
April 2016 | Volume 7 | Article 611

Mini Review
published: 19 April 2016

doi: 10.3389/fpsyt.2016.00061

Frontiers in Psychiatry | www.frontiersin.org

Edited by: 
Stefan Borgwardt,  

University of Basel, Switzerland

Reviewed by: 
Gabriele Sani,  

Sapienza University of Rome, Italy 
Agata Szulc,  

Medical University of Warsaw, Poland

*Correspondence:
Chiara Chiapponi  

c.chiapponi@hsantalucia.it

Specialty section: 
This article was submitted to 

Neuroimaging and Stimulation,  
a section of the journal  
Frontiers in Psychiatry

Received: 22 December 2015
Accepted: 29 March 2016

Published: 19 April 2016

Citation: 
Chiapponi C, Piras F, Piras F, 

Caltagirone C and Spalletta G (2016) 
GABA System in Schizophrenia and 
Mood Disorders: A Mini Review on 
Third-Generation Imaging Studies.  

Front. Psychiatry 7:61.  
doi: 10.3389/fpsyt.2016.00061

GABA System in Schizophrenia and 
Mood Disorders: A Mini Review on 
Third-Generation imaging Studies
Chiara Chiapponi1,2* , Federica Piras1 , Fabrizio Piras1,3 , Carlo Caltagirone1,2 and 
Gianfranco Spalletta1,4

1 Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy, 2 Department of Systems Medicine, University of 
Rome Tor Vergata, Rome, Italy, 3 Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy, 4 Menninger 
Department of Psychiatry and Behavioral Sciences, Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Baylor 
College of Medicine, Houston, TX, USA

Third-generation neuroimaging research has been enriched by advances in magnetic 
resonance spectroscopy (MRS) measuring the concentration of important neurotras-
mitters, such as the inhibitory amino acid GABA. Here, we performed a systematic 
mini-review on brain MRS studies measuring GABA concentration in patients affected 
by schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). 
We wondered whether multimodal investigations could overcome intrinsic technical 
limits of MRS giving a broader view of mental disorders pathogenesis. In SZ, unimodal 
studies gave mixed results, as increased, decreased, or unaltered GABA levels were 
reported depending on region, disease phase, and treatment. Conversely, multimodal 
results showed reduced level of glutamate, but not of GABA, in patients mirrored by 
in vitro biochemical findings revealing hippocampal reduction in glutamate signaling in 
SZ, and no deficits in GABA synthesis. Moreover, a mouse model confirmed the unique 
pathological characteristic of glutamate function in SZ. Unimodal studies in BD revealed 
again, inconsistent results, while no multimodal investigations including MRS on GABA 
exist. In MDD, unimodal studies could not differentiate patients from controls nor charac-
terize high-risk subjects and remitted patients. However, a multimodal study combining 
functional magnetic resonance imaging and MRS revealed that cingulate cortex activity 
is related to glutamate, N-acetylaspartate levels and anhedonia in patients, and to 
GABA concentration in healthy subjects, improving the distinction between MDD and 
physiology. Overall, our results show that unimodal studies do not indicate GABA as a 
biomarker for the psychiatric disorders considered. Conversely, multimodal studies can 
widen the understanding of the link between psychopathology, genetics, neuroanatomy, 
and functional–biochemical brain activity in mental disorders. Although scarce, multi-
modal approaches seem promising for moving from GABA MRS unimodal-descriptive to 
causal level, and for integrating GABA results into a more comprehensive interpretation 
of mental disorder pathophysiology.
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inTRODUCTiOn

An imbalance between excitation and inhibition in brain neu-
ronal transmission has been hypothesized as one of the molecular 
mechanisms responsible for psychiatric disorders (1–5). In this 
context, multimodal studies coupling the continuous technical 
progresses in neuroimaging to methods for measuring neu-
rotramsitter concentrations may represent a turning point for 
in vivo evidence of postmortem (6–8) and animal model (9–12) 
results. Moreover, the chance to link psychopathology, genetics, 
neuroanatomy, and functional–biochemical brain activity may 
take psychiatric research to the causal understanding of patients’ 
illness.

The support given by newly developed improvements in well 
known technologies, such as proton magnetic resonance spec-
troscopy (MRS) (13–15), has been fundamental to encourage 
in vivo research on gamma-aminobutyric acid (GABA) in brain 
physiology and pathology (16–18). GABA is the primary inhibi-
tory neurotransmitter in the mammalian central nervous system. 
Theories on its dysfunction in schizophrenia (SZ) assume that 
alterations in the neural circuitry involving GABA have a role in 
the mechanisms of the disorder and associated cognitive deficits 
(19–21). The role of GABA dysfunction in different psychiatric 
disorders such as bipolar disorder (BD), or major depressive 
disorder (MDD) is also established (3, 22, 23).

