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Tardive syndrome (TDS) is a potentially permanent and irreversible hyperkinetic movement 
disorder caused by exposure to dopamine receptor blocking agents. Guidelines 
published by the American Academy of Neurology recommend pharmacological first-
line treatment for TDS with clonazepam (level B), ginkgo biloba (level B), amantadine 
(level C), and tetrabenazine (level C). Recently, a class II study provided level C evidence 
for use of deep brain stimulation (DBS) of the globus pallidus internus (GPi) in patients 
with TDS. Although the precise pathogenesis of TDS remains to be elucidated, the 
beneficial effects of GPi-DBS in patients with TDS suggest that the disease may 
be a basal ganglia disorder. In addition to recent advances in understanding the 
pathophysiology of TDS, this article introduces the current use of DBS in the treatment 
of medically intractable TDS.

Keywords: deep brain stimulation, globus pallidus internus, antipsychotic agents, abnormal involuntary 
movements, tardive dyskinesia, tardive syndrome, secondary dystonia, pathophysiology

iNTRODUCTiON

The term “tardive” originates from the French “tardif,” meaning “late”; tardive syndrome (TDS) 
refers to delayed onset motor disturbances following treatment with psychotropic medication (1, 2). 
DSM-5 diagnostic criteria for TDS include a history of more than 3 months cumulative exposure 
to dopamine receptor blocking agents (DRBAs), except in elderly patients in whom 1  month is 
adequate (3). They also contain the presence of “mild” or “moderate” abnormal involuntary move-
ments (AIMs) in one or more body areas, and the absence of other conditions that might produce 
AIMs (4, 5).

Tardive syndrome can manifest heterogeneous features of AIMs that comprise dystonia, chorea, 
athetosis, akathisia, myoclonus, stereotyped behavior, tremor, and tourettism or tics (6–8). Orofacial 
dyskinesia is the most common symptom in less severe cases, while generalized hyperkinetic move-
ments with predominance of axial dystonia also occur in severe cases (9). Two-thirds of patients 
with TDS have cervical involvement (10). As many various types of motor symptoms can emerge, 
it has been suggested that TDS is a more accurate term for the condition than the traditionally used 
term “tardive dyskinesia (TDD)” (2, 11). TDD is now used to refer to more specific involuntary 
movements (e.g., lingual–facial–buccal dyskinesia) which are caused by DRBAs (8, 11).

The causative agents are usually typical or atypical antipsychotic drugs (APDs). Recent reports, 
however, suggest that TDS could also be caused by a wide variety of psychotropic drugs, such 
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as antidepressants and antiparkinsonian medications (7). 
Systematic overview and meta-regression analyses of 52 ran-
domized controlled trials conducted by Geddes et al. revealed 
that there are no differential effects between typical and atypi-
cal antipsychotics in causing extrapyramidal side effects (12). 
Recently, O’Brien et  al. reviewed studies that investigated the 
prevalence or incidence of TDS in elderly patients exposed to 
APDs from 1957 to 2015. The inclusion criteria of this meta-
analysis were prospective studies (n > 20), which used validated 
rating scales and research diagnostic criteria (13). According to 
this meta-analysis, the estimated prevalence for probable TDS—
defined according to the Schooler and Kane Research Diagnostic 
Criteria where abnormal movements in at least one body part 
are labeled “moderate” and in two or more body parts are rated 
“mild” (4) — was higher in patients after being treated with 
typical APDs for 1 year (23 vs. 7%). In more than 50% of cases, 
TDS was irreversible even after withdrawal from the responsible 
neuroleptics (14).

In guidelines proposed by the American Academy of 
Neurology, clonazepam (level B), ginkgo biloba (level B) and 
amantadine (level C), and tetrabenazine (level C) are recom-
mended for the treatment of TDS (Table 1) (5). Among them, 
tetrabenazine is most effective at reducing TDS, but has the risk 
of inducing depression or Parkinsonism (15, 16). Neuroleptic 
agents cannot be recommended in this guideline since they may 
cause TDS and mask its symptoms, instead of treating it (5). 
However, clozapine is the most acceptable alternative for patients 
with schizophrenia (6). It has the lowest risk among all APDs that 
cause TDS by inhibiting dopamine D1 and D2 receptors (6, 17). 
Although its efficacy in reducing TDS is undetermined due to 
conflicting class III studies, the currently used APDs treatment 
should be replaced with clozapine as an alternative therapy for 
suppressing TDS prior to attempting surgical procedures in deep 
brain stimulation (DBS) clinical trials (18, 19). As published in 
our previous report (20), accumulating evidence suggests that 
patients with TDS could be good candidates for undergoing DBS 
that targets the globus pallidus internus (GPi). Recently, Pouclet-
Courtemanche et al. reported a class II evidence trial indicating 
that GPi-DBS significantly relieves motor symptoms in patients 
with medically intractable TDS. In this article, we describe recent 
understandings of the pathophysiology of TDS, and introduce the 
current use of GPi-DBS in treatment of the disease (19).

