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Many patients with post-traumatic stress disorder (PTSD), especially war veterans, do 
not respond to available treatments. Here, we describe a novel neurofeedback (NF) inter-
vention using real-time functional magnetic resonance imaging for treating and studying 
PTSD. The intervention involves training participants to control amygdala activity after 
exposure to personalized trauma scripts. Three combat veterans with chronic PTSD 
participated in this feasibility study. All three participants tolerated well the NF training. 
Moreover, two participants, despite the chronicity of their symptoms, showed clinically 
meaningful improvements, while one participant showed a smaller symptom reduction. 
Examination of changes in resting-state functional connectivity patterns revealed a nor-
malization of brain connectivity consistent with clinical improvement. These preliminary 
results support feasibility of this novel intervention for PTSD and indicate that larger, 
well-controlled studies of efficacy are warranted.
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inTrODUcTiOn

Post-traumatic stress disorder (PTSD) is among the most impairing and common of psychiatric 
conditions, with a lifetime prevalence of 8–10% and a 12-month prevalence rate between 3.7 and 
4.7% (1, 2). Yet, extant data indicate that about 30–50% of patients do not respond to current 
evidence-based psychological therapies or pharmacological interventions, and some subgroups 
(such as combat-exposed patients) show even higher rates of treatment-resistance and drop-out 
[(3, 4); Institute of Medicine Report]. Over the last few decades, despite the dramatic growth in the 
literature of the neurobiological underpinnings of PTSD, very few neuroscientific discoveries have 
been translated into effective and novel treatments (5). Currently, the most effective interventions 
have been informed by psychological theories and behavioral data (such as cognitive behavioral 
therapy (CBT) and other trauma-based therapies) (5, 6). Pharmacological interventions for PTSD, 
such as selective serotonin reuptake inhibitors (SSRIs), which were introduced due to their antide-
pressant effects, have demonstrated modest treatment response (5). To date, only two medications, 
both selective SSRIs, have FDA approval for the treatment of PTSD. In civilian treatment seeking 
populations, fewer than half of patients achieve full remission on SSRIs. The rates of non-response 
or partial response to these medications among combat-exposed military, particularly those with 
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chronic PTSD are comparable or worse to those of the civilian 
patient population (7–11).

Therefore, it is paramount that we begin to bridge the gap 
between neurobiological findings of PTSD and clinical practice. 
The development of neuroscientifically informed treatments has 
the potential to complement and enhance current interventions, 
thus increasing treatment effectiveness and reducing treatment-
resistance and drop-out rates (12, 13).

A few studies have investigated the potential of electroen-
cephalography (EEG) neurofeedback (NF) as a neuroscientifi-
cally informed intervention for PTSD (14–16). Although EEG NF 
has important features, it has the limitation that targeting specific 
brain areas, such as the amygdala, is difficult if not impossible 
with EEG. As our understanding of the brain circuits involved in 
PTSD and other disorders advances, there is increasing demand 
for a NF technique that can more directly leverage neuroscientific 
knowledge by allowing us to target specific brain areas. Real-time 
fMRI neurofeedback (rt-fMRI NF) presents this opportunity.

Real-time fMRI neurofeedback is a relatively new technique 
that allows us to target localized brain areas (or to entrain specific 
spatial patterns of brain activity), providing a wonderful opportu-
nity for developing neuroscience-guided, targeted interventions. 
In rt-fMRI NF, participants receive contingent visual (or auditory) 
feedback about a specific aspect of their brain activity pattern, 
and practice trying to control that aspect of their brain function 
using feedback as a training signal (17, 18). Many studies have 
shown that rt-fMRI NF training can be used to teach participants 
to exert volitional control over their own neurophysiological 
response (18–21). In a variety of subject populations, partici-
pants have used rt-fMRI NF to successfully regulate activity in 
the amygdala, anterior cingulate, and insula, among other brain 
regions and circuits (19, 21–23). As participants learn to modulate 
their brain response, it has been shown that behavioral and neu-
rophysiological changes occur that are specific to the brain region 
or network targeted during the NF (21, 24–30). Due to the ability 
of NF to modify cognition, behavior, affect, and neurophysiology, 
the potential applications of rt-fMRI NF are being investigated 
in clinical treatment settings (31, 32). Current literature suggests 
that rt-fMRI NF may be able to reduce symptom levels and also 
normalize brain activity across diverse psychiatric and neurologi-
cal conditions (21, 27, 28, 33–41).