Magnetic resonance spectroscopy is the election technique 
to non-invasively measure in  vivo GABA concentration in 
selected brain regions (18, 24). However, direct interpretation 
of MRS results is limited by intrinsic features of the technique. 
In particular, acquisition of GABA signal is restricted to large 
(e.g., 3×3×3 cm3) single voxels, since multi-voxel spectroscopy 
usually measures metabolites with longer T2 relaxation, such 
as N-acetylaspartate (NAA), choline (Cho), and creatine (Cr). 
This results in a broad between-studies heterogeneity in the 
anatomical region investigated. Moreover, MRS can only detect 
total concentration of neurochemicals and cannot distinguish 
between separate functional pools, thus impeding conclusions 
on neurotransmitters availability.

In this context, multimodal approaches, combining MRS 
with other complementary techniques, would lead to a solid and 
comprehensive interpretation of neurochemical underpinnings 
of brain pathologies. As a case in point, multimodal MRS and 
functional magnetic resonance imaging (fMRI) would help 
in depicting the neurochemical and functional pathological 
mechanisms responsible for complex disorders. The support from 
electrobiological measurements such as electroencephalography 
(EEG) or magnetoencephalography (MEG), measuring the oscil-
latory activity in brain neuronal ensembles, could be fundamental 
in interpreting results on GABA concentration since the latter 
has been shown to be positively correlated with stimulus specific 
neuronal oscillations (25–27). Similarly, findings from in  vitro 
tissue biochemistry, animal models, and genetics could provide 
data at higher spatial resolution and further mechanistic insights 
into the interpretation of GABA concentration (28).

On the basis of these considerations, we reviewed research 
articles focusing on GABA as measured by MRS in SZ and mood 
disorders (i.e., BD and MDD). In particular, we analyzed whether 

studies combining different approaches could overcome the 
technical limits intrinsic to MRS and give a broader view of the 
mechanisms involved into mental disorders.

MeTHODS

To investigate recent MRS studies evaluating GABA level in the 
brain, we performed a systematic literature search on PubMed, 
PsycNET (including PsycINFO, PsycBOOKS, PsycCRITIQUES, 
PsycARTICLES, and PsycEXTRA databases), and Scopus 
database till November 2015 using the keywords “GABA” AND 
“spectroscopy” AND any of the following terms: “schizophrenia,” 
“bipolar disorder,” “major depressive disorder.” The reference list 
of identified articles and review papers was also hand searched to 
obtain additional articles. Inclusion criteria for studies selection 
were (1) English language, (2) articles published in peer-reviewed 
journals after 2000, (3) original research article (comments, let-
ters to editors and review articles were excluded), (4a) inclusion 
of patients diagnosed with the specific neuropsychiatric disorder 
of interest according to ICD or DSM criteria or (4b) inclusion 
of high risk (HR) subjects, (5) inclusion of at least 10 patients, 
(6) comparison between patients and healthy controls (HC), 
(7) performance of MRS using a magnetic field of at least 3  T 
(to have a good signal-to-noise ratio and to resolve GABA peak 
from those of other more concentrated molecular compounds, 
e.g., NAA or Cr).

In the search for SZ studies, 72 papers were initially identi-
fied. Among them, 11 were not original researches (9 reviews, 1 
comment, and 1 letter), 2 studies did not consider HC and 9 did 
not include SZ patients, 22 papers did not include humans (e.g., 
studies on animal models and in  vitro measurements), 9 stud-
ies measured the unresolved glutamate + glutamine (Glx) with 
GABA contamination peak as a proxy of GABA concentration, 1 
study included less than 10 patients and 6 studies were published 
before 2000. At the end of the selection process, 12 studies on SZ 
fulfilled the inclusion criteria.

In the search for BD studies, 21 papers were screened, but we 
excluded 7 reviews, 3 studies not performing in  vivo MRS on 
humans, 1 on healthy men only, 1 not measuring GABA, 3 studies 
considering Glx, and 1 including less than10 patients. Only five 
studies survived the selection process for BD.

At last, 53 studies were initially identified for MDD, but only 
11 studies were eligible for the review, and 42 were excluded (6 
studies without a control group, 5 not focusing on MDD patients, 
6 not using in  vivo MRS on humans, 11 reviews, 1 comment, 
5 measuring Glx, 4 considering less than 10 patients, 3 not in 
English, and 1 published before 2000).