PATHOPHYSiOLOGY OF TDS

Dopamine Receptor Hypersensitivity
Striatal dopamine receptor supersensitivity has so far been the 
most plausible explanation for development of TDS. Chronic 
exposure to DRBAs can induce upregulation of postsynaptic 
dopamine receptors, particularly of the D2 subclass, in the stria-
tum (21). Notably, medications that act on the presynaptic D2 
receptors, such as reserpine and tetrabenazine, do not cause TDS 
(6). The proposed model of a postsynaptic dopamine hypersensi-
tivity mechanism occurring due to upregulation of the D2 recep-
tors is supported by findings obtained from experimental animal 
models (22–25) and in a human study using positron emission 

tomography (PET) (26). In the animal models, sub-chronic treat-
ment with antipsychotics increased vacuous chewing movements 
(VCM) associated with upregulation of striatal D2 receptors (24). 
Teo et al. hypothesized that hypersensitivity of D2 receptors could 
cause maladaptive plasticity in the cortico-striatal transmission, 
resulting in an inability to normalize the miscoded motor pro-
gram in patients with TDS (27). This notion might be supported 
by PET findings in patients with TDS (9). In addition to an 
increase in regional cerebral blood flow during the rest condition 
in the prefrontal and anterior cingulate cortex and the cerebel-
lum, Thobois et al. (16) reported an excess of brain activity in the 
prefrontal and premotor cortical areas during motor execution, 
which might reflect a loss of motor selectivity leading to genera-
tion of abnormal movements (9). Trugman et  al. hypothesized 
that the D2 receptor blockade concomitant with repetitive activa-
tion of the D1 receptors could be a fundamental cause of TDS 
(17). This hypothesis might be consistent with the delayed onset 
of TDS after exposure to neuroleptics and the persistence of TDS 
even after withdrawal from them (17). In addition, maladaptive 
changes in non-dopaminergic neurotransmitter systems, such as 
those involving opioids (enkephalin and dynorphin), glutamate, 
and acetylcholine, have also been reported in patients with TDS 
(28, 29) and in animal models of TDS (30–34).

Neurotoxicity induced by Oxidative Stress
More recently, oxidative stress has been suggested as a mechanism 
for TDS pathogenesis. Neuroleptics can exert direct toxic effects 
on neurons by inhibiting the complex I of the electron transport 
chain. They also can increase dopamine turnover through chronic 
dopamine receptor blockade, thereby generating hydrogen 
peroxide and free radicals, leading to neurotoxicity (8, 35, 36). 
In animal studies, antipsychotics increase membrane lipid per-
oxidation, free radical activity, and glutamate transmission, but 
decrease antioxidant enzyme activity for glutathione (28, 37–39). 
Defects in the antioxidant systems might cause development of 
TDS (40). Several authors suggest that oxidative damage leading 
to neuronal degeneration may explain the irreversibility of TDS 
(41, 42). In support of this notion, neuroimaging studies using CT 
and MRI showed that among patients with schizophrenia, a sig-
nificant reduction in structural volume of the caudate nucleus was 
found in patients with TDS when compared to non-TDS patients 
(43–45). Moreover, variances in the gene encoding manganese 
superoxide dismutase (MnSOD) and the gene for an enzyme that 
eliminates free radicals have also been found to correlate with 
presence of TDS symptoms (35, 46–49). Based on these findings, 
a wide variety of antioxidants has been tested in clinical trials (5). 
The guidelines of the American Academy of Neurology suggest 
that ginkgo biloba extract (EGb-761) is probably useful (Level 
B) in TDS therapy (5). Although data conflictingly support or 
oppose the use of other antioxidative agents, class I and II studies 
have shown that TDS could be significantly alleviated by vitamin 
B6, vitamin E, and melatonin (Table 1) (5, 36).