To the best of our knowledge, this pilot study represents the 
first attempt to test the viability of rt-fMRI NF for PTSD. Three 
Operation Enduring Freedom (OEF), Operation Iraqi Freedom 
(OIF), and Operation New Dawn (OND) veterans with chronic 
PTSD (i.e., more than 3 months) were recruited and underwent 
three rt-fMRI NF training sessions (of about 30  min each). 
A functionally localized region of the amygdala was targeted 
during NF due to (i) its well-established involvement in PTSD 
pathophysiology, hyperarousal, and anxiety (42–45) and (ii) 
because extant rt-fMRI NF data suggest that subjects can learn to 
modulate its activity level (23, 41). In particular, participants were 
trained to modulate their amygdala activation during a symptom 
provocation paradigm (i.e., participants listened to audio-
recorded narratives of their own traumatic memories). By train-
ing participants to control emotion-related brain activity patterns 
that are activated during trauma recall, the intervention directly 

targets a possible neural correlate of their  symptomatology. In 
addition to clinical symptom assessment before and after the NF, 
functional neuroimaging data pre- and post-NF training were 
also collected. Although any clinical intervention should ulti-
mately demonstrate effectiveness by reducing symptoms and/or 
increasing well-being, incorporating neurophysiological data as 
an outcome variable in clinical trials is recommended as a means 
of better elucidating treatment response (12, 46, 47).

The overarching aim of this pilot research project was to 
investigate the clinical feasibility of rt-fMRI NF with a highly vul-
nerable patient population with chronic PTSD. There were three 
main hypotheses. First, it was hypothesized that all participants 
would tolerate the intervention well. This was expected because 
(i) neuroimaging studies have used symptom provocation 
paradigms with PTSD patients (48, 49), (ii) various studies using 
other NF techniques (e.g., EEG NF) showed that NF is feasible 
with PTSD patients (14–16), and (iii) studies of rt-fMRI NF have 
been successfully performed with other patient populations that 
show disturbances in affect regulation and cognition (37, 38, 41, 
50). Second, in line with other clinical NF studies, it was hypoth-
esized that, post-intervention, patients would show a reduction in 
symptoms (15, 27, 28, 31, 37, 38, 50). Third, it was hypothesized 
that normalization in resting-state functional connectivity (rsFC) 
of the amygdala would occur (51–57). In particular, rsFC changes 
were expected to be consistent with those found in other PTSD 
resting state and intervention studies that used neuroimaging data 
as an outcome measure (58). In particular, we expected to find (i) 
an increase in rsFC between the amygdalae and regulatory medial 
and orbitofrontal areas, and (ii) a decrease in rsFC between the 
amygdalae and limbic regions and salience network areas.

Importantly, if these hypotheses would be satisfied, only the 
feasibility, but not the efficacy, of this treatment would be estab-
lished. At this stage, any post-intervention changes in functional 
connectivity or symptoms cannot be attributed directly to the 
NF. For such causal inference to be made a larger sample and the 
presence of a control/placebo group would be necessary.

MaTerials anD MeThODs

Design
This pilot study investigated the feasibility of rt-fMRI NF for 
treating PTSD patients. A short-term longitudinal design was 
adopted in order to measure symptoms and rsFC changes before 
and after the NF intervention. No control group was used for this 
unblinded pilot intervention.

Participants
Three OIF/OEF/OND veterans with chronic PTSD were recruited 
through the Veterans Affairs (VA) Connecticut Healthcare 
System, in West Haven, CT, USA. The three participants will 
be referred to as participant A, B, and C. Participants received 
compensation for their time and travel expenses. The study was 
performed in agreement with a research protocol approved by the 
Human Research Protection Program at Yale University and the 
Human Subjects Subcommittee at the VA Connecticut Healthcare 
System. Subjects provided written consent at both institutions.
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Entry criteria included (i) a formal diagnosis of PTSD, as 
confirmed by the Clinician Administered PTSD Scale (CAPS) 
and with a total severity score of ≥50; (ii) chronic PTSD symp-
toms for at least 1 year; (iii) no concurrent Axis I disorders at 
the time of assessment, with the exception of non-threshold 
mood and anxiety symptoms; (iv) concurrent psychotropic 
treatments only if participants were on stable doses for at least 
3 months; (v) no new behavioral treatments initiated for the past 
3 months; and (vi) meeting the standard safety requirements for 
MR scanning.

Measures
Behavioral Measures
Demographics
Clinical records regarding current and past PTSD-related treat-
ments were available through the VA Connecticut Healthcare 
electronic medical record system. Patient demographic infor-
mation was also collected, including age, handedness, gender, 
ethnicity, education, and employment status.