ReSULTS

Schizophrenia
GABA MRS results in SZ are very scattered, since GABA con-
centration was found reduced, increased, or unaltered in patients 
(see Table 1). Such heterogeneity is mostly due to the different 
methodological approaches used, as studies vary in terms of 
patients’ clinical characteristics, brain region under investigation, 
and aims of the studies. Indeed, while most authors evaluated the 
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TABLe 1 | Studies comparing GABA concentration between SZ patients and HC.

Reference Sociodemographic characteristics Clinical characteristics Probed brain 
region

Brain region 
of altered 
GABA in 
patients

Additional findings Other techniques

Sample size Age [mean (SD) 
or years range]

illness duration 
[mean (SD) or 
years range]

GMM  
[no. patients (%)]

Antipsychotics  
[no. patients (%)]

Patients HC Patients HC

SZ < HC

Rowland et al. 
(30)

31 older 37 older 48.3 (5.8) 51.0 (6.0) 24.0 (9.8) Anticholinergics: 
1 (3)

Typ: 4 (13);  
Atyp: 18 (58); Both:  
6 (19); none: 3 (10)

MFC MFC

29 younger 40 younger 25.7 (4.3) 25.3 (4.6) 5.6 (4.6) Anticholinergics: 
2 (7)

Typ: 1 (3); Atyp: 25 
(87); Both: 1 (3); 
None: 2 (7)

MFC

Rowland et al. 
(29)

11 younger 10 younger 30.2 (6.6) 33.4 (6.5) 7.7 (4.1) Benzodiazepines 
or mood stabilizers 
free at scan time

Atyp: 11 (100) ACC, CSO ACC

10 older 10 older 51.1 (4.0) 49.4 (3.9) 25.5 (6.5) Benzodiazepines 
or mood stabilizers 
free at scan time

Typ: 2 (20); Atyp: 
8 (80)

ACC, CSO

Marsman et al. 
(31)

17 23 27.6 (6.1) 27.7 (5.3) 6.4 (6.8) Benzodiazepines 
current: 6 (35) 
Benzodiazepines 
lifetime: 11 (65)

Typ: 3 (18); Atyp: 10 
(59); Both: 4 (23)

PFC, POC PFC GABA reduction 
independent from 
antipsychotics dosage and 
benzodiazepines use

Kelemen et al. 
(32)

28 20 24.9 (8.3) 24.2 (6.9) <1 T0: drug naive: 
28 (100); FU: 
anticholinergics: 
5 (18); 
benzodiazepines: 
16 (57); mood 
stabilizers: 5 (18)

T0: None: 28 (100); 
FU: Typ: 3 (11); 
Atyp: 25 (89)

OC OC GABA_SZ_T0 = 
GABA_SZ_FU

Yoon et al. (33) 13 13 27.5 (8.8) 28.1 (8.2) Na Na Typ: 1 (8); Atyp: 7 
(54); None: 5 (38)

OC OC Medication dosage did not 
influence results

Goto et al. (34) 16 18 30 (11) 15–49 <0.5 Na T0: None: 16 (100); 
FU: Atyp: 16 (100)

MFC, ltBG, 
POC

ltBG GABA_SZ_T0 = 
GABA_SZ_FU

SZ = HC

Stan et al. (28) 18 16 41.94 
(8.5)

35.63 
(11.74)

Na Anticonvulsants: 
1 (5); 
benzodiazepines:  
2 (11), valproic 
acid: 2 (11)

Typ, Atyp, Both: Na; 
None: 7 (39)

Hippocampus Hippocampal GABA 
in vivo, in vitro and  
in animals did not differ 
between SZ  
and controls

Hippocampal 
dissection 
and tissue 
immunoblotting on 
postmortem SZ 
patients

Animal MRS on the 
DG-selective GRIN1 
knockout mice

(Continued)
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TABLe 1 | Continued

Reference Sociodemographic characteristics Clinical characteristics Probed brain 
region

Brain region 
of altered 
GABA in 
patients

Additional findings Other techniques

Sample size Age [mean (SD) 
or years range]

illness duration 
[mean (SD) or 
years range]

GMM  
[no. patients (%)]

Antipsychotics  
[no. patients (%)]

Patients HC Patients HC

Chen et al. 
(36)

12 12 31.00 
(10.79)

33.08 (8.23) Na Na Atyp: 9 (75); None: 
3 (25)

DLPFC Correlation between 
GABA levels and  
gamma band oscillation  
in SZ and HC

EEG at rest
EEG during a 
working memory 
task

Tayoshi et al. 
(35)

38 29 34.0 
(10.0)