Genetic Predisposition
Genetic studies suggest that there is an intrinsic susceptibility to 
develop AIMs in patients with schizophrenia and that the role 
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TABLe 1 | evidence-based medical treatments of tardive syndrome.

Treatments No. of class 
i–iii studies

Conclusions Recommendations

Withdrawal of DRBAs Class III: 3 Conflicting results. In two class III studies, TDS had worsened, while it was 
unchanged in another

Level U

Acetazolamide 
with thiamine

Class III: 1 Dyskinesia (AIMS) was reduced by 46 and 41% in older and younger patients, 
respectively

Level U

Amantadine Class II: 1
Class III: 2

Dyskinesia (AIMS) was reduced by 15% in one class II study Level C (short-time 
use: 7 weeks)

First-generation 
antipsychoticsa

Haloperidol Class II: 2 
Class III: 1

TDS was reduced by 67% for up to 2 weeks but akinetic-rigid syndrome was 
increased in one class II study

Level U

Thiopropazate Class III: 1 Oral dyskinesia was reduced by 27% after 4 weeks Level U

Second-generation 
antipsychoticsa

Clozapine Class III: 2 Conflicting results Level U

Risperidone Class II: 2 
Class III: 1

TDD was reduced. Risperidone is probably effective Level U

Olanzapine Class III: 2 TDS (AIMS) was reduced by 30%. Possibly olanzapine reduces TDD Level U

Dopamine-depleting 
agents

Tetrabenazine Class III: 2 TDS (AIMS) is reduced by 54.2%. Long-term TBZ administration can cause 
parkinsonism

Level C

Reserpine Class III: 1 TDS was reduced Level U

α-methyldopa Class III: 1 TDS was reduced Level U

Dopamine agonists: 
bromocriptine

Class III: 1 No TDS reduction Level U

Cholinergic drugs Galantamine Class II: 1 No TDS reduction. Caused parkinsonism. Might not be effective for TDS treatment Level C

Biperiden (Akineton) 
discontinuation

Class III: 1 TDS was reduced, but parkinsonism increased Level U

Antioxidants Vitamin E Class II: 6 
Class III: 4

Conflicting results. Three class II studies and one class III study failed to show 
therapeutic effects. In other class II and III studies, vitamin E reduced TDS

Level U

Melatonin Class II: 2 Conflicting results. Possibly ineffective at low doses, but more effective at higher 
doses. Data are conflicting

Level U

Selegiline Class III: 1 TDS reduction relative to the placebo Level U

Eicosapentaenoic 
acid

Class II: 1 No TDS reduction. Possibly ineffective Level C

Ginkgo biloba 
extract (EGb-761)

Class I: 1 TDS (AIMS) was reduced compared with placebo (2.13 vs. −0.10).  
Probably useful for treating TDS patients with schizophrenia

Level B

Vitamin B6 Class III: 1 TDS (ESRS) was reduced compared with placebo (mean 68.6 vs. 32.8%) Level U

Yi-gan san Class III: 1 TDS (AIMS) was reduced by 56% Level U

GABA agonists Clonazepam Class I: 1 TDS was reduced by 35% Level B

Baclofen Class II: 3 Baclofen with neuroleptic agents reduced TDD in two class II studies,  
but did not reduce TDD when used alone

Level U

Levetiracetam Class III: 1 Reduced TDD, but dropout rate exceeded 20% Level U

Calcium channel 
blocker: diltiazem

Class I: 1 No TDS reduction; probably does not reduce TDD Level B

Buspirone Class III: 1 TDS (AIMS) was reduced Level U

AIMS, abnormal involuntary movement scale; ESRS, extrapyramidal symptom rating scale; TDD, tardive dyskinesia; TDS, tardive syndromes.
aNeuroleptics agents cannot be recommended for TDS treatment because of its potential to cause TDS. This table is referred from the guideline of American Academy of Neurology (5).
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of antipsychotics is one of promotion or acceleration of rather 
than causation of symptoms (45, 50). There is solid evidence 
for a genetic predisposition to TDS (7). Family studies showed 
that occurrence of TDS was influenced by polymorphisms in  
the genes coding for the D2 and D3 receptors (DRD2 and 
DRD3), catechol-O-methyl-transferase (COMT), 5-HT2A 
receptors (HTR2A), manganese super-dismutase (MnSOD), and 
cytochrome P450 (CYP2D6) (8, 51). Mutations in genes related 
to GABAergic pathways (SLCA11, GABRB2, and GABRC3), 
N-methyl-d-aspartate (NMDA) receptor (GRIN2A), and oxida-
tive stress related genes (GSTM1, GSTP1, NQO1, and NOS3) are 
also suggested to play a role in developing TDS (8, 51). Souza 
et al. reported that GSK-3β polymorphism might be a risk factor 
for TDS in patients with schizophrenia (52). A single nucleotide 
polymorphism marker located in the 3′-untranslated regulatory 
region of the Nurr77 mRNA is nominally associated with risk and 
severity of AIMs in TDS patients with schizophrenia (53, 54).