Structured Interviews
Post-traumatic stress disorder symptoms were assessed (past-
month and life time) using the CAPS for DSM-IV-revised 1998 
(59). The CAPS was administered by experienced raters who 
demonstrated excellent inter-rater reliability (i.e., Kappa coef-
ficients were between 0.80 and 0.90 for all interviewers). The 
Structured Clinical Interview for DSM IV-TR (SCID) was also 
administered to assess for comorbid Axis I disorders (60).

Questionnaires
The Combat Exposure Scale (CES) (61) was administered to 
assess combat exposure. (i) The Beck Depression Inventory, 
version II (BDI-II) (62), (ii) the military version of the PTSD 
checklist (PCL-M) for DSM-IV (63), and (iii) the State-Trait 
Anxiety Inventory (STAI) (64) were used to assess, respectively, 
depression, PTSD, and anxiety symptoms.

Trauma Scripts
A similar procedure to that described by Lanius et al. (65) and 
Pitman et  al. (66) was used to generate the trauma imagery 
scripts. Briefly, in collaboration with each participant, script nar-
ratives from their six most traumatic life events were created and 
ranked from most to least traumatic. Two different scripts were 
formulated for each trauma memory (i.e., different wordings and 
descriptions). The scripts were rich in imagery, narrative accounts 
as well as descriptions of the emotional and physiological states 
experienced during the traumatic event (e.g., sweaty hands, 
tense muscles, etc.). The scripts were recorded by the same male 
voice across all participants. The recordings were then edited so 
that each single trauma script would last exactly 60 s. Then, six 
audio recordings of 286 s were produced and played back to the 
participants during the NF runs. Each NF recording contained 
26 s of silence, 60 s of trauma script, then 70 s of silence, then 60 s 
of a different trauma script (of similar traumatic intensity), and 
again 70 s of silence.

Magnetic Resonance Imaging Data Acquisition 
Protocol
All magnetic resonance imaging (MRI) data acquisition was 
done using a 1.5-T Siemens Sonata scanner (Siemens Medical 
Systems, Erlangen, Germany). When imaging regions with high 
susceptibility, improvements in signal with increasing scanner 
strength are offset by increases in the susceptibility artifacts. In 
previous work, we optimized a NF protocol on our 1.5-T scan-
ner for training people to control signal from high susceptibility 
regions of the brain (67). As the amygdala is also a region of 
susceptibility, we used the same scanner and sequence in this 
study.

Structural Image Acquisition
Every scanning session started with a structural localizer scan. 
During the first scanning session, the structural localizer was 
followed by a high-resolution sagittal scan, collected using 
a magnetization prepared rapid gradient echo (MPRAGE) 
sequence (TR  =  2400  ms; TE  =  3.54  ms; TI  =  1000  ms; flip 
angle  =  8°; matrix size  =  192  ×  192; FoV  =  240  mm2; voxel  
size = 1.3 mm × 1.3 mm × 1.2 mm; Bandwidth = 180). This was 
used to register data to the Colin brain, thereby transforming 
it into the Montreal Neurological Institute (MNI) coordinate 
system (68). On the following scanning sessions instead of the 
high-resolution structural image (MPRAGE), a short lower-
resolution sagittal T1-weighted scan was collected. This sagittal 
scan is required for slice alignment.

Then a T1-weighted spin echo axial-oblique anatomical 
scan (i.e., conventional anatomical scan) was collected with 31 
contiguous, 3.1  mm-thick AC-PC aligned axial-oblique slices 
with coverage extending up from the bottom of the   cerebrum 
(TR = 537 ms; TE = 11 ms; flip angle = 90°; matrix size = 256 × 256; 
FoV = 200 mm2; voxel size = 0.8 mm × 0.8 mm × 3.1 mm; band-
width 130). This structural image is necessary for registrations of 
the functional data into higher resolution space (i.e., MPRAGE 
image) and for the registration of the target and control regions 
(used during the NF).