34.0 (10.2) 11.1 (9.4) Benzodiazepines: 
16 (42)

Typ: 16 (42); Atyp: 
22 (58)

ACC, ltBG ltBG: GABA_Typ >  
GABA_Atyp

SZ > HC

De la Fuente-
Sandoval et al. 
(39)

23 UHR 24 20.7 (4.1) 21.4 (3.3) <1 Medication free for 
T >12 weeks: 23 
(100)

None: 23 (100) Dorsal caudate, 
MPFC

Dorsal 
caudate, 
MPFC

Kegeles et al. 
(37)

16 unmeda, 
16 med 

22 unmed:  
32 (11), 
med:  

32 (10)

33 (8) unmed: 7 (7),  
med: 9 (8)

Benzodiazepines 
free at scan time: 
32 (100)

med: Atyp:  
16 (100) 

MPFC, DLPFC MPFC GABA_SZ_
unmed > GABA_HC
GABA_SZ_med = GABA_
HC

Ongür et al. 
(38)

21 19 39.0 
(10.8)

36.3 (9.8) Na Anticonvulsants: 
6 (28); 
benzodiazepines: 
10 (48); lithium: 
4 (19)

Typ: 3 (14); Atyp: 
16 (76); Both: 1 (5); 
None: 1 (5)

ACC, POC ACC + POC, 
averaged

aPatients free of antipsychotic medication treatment for a minimum of 14 days prior to the scan.
ACC, anterior cingulate cortex; Atyp, patients taking atypical antipsychotics; CSO, centrum semiovale region; DG, dentate gyrus; DLPFC, dorsolateral prefrontal cortex; EEG, electroencephalography; FU, follow up; GMM, GABA-
modulating medication; HC, healthy controls; ltBG, left basal ganglia; med, medicated; MFC, medial frontal cortex; MPFC, medial prefrontal cortex; Na, not available; OC, occipital cortex; PFC, prefrontal cortex; POC, parieto-occipital 
cortex; SD, standard deviation; SZ, schizophrenia patients; T, time; T0, baseline; Typ, patients taking typical antipsychotics; UHR, ultra high risk patients; unmed, unmedicated.
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diagnosis effect on GABA concentration, others considered the 
effect of age, of antipsychotics, and the role of GABA in different 
illness phases.

The most reported result (i.e., replicated in six studies) is that 
GABA concentration is reduced in SZ patients with respect to 
HC (29–34). Specifically, GABA was reduced in medial frontal 
cortex (MFC) (29, 30) and occipital cortex (OC) (32, 33), and the 
result was modulated by age in MFC (29, 30) and not affected by 
current medication type or dosage in OC (32, 33). The observed 
reduction in MFC GABA level in old SZ subjects as compared to 
age-matched HC suggests that GABA concentration decreases as 
age increases in patients and not in controls (29, 30). The inde-
pendence from medication dosage in the OC (33) was further 
extended to the basal ganglia (34) suggesting that GABA reduc-
tion in these areas is driven by the disorder, being observable 
also in first-episode patients (32), and not an effect of treatment. 
A reduced GABA level in prefrontal areas of SZ patients was 
described only performing MRS at very high (7 T) magnetic field 
(31). Conversely, three studies (34–36) failed to find alterations 
in GABA level in SZ with respect to HC in any of the considered 
regions. Among them, one study found that patients taking only 
typical antipsychotics had higher GABA concentration than 
those taking only atypical antipsychotics (35). The other two 
studies failing to find GABA alterations in SZ, probed the hip-
pocampus and the dorsolateral prefrontal cortex (DLPFC) (28, 
36). These studies are of particular interest since they combined 
MRS with different experimental techniques. In particular, one 
correlated GABA levels in DLPFC to gamma oscillations, as 
measured by EEG during a working memory task, and found 
that both baseline and working memory-induced gamma oscil-
lations were strongly dependent on GABA levels either in patients 
and controls (36). Within a data rich experimental design, the 
second multimodal study integrated in vivo MRS measurements 
of hippocampal GABA (and glutamate) concentration in patients 
with in vitro tissue biochemistry (sampling postmortem human 
hippocampal tissue) and MRS on a mouse model recapitulating 
symptoms of SZ (dentate gyrus-selective knockout of the GRIN1 
gene, encoding a critical unit of N-methyl-d-aspartate receptors) 
(28). Looking at in vivo MRS results, authors found no global dif-
ference in GABA level between SZ and HC both in humans and 
animals, while they found decreased glutamate in SZ. Looking at 
in vitro results, authors found reduced level of GluN1 protein, a 
marker of the glutamatergic system, in SZ, but no alterations with 
respect to HC in the level of GAD67, the main enzyme in the 
GABAergic system. The combination of such findings provides 
evidence that the excitatory, but not the inhibitory, system within 
the hippocampus is implicated in SZ pathogenesis.

