673-09.2010
http://dx.doi.org/10.1523/JNEUROSCI.4673-09.2010
http://dx.doi.org/10.1093/cercor/bhm239
http://dx.doi.org/10.1124/pr.109.001735
http://dx.doi.org/10.1016/j.tins.2007.01.002
http://dx.doi.org/10.2174/138920112800784763
http://dx.doi.org/10.4088/JCP.v68n0310
http://dx.doi.org/10.1016/j.biopsych.2010.09.051
http://dx.doi.org/10.1176/appi.ajp.2012.11071091
http://dx.doi.org/10.1093/schbul/sbv114
http://dx.doi.org/10.1001/archpsyc.60.1.49
http://dx.doi.org/10.1016/j.biopsych.2011.05.017
http://dx.doi.org/10.1016/j.biopsych.2011.05.017
http://dx.doi.org/10.1111/j.1460-9568.2006.04676.x
http://dx.doi.org/10.1093/schbul/sbp006
http://dx.doi.org/10.1038/sj.npp.1301233
http://dx.doi.org/10.1016/j.neubiorev.2013.06.001
http://dx.doi.org/10.1016/j.neubiorev.2013.06.001
http://dx.doi.org/10.1038/sj.npp.1300603


9

Bhandari et al. Impaired Neuroplasticity in Schizophrenia

Frontiers in Psychiatry | www.frontiersin.org March 2016 | Volume 7 | Article 45

78. Daskalakis ZJ, Farzan F, Barr MS, Maller JJ, Chen R, Fitzgerald PB. Long-
interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS-
EEG study. Neuropsychopharmacology (2008) 33(12):2860–9. doi:10.1038/
npp.2008.22 

79. Rajji TK, Sun Y, Zomorrodi-Moghaddam R, Farzan F, Blumberger DM, 
Mulsant BH, et  al. PAS-induced potentiation of cortical-evoked activity 
in the dorsolateral prefrontal cortex. Neuropsychopharmacology (2013) 
38(12):2545–52. doi:10.1038/npp.2013.161 

80. Cahn W, Rais M, Stigter FP, van Haren NE, Caspers E, Hulshoff Pol HE, et al. 
Psychosis and brain volume changes during the first five years of schizo-
phrenia. Eur Neuropsychopharmacol (2009) 19(2):147–51. doi:10.1016/j.
euroneuro.2008.10.006 

81. Conde V, Vollmann H, Sehm B, Taubert M, Villringer A, Ragert P. Cortical 
thickness in primary sensorimotor cortex influences the effectiveness of paired 
associative stimulation. Neuroimage (2012) 60(2):864–70. doi:10.1016/j.
neuroimage.2012.01.052 

Conflict of Interest Statement: AB does not have any financial disclosures. DV 
is partially supported by a Lilly American Psychiatric Research Fellowship. TR 
receives research support from Brain Canada and Behavior Research Foundation, 
Canadian Foundation for Innovation, Canadian Institutes of Health Research 
(CIHR), Ontario Ministry of Health and Long-Term Care, Ontario Ministry of 
Research and Innovation, the US National Institute of Health (NIH), and the 

W. Garfield Weston Foundation. TR reports no competing interests. ZD received 
external funding through Brainsway Ltd. and a travel allowance through Pfizer and 
Merck. ZD has also received speaker funding through Sepracor Inc., AstraZeneca 
and served on the advisory board for Hoffman-La Roche Limited. ZD has received 
funding from the Ontario Mental Health Foundation (OMHF), CIHR, the Brain 
and Behaviour Research Foundation, and the Temerty Family and Grant Family 
and through the CAMH Foundation and the Campbell Institute. DB receives 
research support from the Canadian Institutes of Health Research (CIHR), Brain 
Canada, National Institutes of Health (NIH), Temerty Family through the Centre 
for Addiction and Mental Health (CAMH) Foundation and the Campbell Family 
Research Institute. He receives non-salary operating funds and in-kind equipment 
support from Brainsway Ltd., for an investigator-initiated study. He is the site 
principal investigator for several sponsor-initiated clinical trials from Brainsway 
Ltd. He receives in-kind equipment support from Tonika/Magventure for an 
investigator-initiated study.

Copyright © 2016 Bhandari, Voineskos, Daskalakis, Rajji and Blumberger. This 
is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive
http://dx.doi.org/10.1038/npp.2008.22
http://dx.doi.org/10.1038/npp.2008.22
http://dx.doi.org/10.1038/npp.2013.161
http://dx.doi.org/10.1016/j.euroneuro.2008.10.006
http://dx.doi.org/10.1016/j.euroneuro.2008.10.006
http://dx.doi.org/10.1016/j.neuroimage.2012.01.052
http://dx.doi.org/10.1016/j.neuroimage.2012.01.052
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A Review of Impaired Neuroplasticity in Schizophrenia Investigated with Non-invasive Brain Stimulation
	Introduction
	Non-Invasive Brain Stimulation
	Repetitive Transcranial Magnetic Stimulation
	Paired Associative Stimulation
	Use-Dependent Plasticity
	Transcranial Direct Current Stimulation
	Theta-Burst Stimulation

	Discussion
	Conclusion
	Author Contributions
	Funding
	References