Functional Imaging
The collection of structural images was followed by the acquisition 
of functional data at the same slice locations as the axial-oblique 
T1-weighted data. All functional images were acquired using a 
T2*-sensitive gradient-recalled single shot echo-planar pulse 
sequence (TR = 2000 ms; TE = 30 ms; flip angle = 80°; matrix 
size = 64 × 64; FoV = 200 mm2; 3.1 mm × 3.1 mm × 3.1 mm; 
interleaved acquisition; bandwidth  =  2604). The collection of 
functional images began, during every scanning session, with a 
short functional run from which a single volume was extracted 
to be used as the functional reference volume. A longer, but 
otherwise identical, functional data acquisition protocol (143 
volumes, 286  s) was used also for all the other functional data 
acquisitions, including (i) two resting-state runs collected during 
every scanning session (i.e., two resting runs of 4 min and 46 s 
each), (ii) the functional localizer run used to select the region of 
interest (ROI) to be targeted during the NF sessions, and (iii) the 
real-time NF runs.
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Image Data Processing
Images were motion corrected using SPM (http://www.fil.ion.
ucl.ac.uk/spm/). Except where noted, all other analyses (i.e., 
real-time processing, t-maps for functional localizers, and seed-
connectivity maps) were conducted using Yale BioImage Suite 
software package (69). All t-maps were smoothed using a 6-mm 
full-width at half maximum Gaussian kernel. All registrations 
were visually inspected.

Real-Time fMRI Data Acquisition Protocol
All subjects underwent three separate NF scanning sessions in 
which the target ROIs within the amygdala were functionally 
defined. The functionally defined ROIs were based on functional 
localizers (i.e., a trauma audio-script and frightening movie 
scenes) during the first scanning session for each subject.

Regions of Interest
For a detailed description of functional ROI processing, see the 
procedure described by Hampson et  al. (67). Briefly, after the 
first scanning session, the data from the functional localizer were 
analyzed using the general linear model (GLM) to identify the 30 
most active voxels within the amygdalae (with a cluster threshold 
of four voxels) to anxiety provoking stimuli (sometimes a scary 
movie was used and sometimes a personal trauma). The selection 
of the 30 voxels was done with a customized MATLAB program 
before the first NF session. At the start of each NF session, the ROI 
was transformed from the functional space in which it was defined 
(that is, the functional space of the first day when the functional 
localizer was collected) into the anatomical space of that same day 
via a rigid registration with nearest neighbor interpolation.

A control region, which included all the white matter, was 
defined by transforming the white matter from the template MNI 
brain into the patient’s same anatomical space used during the 
target ROI registration. The white matter is chosen as a control 
region during the NF to control for global drift and arousal levels. 
The real-time analysis program used these two regions during the 
NF sessions. To adjust for global signal fluctuations in the real-
time data, we followed the approach introduced by deCharms 
et al. (21) and plotted the percent signal change from the running 
mean of the target region minus percent signal change from the 
running mean of the control region.

Real-Time Pre-Processing
After the anatomical images were collected, the target ROI and 
the white matter control region were translated into the func-
tional space of the current scanning day via a concatenation of 
two rigid registrations. First, the anatomical space of the first day 
was mapped to the anatomical space of the current day. Then, the 
anatomical space of the current day was mapped to the space of 
the functional reference scan of the current day. Once the ROI 
and the control region were registered into the functional space 
of the current scanning session, the real-time NF could begin.

Real-Time fMRI System
The rt-fMRI system that provides visual feedback during the NF 
scans is described extensively in two previous published studies 
(27, 28, 67).

Procedure
Timeline
Prior to the NF intervention, subjects completed all question-
naires, the SCID and the CAPS were administered, and the 
trauma scripts were created.

The CAPS clinical interview was conducted between one to 
3 weeks prior to and after the NF training. Within 1 week before 
and after the NF training, the baseline and post-intervention 
resting-state scans were collected. On the day of these resting-state 
scans, before entering the MRI scanner, participants completed 
the PCL-M, the BDI-II, and the STAI. The NF sessions took place 
every 2–4 days (so the sequence of three sessions lasted 7–9 days 
depending on the participant). On each NF training day, before 
entering the scanner, participants also completed the PCL-M, 
BDI, and STAI.

Scanner Procedure
During each scanning day, participants completed the PCL-M, 
BDI-II, and STAI questionnaires before entering the scanner 
(note that the BDI and STAI scores will be presented only in the 
online Supplementary Materials document – in Figures S1 and S2 
in Supplementary Material). Once in the scanner, the functional 
image acquisition began with the resting-state runs. The light was 
dimmed in the scanner room and subjects were required to rest 
for about 10 min with their eyes open (~5 min per resting run). 
On the first day, the resting-state runs were followed by the func-
tional localizer runs (i.e., used to create the target ROI). During 
functional localizer runs, participants watched movie clips with 
frightening scenes or listened to a trauma audio-script for the 
activation blocks and rested for the baseline periods. Participant 
B also had two NF runs on this day (targeting the right amygdala 
defined anatomically).