Finally, three studies found increased GABA concentration 
in SZ with respect to HC. One of them compared unmedicated 
SZ and patients medicated only with atypical antipsychotics 
to HC (37). Authors showed increased prefrontal GABA in 
unmedicated SZ patients with respect to both medicated and 
HC samples. Such results partially confirmed those presented 
in a previous research in which, averaging GABA concentra-
tion in anterior cingulate cortex (ACC) and parieto-occipital 
cortex (POC), authors found increased GABA in chronic SZ 
(38). More recently, an increased GABA concentration in dorsal 

caudate area and medial prefrontal cortex has been observed 
also considering ultra HR patients free from GABA modulating 
medications (GMM) (i.e., benzodiazepines, mood stabilizers, or 
antidepressants) and antipsychotics (39).

Bipolar Disorder
Among the few studies using MRS to measure GABA concentra-
tion in BD, three reported no difference between patients and 
HC (40–42). However, papers contributing to such evidence 
are very heterogeneous in terms of localization of MRS voxel, 
clinical characteristics of BD samples, and GMM (see Table 2), 
which were scarcely considered in the analyses. Their effect was 
specifically taken into account in a study indicating an increased 
GABA in BD as a whole, with respect to HC. However, within the 
patients group, there was a reduction of GABA in those taking 
GMM (43). To clarify the impact of medication dosage and life-
time exposure on GABA concentration, some authors considered 
only drug free patients (for at least 3 months before MR scan) 
who however, had lifetime exposure to lithium, antidepressants, 
or mood stabilizers (44). Results indicated decreased GABA level 
in recovered unmedicated BD patients with respect to HC.

No study using multimodal techniques has been published so 
far on BD patients.

Unipolar Major Depressive Disorder
Studies investigating unipolar MDD patients showed either no 
difference in GABA concentration between patients and HC (45–
50), either a reduction of GABA in MDD (44, 51–54). A decreased 
GABA level has been observed mainly in patients depressed at scan 
time (51–53), but some authors found a reduction also in remitted 
patients (44, 54). One study comparing GABA level between HR 
subjects (i.e., having a family history of parental depression) and 
a control group without a family history of depression described 
negative results (45). Among studies failing to find an alteration 
of GABA in MDD, one combined genotyping with MRS in 
order to test the effect of common variants of the tryptophan 
hydroxylase isoform 2 (TPH2) gene, modulating serotonergic 
neurotransmission and brain circuits for emotion and adapta-
tion, on GABA concentration in the prefrontal cortex (PFC) (47). 
Authors found a significant association between increased GABA 
concentration in the PFC and the allele frequencies of three 
TPH2 SNPs in female subjects, independently from diagnosis. 
Along with MRS, another research focused on remitted, formerly 
severe MDD patients and HC using MEG to measure the induced 
gamma oscillation frequency (IGF), a reliable surrogate marker 
of postsynaptic GABA function, in the OC (49). Authors found 
that MDD have normal IGF and GABA concentration in the OC. 
In a further multimodal investigation, MRS quantifying GABA, 
glutamate, and NAA concentrations was combined with fMRI 
measuring blood oxygenation level-dependent (BOLD) response 
to emotional stimuli in the pregenual ACC, part of the default 
mode network, related to anhedonia (48). MRS results showed 
no alteration in metabolites concentration in MDD patients, 
while fMRI indicated that negative BOLD responses, as well as 
glutamate and N-acetylaspartate concentrations, correlated with 
emotional intensity ratings, an anhedonia surrogate, in MDD 
but not in HC. Differently, negative BOLD responses in HC 
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TABLe 2 | Studies comparing GABA concentration between mood disorders patients (BD and MDD) and HC.