Animal Models of TDS
Rats, mice, and non-human primates have been commonly used 
as TDS models, in order to investigate disease pathogenesis and 
evaluate the efficacy of TDS pharmacotherapy. Since the early 
1970s, rats that were exposed to dopamine receptor blocking 
agents for consecutive weeks manifested different patterns 
of purposeless, chewing activity, which is termed “vacuous 
chewing movements”(22–25, 30–34). VCM are also observed 
in mouse models of TDS (55, 56). The VCM induced by halo-
peridol was further exacerbated by knocking out Nur77 (57). 
Knocking out aquaporin-4, however, abolished VCM that were 
induced by chronic haloperidol treatment (58). The expression 
patterns of immediate early genes in the striatum, which were 
induced by clozapine or haloperidol, have been demonstrated 
using transgenic dopamine D3 receptor knockout mice (59, 60). 
Thus, transgenic rodent models are beneficial for addressing 
drug-induced neural changes. Non-human primate model of 
TDS appeared as early as the late 1970s. Given the marked 
interspecies difference in susceptibility of New World monkey 
species, TDS developed in proportions of 0, 45, and 71% in 
squirrels (Saimiri sciureus), capuchins (Cebus apella), and mar-
mosets (Callithrix jacchus), respectively (61). In non-human 
primates, chronic APD exposure, typically of haloperidol, for 
at least 1 year, was required to model TDS (61). Abnormal ste-
reotypical movements observed in non-human primate models 
of TDS include various orofacial dyskinetic movements, neck 
rotation, brief back extension, flexion/extension movements of 
the toes, and upper limb chorea, which persisted for several 
months following drug withdrawal (61). Since the latency of 
onset, individual susceptibility, phenomenological expression, 
and persistence of TDS is similar to humans, non-human 
primate models of TDS are best suited to address therapeutic 
issues (61).

DBS FOR TDS

TDS as a Basal Ganglia Circuit Disorder
Accumulating evidence suggests that TDS might result from 
abnormal plasticity in the motor circuit that links with the basal 

ganglia (9, 17, 45). Consistent with this concept, TDS was suc-
cessfully treated with DBS of the GPi, which is the major basal 
ganglia output nucleus (see Tables  2 and 3). During GPi-DBS 
surgery in patients with TDS, microelectrode recordings (MERs) 
of GPi neurons show abnormal bursts and irregular activities 
(62, 63). In addition, simultaneous recording on pairs of GPi 
cells also showed a high degree of discharge synchronization 
(63). By means of a fast Fourier transform analysis, Nandi 
et  al. reported that local field potentials in the GPi showed 
significant strength of correlation and coherence with the EMG 
data of AIMs in a patient with TDS (64). Given the evidence 
that in patients with TDS, GPi cells fired before onset of AIMs, 
Magariños-Ascone et  al. suggest that the burst and irregular 
patterns of neuronal discharges might indicate an imperfect code 
that becomes arranged in a confused order at the cortical level, 
and that GPi-DBS could disrupt these “noisy signals” and allow 
the motor program to be gated with ease (63). Evidence that 
GPi-DBS could influence the brain CBF levels in the primary 
and associative motor cortices has also been reported (9, 62). 
It has also been noted that not only the GPi but also the STN 
and thalamus could be targets for DBS in the treatment of 
TDS (65, 66). These observations indicate that TDS might be 
a network disorder involving cortico-thalamo-basal ganglia 
motor circuitry.

Current Use of GPi-DBS in TDS
Multiple single case reports (62–64, 67–79) and open-labeled 
small case series (10, 20, 80–90) have shown that GPi-DBS could 
be highly effective in the treatment of patients with medically 
intractable TDS (see Tables 2 and 3). Recently, a class II study 
provided level C evidence for positive effects of GPi-DBS in TDS 
therapy (19). Here, we introduce the current state of GPi-DBS use 
in the treatment of patients with TDS.