After the first scan, all participants completed three NF scan-
ning days where they received NF from a functionally defined 
region of the amygdala (bilaterally or unilaterally, depending 
on where the 30 most active voxels were during the functional 
localizer scan). Participants received detailed instructions before 
entering the scanner for the first NF session and received another 
brief reminder before the first NF run during each NF scanning 
day. Briefly, participants were informed that the line on the screen 
(Figure 1) represented the real-time activity (with about 4–6 s 
delay) of their own amygdala, an area of the brain where activity 
tends to increase when one is anxious. Participants were also 
told that an arrow at the top of the screen would cue them as to 
their current task throughout the run (Figure 1). A white arrow 
pointing forward would indicate a rest period (no task), a red 
arrow pointing up would indicate they should listen to the script 
and allow their amygdala activity to increase, and a blue arrow 
pointing down would cue them to try to decrease activity in their 
amygdala (Figure 1). The feedback was provided in the form of 
a line graph at the center of the screen. The line graph showing 
them their brain activity pattern was color-coded to match the 
arrows, so the line segments drawn during the rest block were 
white, those drawn during the increase/provocation  block 
were red, and those drawn during the decrease block were blue 
(Figure  1). It was emphasized to the patients that they should 
bring the blue line down or at least stop it from increasing.
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During each NF run, a 286-s audio file was played to patients 
(see Trauma Scripts for description of these files) while they 
viewed NF on the display screen. First, participants rested for 26 s 
at the very beginning (this, as explained above, was indicated by 
the white arrow). Then, as they listened to the first trauma audio-
scripts (60  s), they were cued to allow their amygdala activity 
to increase (shown by the red arrow pointing upwards). When 
the trauma audio-script stopped, the participants were cued to 
decrease activity for 70  s (indicated by a blue arrow pointing 
down, as shown in Figure 1). Then, a second 60-s trauma script 
was played during which they could allow their amygdala to 
increase, and this was followed by the last period of attempted 
reduction of amygdala activity (70 s). Participants were allowed 
and encouraged to use any strategy to help them decrease activity. 
Participants completed five to six NF runs (of 286 s each) dur-
ing each NF session (i.e., about 30 min in total). Trauma scripts 
were ranked from least traumatic to most traumatic. Participants 
began each NF session with runs in which they only heard the 
less traumatic scripts. How quickly each participant progressed 
to more traumatic scripts was determined by the patient. This 
self-paced approach was designed to maximize the comfort and 
sense of control experienced by the participant. However, all 
participants were able to use, at least on the last two NF scanning 
days, the most traumatic audio-scripts.

After completing all of the NF sessions, subjects returned for 
one final scanning session in which only resting-state functional 
data were collected, in order to allow comparison of resting-state 
data before and after NF.

Data analysis
Behavioral Data
Due to the small sample size, no formal statistical or group 
analysis was performed on questionnaires and clinical interview 

data. Rather each subject was used as their own control for the 
analysis. In particular, symptom changes were calculated for each 
individual and compared to standardized threshold guidelines 
for clinical and statistical significance.

Offline Analysis of Resting-State Functional 
Connectivity Data
In addition to motion correction (see Image Data Processing), pre-
processing involved regressing from the data time-course signals 
of no interest, including (i) cerebrospinal fluid and white-matter 
signals, (ii) subject motion parameters, and (iii) temporal drift, 
as well as low-pass filtering (<0.1  Hz). Resting-state data were 
analyzed using a seed-based FC approach. Specifically, a ROI-to-
whole-brain connectivity analysis was performed. The ROI was 
created by transforming the bilateral amygdalae from the MNI 
brain into the subject functional space. This anatomically defined 
ROI was used rather than the functionally defined NF target 
region as the latter varied across individuals. Seed-connectivity 
maps were computed for the resting runs of each scanning session 
for each participant. These maps indicate how synchronized each 
voxel was with the amygdalae during the resting scans of that day.