Reference Sociodemographic characteristics Clinical characteristics Probed 
brain region

Brain region 
of altered 
GABA in 
patients

Additional findings Other 
techniques

Sample size Age [mean (SD) or 
years range]

illness duration 
(mean (SD) or 
years range)

GMM  
[no. patients (%)]

Antipsychotics  
[no. patients (%)]

Patients HC Patients HC

BD

BD < HC
Bhagwagar 
et al. (44)

16 BD-I, 
15 rMDD

18 BD-I = 37.0 
(13.8), 

rMDD = 42.1 
(14.6)

37.6 (14) BD-I = 0.5–10.1, 
rMDD = 1–18.4

Medication free for T ≥ 3 months: 
32 (100), Lifetime exposure: BD-I: 
antidepressant: 11 (69); lithium: 
6 (37); mood stabilizers: 3 (19). 
rMDD: antidepressant: 10 (62); 
lithium: 1 (6)

Na OC OC GABA_rMDD = GABA_BD-I

BD = HC
Soeiro-de-
Souza et al. 
(40)

50 38 31.7 (9.1) 25.7 (5.7) Na anticonvulsants: 23 (46); 
antidepressants: 8 (16); 
benzodiazepines: 1 (2);  
lithium: 29 (58)

Atyp: 23 (46), Typ, 
Both: Na; None: 
0 (0)

ACC

Godlewska 
et al. (41)

13 11 23.8 (3.6) 21.9 (2.7) Na Mood stabilizers naive: 13 (100) None: 13 (100) MPFC, OC 

Kaufman 
et al. (42)

13 11 40.5 (12.5) 41.2 (14.0) 18.4 (11.4) Antidepressant: 6 (46), mood 
stabilizers: 12 (92)

Typ, Atyp, Both: 
Na; None: 0 (0)

POC, Thal, 
whole brain

Whole brain: GABA_BD_
antipsy < GABA_BD_
noantipsy

BD > HC
Brady et al. 
(43)

14 BD-I 14 32.6 (13.6) 36.9 (10.4) 8.7 Anticonvulsants: 5 (36); 
antidepressants: 7 (50); 
benzodiazepines: 6 (43);  
lithium: 4 (29) 

Typ: 2 (14); Atyp: 
9 (64); Both: Na; 
None: 0 (0)

ACC, POC ACC, POC GABA_HC < GABA_BD-I_
GMM < GABA_BD-I_
nGMM

MDD

MDD = HC
High risk patients

Taylor et al. 
(45)

24 HR 28 18.9 (16–21) 19.8 (17–21) 0 Drug naive: 24 (100) None: 24 (100) POC

Patients depressed at scan time
Godlewska 
et al. (46)

39 31 29.9 (10.6) 30.3 (10.6) Na 6 weeks FU: antidepressant 
(escitalopram): 39 (100)

T0: None: 39 (100) OC T0: 
GABA_MDD = GABA_HC
GABA_MDD_T0 = GABA_
MDD_FU

Preuss et al. 
(47)

19 cMDD, 
16 rMDD, 

9 PD

20 cMDD: 31.5 
(9), rMDD: 
40.8 (11.7), 

PD = 33.8 (12.8)

36.9 (13.8) Na Psychotropic medication free for 
T > 4 weeks: 44 (100)

None PFC GABA level differs between 
female carrier/non-carrier of 
3 nuclear polymorphysms

Genotyping

(Continued)
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Reference Sociodemographic characteristics Clinical characteristics Probed 
brain region

Brain region 
of altered 
GABA in 
patients

Additional findings Other 
techniques

Sample size Age [mean (SD) or 
years range]

illness duration 
(mean (SD) or 
years range)

GMM  
[no. patients (%)]

Antipsychotics  
[no. patients (%)]

Patients HC Patients HC

Walter et al. 
(48)

19 (11 
with MRS 

GABA 
level)

24 (13 
with 
MRS 
GABA 
level)

40.0 (Na) 34.6 (Na) Na Psychotropic medication free for 
T > 1 week: 19 (100)

Na ACC GABA_HC correlated with 
NBR, but not GABA_MDD

fMRI

Patients remitted at scan time
Shaw et al. 
(49)

19 18 23 (2.6) 21 (1.5) Na Medication free: 19 (100) Na PFC, OC, 
ltBG

OC: IGF_rMDD = IGF_HC MEG 

Hasler et al. 
(50)

16 15 41.0 (11.6) 41.7 (12.4) Na Antidepressant medication free 
for T ≥ 3 months: 16 (100)

Na DM/DA-PF, 
VM-PF

MDD < HC
Patients depressed at scan time
Gabbay et al. 
(51)

20 21 16.7 (2.7) 16.2 (1.6) 11.7 (8.6) 
months

Psychotropic medication free for 
T ≥ 3 months: 20 (100)

Na ACC ACC

Price et al. 
(52)

15 TRD, 
18 nTRD

24 TRD = 46.8 
(11.9), 

nTRD = 38.3 
(12.3)

37.25 (13.5) TRD: 26.93 
(10.8), 
nTRD: 21.80 
(16.4)

Psychotropic medication-free 
for T ≥ 2 weeks: TRD + nTRD: 
33 (100)

