AUTHOR=Ozburn Angela R. , Purohit Kush , Parekh Puja K. , Kaplan Gabrielle N. , Falcon Edgardo , Mukherjee Shibani , Cates Hannah M. , McClung Colleen A. TITLE=Functional Implications of the CLOCK 3111T/C Single-Nucleotide Polymorphism JOURNAL=Frontiers in Psychiatry VOLUME=7 YEAR=2016 URL=https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2016.00067 DOI=10.3389/fpsyt.2016.00067 ISSN=1664-0640 ABSTRACT=

Circadian rhythm disruptions are prominently associated with bipolar disorder (BD). Circadian rhythms are regulated by the molecular clock, a family of proteins that function together in a transcriptional–translational feedback loop. The CLOCK protein is a key transcription factor of this feedback loop, and previous studies have found that manipulations of the Clock gene are sufficient to produce manic-like behavior in mice (1). The CLOCK 3111T/C single-nucleotide polymorphism (SNP; rs1801260) is a genetic variation of the human CLOCK gene that is significantly associated with increased frequency of manic episodes in BD patients (2). The 3111T/C SNP is located in the 3′-untranslated region of the CLOCK gene. In this study, we sought to examine the functional implications of the human CLOCK 3111T/C SNP by transfecting a mammalian cell line (mouse embryonic fibroblasts isolated from Clock−/− knockout mice) with pcDNA plasmids containing the human CLOCK gene with either the T or C SNP at position 3111. We then measured circadian gene expression over a 24-h time period. We found that the CLOCK3111C SNP resulted in higher mRNA levels than the CLOCK 3111T SNP. Furthermore, we found that Per2, a transcriptional target of CLOCK, was also more highly expressed with CLOCK 3111C expression, indicating that the 3′-UTR SNP affects the expression, function, and stability of CLOCK mRNA.