Change maps in rsFC from the first scanning day to the last 
were created by first transforming both maps into the high-
resolution anatomical space of the subject. Then, they were 
subtracted (last day minus first day) to yield a seed-connectivity 
change map. Finally, these seed-connectivity subtraction maps 
were analyzed at a group level by transforming all participants’ 
maps to the common MNI space (via a non-linear registration) 
and adding them. No formal statistics were performed due to the 
small sample size and the exploratory nature of the study. Thus, 
an arbitrary threshold was set. The threshold was set such that 
5000 voxels survived (in the high-resolution anatomical space) to 
allow examination of those regions showing the greatest change 
in connectivity after the NF training. This approach was used 
to identify peaks in the group map and was also used on the 
individual subject maps to explore which subjects showed the 
connectivity changes identified at the group level.

resUlTs

Demographics
Participants A, B, and C were adult males of 36, 46, and 30 years 
of age. All had a similar and moderate exposure to combat (i.e., 
participants A, B, and C scored, respectively, 22, 24, and 23 on 
the CES).

Participant’s medical records indicated that participants A, 
B, and C had a formal diagnosis of PTSD, respectively, for 6, 2, 
and 3 years when enrolled in this study. Prior to this study, all 
participants underwent pharmacological and/or psychological 
treatments. In particular, participant A received 13  weeks of 
pharmacological treatment and several psychoeducation and 
mental-health visits at the VA prior to this study. participant B 
received 13 months of weekly individual psychotherapy prior to 
the NF intervention at the VA hospital. Participant C received a 
month-long in-patient care for PTSD followed by a full 12-week 
course of cognitive processing therapy at the VA hospital. He also 
received concomitant pharmacotherapy.
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During the intervention, participants A and C were on a 
stable pharmacological dose (for at least 3  months before the 
intervention started), and participant C was attending individual 
counseling and group peer-to-peer psychotherapy (initiated 
more than 3 months before the intervention). At the time of the 
study, participant B was not receiving any pharmacological nor 
psychological treatment.

Behavioral Findings
PTSD Symptoms
CAPS Scores
Participants A, B, and C had total lifetime PTSD scores of 74, 83, 
and 88, respectively (i.e., severe-to-extreme symptom range) (70).

The past-month CAPS total scores before and after the inter-
vention are shown in Figure 2. According to the CAPS diagnostic 
categorization (70) before NF training participants A and B with 
scores of 55 and 59, respectively, belonged in the moderate symp-
tom range (40–59) and participant C, with a score of 81 was in the 
extreme symptom range (80+).

According to Weathers et  al. (70) diagnostic categorization 
of PTSD symptoms, an asymptomatic clinical presentation is 
defined as a total score of below 20 on the CAPS. A 10-point 
decrease in the CAPS total score is considered a reliable marker 
of clinically significant change (9). Participant B, with drop of 
47 points and Participant C with a drop of 34 points had clini-
cally significant improvements in PTSD symptoms (Figure  2). 
Moreover, participant B achieved asymptomatic presentation 
with a final CAPS score of 12. Participant A, with a drop of three 
points did not achieve a clinically meaningful change on the 
CAPS (Figure 2).

PCL-M Scores
Post-traumatic stress disorder symptoms were also monitored 
by the self-administered PCL-M questionnaire in each session. 
A PCL-M score in 17–33 range is considered to represent low 
symptomatology, a 33–44 range is considered moderate, and 
44–85range is considered high (71). Empirical data suggest that 
a 5–10 point change is statistically reliable (on an individual 
basis), and that a 10–20 point change is clinically significant (71). 
Participant A had a reliable drop in severity score (i.e., five points) 
from 42 to 37 point, and both participants B and C had a clinically 
meaningful drop of 16 (from 37 to 21) and 13 points (from 45 
to 32), respectively. Interestingly, all participants had the largest 
drop in severity of PCL-M scores after the first NF session (see 
Figure 3).

neuroimaging Findings
Group-Level rsFC Changes post-NF
As shown in Figure 4, the group-level results from the resting-
state seed-connectivity subtraction maps (i.e., last minus first 
scan) show a pattern of increased rsFC between the amygdalae 
and regulatory regions in the orbitofrontal cortex (OFC) and the 
ventral anterior cingulate cortex (vACC). Moreover, a reduc-
tion in connectivity between the amygdala and several salience 
network areas was observed, including the anterior insula, the 
dorsal anterior cingulate cortex (dACC), and temporal areas sur-
rounding (and including) the amygdalae (for more details, see 
Table S1 in Supplementary Material).

Notably, the individual subtraction maps were qualitatively 
similar to the group-level map. Furthermore, none of the group-
level findings were contradicted at an individual level (e.g., 
increased instead of decreased connectivity post-intervention).