Na OC, ACC OC OC: GABA_MDD 
(TRD + nTRD) <  
GABA_HC

GABA_TRD < GABA_HC
GABA_nTRD = GABA_HC

Hasler et al. 
(53)

20 20 34.0 (11.2) 34.8 (12.4) 18.8 (13.5) Medication free for T > 4 weeks 
or medication naive: 20 (100)

Na DM/DA-PF, 
VM-PF

DM/DA-PF

Patients remitted at scan time
Bhagwagar 
et al. (54)

12 11 40.6 (4.2) 34.3 (4.1) Na Medication free for T > 6 months: 
12 (100)

Na ACC, POC ACC, POC

Bhagwagar 
et al. (44)

16 BD-I, 
15 rMDD

18 BD = 37.0 
(13.8), 

rMDD = 42.1 
(14.6)

37.6 (14) BD-I: 0.5–10.1, 
rMDD: 1–18.4

Medication free for T ≥ 3 months:  
32 (100), Lifetime exposure: BD-I: 
antidepressant: 11 (69); lithium: 
6 (37); mood stabilizers: 3 (19). 
rMDD: antidepressant: 10 (62); 
lithium: 1 (6)

Na OC OC GABA_ rMDD =  
GABA_BD-I

ACC, anterior cingulate cortex; Atyp, patients taking atypical antipsychotics; BD, bipolar disorder patients; BD_antipsy, patients taking antipsychotics; BD-I_GMM, BD-I patients taking GABA modulating medications; BD-I, patients 
with bipolar disorder type I; BD_noantipsy, patients not taking antipsychotics; BD-I_nGMM, BD-I patients not taking GABA modulating medications; cMDD, patients with a current episode of major depressive disorder; DM/DA-PF, 
dorsomedial/dorsal anterolateral prefrontal region; fMRI, functional magnetic resonance imaging; FU, follow up; GMM, GABA-modulating medication; HC, healthy controls; HR, high risk patients; IGF, induced γ frequency; ltBG, left 
basal ganglia; MEG, magnetoencephalography; MDD, major depressive disorder patients; MPFC, medial prefrontal cortex; Na, not available; NBR, negative blood response; nTRD, non-treatment-resistant depression; OC, occipital 
cortex; PD, panic disorder; PFC, prefrontal cortex; POC, parieto-occipital cortex; rMDD, individuals with remitted major depressive disorder; SD, standard deviation; T, time; T0, baseline; Thal, thalamic region; TRD, treatment-resistant 
depression; Typ, patients taking typical antipsychotics; VM-PF, ventromedial prefrontal region.

TABLe 2 | Continued
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correlated with GABA. The fact that GABA concentration could 
not differentiate between MDD patients and HC together with the 
absence of GABA modulating effects on anhedonia were inter-
preted as secondary outcomes consequent to a primary deficit in 
glutamatergic metabolism, which may lead to a distortion of the 
excitation–inhibition balance and cause anhedonic depression.

DiSCUSSiOn

The involvement of GABA abnormalities in the mechanisms of 
psychiatric disorders is strongly debated. In particular, recent 
developments in MRS sequences allow discriminating the peak of 
GABA from those of more concentrated metabolites in the brain, 
thus permitting its measurement. However, despite postmortem 
evidence and preclinical studies highlighting GABAergic abnor-
malities in patients with mental disorders, the connection between 
these abnormalities and categorical/diagnostic or dimensional/
symptomatic characteristics is still unclear. In this framework, 
we reviewed the body of evidence on GABA concentration, as 
measured by MRS in localized brain regions of SZ, BD, and MDD 
patients, particularly highlighting results obtained by multimodal 
methods and multiple experimental techniques.

Although this topic is under continuous development, some 
conclusions can be drawn from the present results.

Schizophrenia
First, the reduction of GABA level in SZ (the most frequent reported 
result) seems to occur in specific brain areas (frontal, occipital, 
and basal ganglia) and in old age, being probably a mixed effect of 
chronicity, lifetime exposure (more than current type or dosage) to 
antipsychotics, and GMM, particularly benzodiazepines (17). The 
latter is known to allosterically increase GABAA receptor activa-
tion, but available experimental techniques are still too coarse to 
detect circuit-specific perturbations in GABA levels as induced 
by benzodiazepines (or other medications modulating neuronal 
transmission), and results are not concordant. From our review, a 
slight majority of authors failed to find a link between GABA level 
and medications. Such heterogeneous results might be reconciled 
performing technically more precise experiments (e.g., MRS at 
ultra high magnetic field) and enrolling HR subjects in their pre-
clinical stage or drug naive patients to be followed longitudinally.