DiscUssiOn

This pilot study represents, to the best of our knowledge, the first 
investigation of the feasibility of rt-fMRI NF in PTSD patients. 
The main hypotheses were largely supported by our findings. 
First, all three participants tolerated the NF training well. Second, 
all patients showed some degree of improvement on the CAPS 
and PCL-M symptoms scores. Moreover, despite the chronicity 
of their PTSD symptoms, two participants experienced large 
(and clinically meaningful) symptom improvements. Third, the 
changes in rsFC post-treatment were consistent with normaliza-
tion of PTSD-specific brain patterns across all participants.

symptom improvements
Clinician-Administered PTSD Scale and PCL-M scores provide 
different windows on symptom severity: the CAPS is a lengthy 
assessment involving a clinician, while the PCL-M is a brief 
self-report based measure. Importantly, recent evidence suggests 
that the PCL may be a more sensitive measure of clinical change 
than the CAPS in clinical trials (71). However, in this study, the 
patterns of symptom changes measured are generally consist-
ent for the two measures. Differences in the clinical measures 
before and after the NF intervention suggest that large symptom 
improvements occurred for participants B and C who achieved 
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FigUre 4 | group-level average of subtraction seed-connectivity maps (rOi = bilateral amygdalae) showing the peaks in rsFc changes post-
neurofeedback (in common anatomical space – i.e., Mni brain). Red/Yellow indicates an increase in rsFC, while Blue/Purple indicates a decrease.

FigUre 3 | Pcl scores before, during, and after the nF training. NF-1 represents the PCL-M scores collected just before (but on the same day) as the first 
NF. Pre-NF represents assessments collected 1 week before the first NF. Post-NF represents data collected 1 week after the last NF session. All NF sessions shown 
for each subject were scheduled 3–4 days apart.
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substantial and clinically significant drops in CAPS severity 
scores, which were mirrored by clinically meaningful changes on 
the PCL-M. Moreover, post-intervention, with a final CAPS score 
below 20 points, participant B achieved an asymptomatic presen-
tation. On the other hand, participant A achieved a smaller, yet 

reliable improvement on the PCL-M, and only a small drop on 
the CAPS score.

Interestingly, the PCL-M scores revealed that all participants 
consistently had the largest symptom drop after the first full ses-
sion of functionally defined NF (NF-1 in Figure 3), which was 
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maintained during the following sessions and post-intervention. 
This suggests that the symptom improvements observed post-NF 
training are unlikely to be caused by random symptoms fluc-
tuations over time. Although the largest symptom improvement 
followed the first NF session, it is unclear whether subsequent 
sessions may be important for consolidating that learning. 
Furthermore, as patients were not followed after the final CAPS 
assessment, it is unclear how long symptom improvements per-
sisted. More research is needed to address these questions.

changes in rsFc
Although the changes in rsFC in this study have not been corrected 
for multiple comparisons and, thus, should not be considered 
confirmatory, they are worth examining in a qualitative manner 
as they can inform future hypotheses. The similar patterns of 
changes in rsFC across participants suggest that the NF may have 
worked via consistent neurophysiological mechanisms. These 
changes included (1) increased rsFC between amygdalae and 
orbitofrontal/ventral anterior cingulate regions (OFC/vACC) 
and (2) decreased functional connectivity between amygdalae 
and other parts of the salience network.

Increased rsFC between amygdalae and OFC/vACC is consist-
ent with the traditional neurocircuitry model of PTSD and with 
current understanding of PTSD pathophysiology (42, 43, 72). In 
particular, the disruption in the connectivity between regulatory 
frontal areas (including medial OFC and also the vACC) and the 
amygdalae is believed to underlie various PTSD symptomatology, 
such as hyperarousal and alterations in fear extinction processes 
(43, 72–74). Thus, the preliminary findings from this study sug-
gest that this NF protocol may help to normalize fronto-limbic 
alterations in PTSD. Interestingly, this finding resonates with 
neuroimaging studies of other clinical interventions, suggesting 
that both behavioral and pharmacological interventions also 
facilitate the normalization of fronto-limbic circuitry in PTSD 
(75–80).

Decreased connectivity within the salience network is 
also highly consistent with neurobiological models of PTSD. 
Abnormally high levels of activity in salience network areas, 
such as the amygdalae, anterior insulae (AI), and dorsal ACC 
(dACC) have been linked with severity of PTSD symptoms, with 
treatment-resistance and also with increased familial vulnerabil-
ity (42, 43, 81–84). As further evidence of the causal role of the 
salience network areas in the pathophysiology of PTSD, recent 
data suggest that positive responses to clinical interventions 
in PTSD are associated with reduced activity in regions of the 
salience network (especially the amygdala and dACC) (80). Also 
the rsFC literature has shown a consistent pattern of abnormally 
high connectivity within the salience network in PTSD (51, 54, 
55). In line with the literature, the rsFC findings from this study 
revealed (both at an individual and group level) a decrease in 
rsFC between the amygdalae and other salience network hubs 
after the NF training. In particular, reduction in the amygdalae’s 
rsFC were found with (i) the amygdala itself, (ii) with limbic 
regions bordering the amygdalae, including orbital cortex (BA 
47) and the temporal pole areas (BA 38), (iii) with the brain tis-
sues between (and including) the amygdalae and the AI, and also 
(iv) with the dACC.

One of the difficulties intrinsic to NF training is to target the 
relevant brain regions or networks (31). Thus, increasing our 
understanding of the neurological underpinnings of PTSD and 
the neurophysiological effects of NF training in PTSD can have 
far-reaching implications for the refinement, and success of rt-
fMRI NF.

limitations
Despite the encouraging results, this pilot study has several 
shortcomings. The major limitation is the very small sample size. 
The goals were to develop a NF protocol for PTSD patients and to 
test its feasibility and preliminary promise for treating this highly 
vulnerable psychiatric population. In line with the pilot nature 
of the research, there were some irregularities. For example, 
different approaches were used to define the target region. Also, 
the number of NF sessions received varied across participants. 
Moreover, the unblinded design does not allow us to control for 
placebo or social desirability effects on symptoms ratings. The 
next phase of research should aim to test the current NF protocol 
in a standardized, randomized study with a larger sample size.

Furthermore, due to the lack of a control group, it is not pos-
sible to exclude that the improvements in PTSD symptomatology 
are due to factors unconnected to the hypothesized mechanisms 
of action of NF intervention. Other factors may have contributed 
to the observed symptom reductions, such as (i) exposure to 
trauma memories [a large body of evidence suggests that simple 
exposure to trauma imagery can reduce PTSD symptoms (85, 
86)], (ii) placebo effects, (iii) social desirability effects, or (iv) 
random symptom fluctuations across time. However, prior to 
this study, all three participants had been exposed to psychologi-
cal treatments and/or mental-health visits, and all had chronic 
PTSD symptoms. Thus, exposure to traumatic memories and 
placebo effects are unlikely to explain the symptom improve-
ments experienced by these patients. Furthermore, the temporal 
pattern of symptom improvements (time-locked to first NF 
session) (Figure 3) and the changes in rsFC observed (consist-
ent with known neurobiology of PTSD) make the social desir-
ability effect and random symptom fluctuations equally unlikely 
explanations. In summary, due to the absence of a comparison 
control group (and the small sample size), no inference can be 
made about efficacy of the NF intervention for PTSD at this 
stage. However, the results from this pilot study are promising 
enough to motivate future investigations into the efficacy of this 
intervention.

Another limitation is that the patients in this study were not 
followed clinically after the intervention. Therefore, the persis-
tence of their symptom improvements following NF is unknown. 
Depending on the persistence of effects, follow-up NF sessions 
may be needed to maintain improvements. This is an important 
research direction for future rt-fMRI NF studies.

Finally, this study targeted a very specific subgroup of PTSD 
patients (i.e., male war veterans with chronic and treatment-
resistant PTSD). Thus, it may not be possible to generalize the 
current findings to other subgroups of PTSD patients [e.g., 
treatment-naïve individuals, patients with comorbid substance 
abuse and mood disorders (both very common co-occurring 
conditions in PTSD), patients with a complex history of trauma, 
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such as sexual abuse and childhood trauma, etc.]. Nevertheless, 
war veterans are among the group of PTSD patients who are the 
least responsive to treatment and show the highest drop-out rates 
(4). Thus, it is likely that the current rt-fMRI NF protocol may be 
equally (or even more) feasible and potentially effective among 
other subgroups of adult PTSD patients.

conclusion and Final comments
Unlike other NF methods (such as EEG NF), rt-fMRI NF repre-
sents a unique opportunity for targeting specific and deep brain 
regions involved in the pathophysiology of PTSD. Thus, rt-fMRI 
NF has the potential to facilitate the translation of neuroscientific 
knowledge of PTSD into clinical practice. Indeed, the preliminary 
evidence from this study is encouraging as it suggests that rt-fMRI 
NF (particularly in a trauma exposure context) on chronic PTSD 
patients is a feasible and promising new intervention. Further 
investigation is needed to determine efficacy.
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