The second interesting conclusion derived from multimodal 
studies on SZ is that GABA concentration alone cannot be consid-
ered a biomarker for this disorder, while a potential perturbation 
in the balance between excitation and inhibition, measurable 
through glutamate/GABA ratio, needs to be more deeply investi-
gated in SZ (28). The latter should be the target for studies aimed 
at clarifying mechanisms and/or novel therapeutic strategies.

Bipolar Disorder
Unfortunately, GABA cannot be considered a biomarker of BD 
yet. Indeed, the only study including young and drug naive 
patients failed to find differences with respect to HC (41). From 
the other few studies, it appears that both current and lifetime 
exposure to GMM tend to reduce GABA level in BD patients, 
especially in the OC (43, 44). However, heterogeneity of patients’ 
clinical characteristics, illness phase at scan time, number of 

previous manic/depressive episodes, and eventual action of the 
complex mixtures of GMM (not only benzodiazepines but also 
antidepressants, lithium, mood stabilizers, etc.) justify the need 
to start multimodal researches focused on more  homogeneous 
clinical subsamples.

Major Depressive Disorder
Research on neurotransmission in MDD is truly promising and 
intriguing in the hunt for innovative approaches to prevention. 
Understanding whether eventual changes in GABA reflect an 
underlying trait vulnerability to depression, or can be considered 
“scars” of depressive episodes or treatment effects, may have impli-
cations for preventative strategies in HR subjects (55). The only 
study measuring GABA concentration with MRS in subjects at 
risk of depression did not find differences in the parieto-occipital 
cortex with respect to subjects not at risk, indicating that, at the 
actual level of accuracy, GABA level in such brain region cannot be 
considered an endophenotype for depression (45). Moreover, the 
study including genotyping showed that GABA concentration in 
PFC is associated with allele frequencies of three polymorphisms 
linked to anxiety only in women, independently from the diagno-
sis (47). This result reinforces the notion that GABA levels are not 
a marker of MDD (at least in the POC and PFC). The other two 
multimodal studies associating MRS with fMRI (48) and MEG 
(49) failed to find differences in GABA concentration in diffuse 
brain regions between MDD and HC. However, the classification 
of studies in terms of patients state (i.e., depressed/remitted) at 
scan time (see Table 2) allows us to support the idea that GABA 
level identifies the state of being ill, and is not a trait marker for 
diagnosis, since physiological concentration has been described 
in the majority of studies including MDD patients during the 
remission phase (44, 49, 50, 53, 54). Conversely, a primary deficit 
in glutamatergic metabolism may cause aberrant neuronal activa-
tions patterns in regions specifically relevant for the expression of 
anhedonic behavior in MDD.

COnCLUSiOn

Complex and multimodal researches looking at GABA in psy-
chiatric populations are still a minority. Our review shows that 
fMRI, in  vitro biochemistry, genotyping, EEG, and MEG have 
been combined to MRS, and each of them adds a piece to the 
puzzle depicting the role of GABA abnormalities in psychiatric 
disorders. Indeed, fMRI can differentiate neural response patterns 
induced by stimulation (56), in vitro biochemistry allows higher 
resolution spatial information and correlations between MRS 
results and biochemical activity of the brain, while genotyping 
can elucidate the genetic correlates of GABAergic transmission. 
Furthermore, as EEG reflects voltage changes resulting from 
the synchronous firing of groups of neurons (57), and MEG 
describes the effects of synchronous postsynaptic activity (58), 
when combined with MRS they allow the in vivo investigation 
of GABA effect on neuronal transmission. Thus, from studies 
using a multimodal approach, it appears that GABA level alone 
may not be the best biomarker for the psychiatric disorders here 
considered. However, it is a promising parameter, particularly 
for the stratification of patients in more homogeneous subtypes 
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sharing specific biological features. The possibility to reduce het-
erogeneity in psychiatric patients is fundamental both in research 
(giving the opportunity to gain new insight in the underlying 
pathophysiology of different mental disorders) and in clinical 
practice (allowing the prescription of effective and tailored medi-
cal treatments).

Conversely, although still scarce, the so-called third-generation 
paradigms will be the turning point of neuroimaging research 
on neurotransmission in general, and on GABA dysfunctions 
in particular. The effort spent in the design and realization of 
multimodal studies, as well as multicentre ones to include larger 
samples, would then be rewarded by the strong translational 
impact of such researches. This approach would support clini-
cians in the design of preventative interventions with defined, 

expected outcomes for specific types of psychiatric patients 
making “precision medicine” a more realistic medical model. The 
precise medicine is the final end.
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