Patient Selection
Selection of candidates for GPi-DBS is a critical step for obtain-
ing good outcome results and for avoiding adverse events. The 
primary inclusion criterion is that patients experience medically 
intractable and markedly disabling motor symptoms associated 
with TDS. According to the criteria proposed by The French 
Stimulation for TDD (STARDYS), which might so far be the 
most rigorous and strict, DBS should only be considered for 
patients with persistent (>1  year) and severely disabling TDS, 
for whom treatment with clozapine or tetrabenazine at their 
maximum tolerable dosages had been attempted for at least 
4 weeks (18, 19). The exclusion criteria are essentially the same as 
those applied to patients with primary dystonias, which include 
marked cognitive impairment, acute psychiatric changes, severe 
depression, and other coexisting medical disorders that would 
increase the surgical risk (86, 91). To predict the potential risks 
inherent to the surgical procedures, a preoperative brain MRI 
should be performed to check for the presence of brain atrophy 
and/or other organic lesions. It is also important to evaluate if 
the psychiatric conditions of the patient are satisfactorily stable 
with the current medication, for at least several months prior 
to the surgery and to confirm the ability to provide consent for 
the surgical procedure (18, 19).

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


TABLe 2 | Reported cases of GPi-DBS in patients with tardive syndrome.

Reference N Age/sex Disease duration, 
years

Neuroleptics indication Affected regions/type

Trottenberg 
et al. (67)

1 70/F 6 FLUS AD, neurosis Eye, OBL, Cx, Tr, L/Dy

Nandi et al. (64); 
Yianni et al. (68)a

1 40/M 5 HAL, DPD, CPZ AD, DD, personality 
disorder

Tr/Dy

Schrader  
et al. (69)

1 64/F 7 FLUS AD, DD OBL, L/CH

Krause  
et al. (80)

3 (1) 67/F, (2) 53/M, 
(3) 47/F

(1) 22, (2) 5, (3) 22 NR NR NR

Eltahawy  
et al. (70)

1 53/F 4 PPZ, CPZ BD Cx, Tr, L/Dy, CH, akathisia

Trottenberg 
et al. (82)

5 (1) 70/F, (2) 66/F, (3) 56/F, 
(4) 30/M, (5) 59/M

NR (1) FLUS, (2) FLUS, (3) HAL, 
(4) BPD, LEV, HAL, (5) HAL

(1) AD, (2) DD,  
(3) BD, (4) SCZ, 
(5) DD, psychosis

NR/Dy

Franzini  
et al. (10)

2 (1) 33/M, (2) 30/M (1) 5, (2) 3 (1) HAL, PIM, RIS, (2) HAL (1) SCZ, (2) panic 
disorder

(1) OBL, Cx, Tr, L/Dy, (2) Cx, 
Tr, L/Dy

Halbig  
et al. (81)a

2 (1) 66/NR, (2) 56/NR (1) 4, (2) 11 NR NR NR

Cohen  
et al. (84)

2 (1) 44/M, (2) 50/M (1) 4, (2) 4 (1) HAL, (2) FPZ (1) SCZ, (2) PTSD (1) Cx, Tr, L/Dy, (2) Eye, OBL, 
Cx, Tr/Dy

Starr  
et al. (83)a

4 (1) 36/NR, (2) 47/NR, 
(3) 59/NR, (4) 36/NR

(1) 7, (2) 4, (3) 20, (4) 10 NR NR (1) L/Dy, (2) Face, Cx, L/Dy, 
(3) Face, L/Dy, (4) generalized/
Dy

Damier  
et al. (18); 
Thobois  
et al. (9)

10 (1) 40/F, (2) 33/F, (3) 69/F, 
(4) 45/M, (5) 51/M, (6) 
43/F, (7) 56/F, (8) 27/F, 
(9) 26/M, (10) 61/F

(1) 2, (2) 4, (3) 4, (4) 2, 
(5) 6, (6) 9, (7) 3 (8) 3, 
(9) 4, (10) 3

Neuroleptics (1)–(4) (7) (10) DD, 
(5) (6) (8) SCZ, 
(9) childhood 
disintegrative 
disorder

(1) Tr/Dy, (2) Face, L/Dy, CH, 
(3) Face, Tr/Dy, CH, (4) Tr, L/Dy, 
CH, (5) Face, Tr, L/Dy, CH, (6) 
L, Tr/Dy, CH, (7) L/Dy, (8) L, Tr/
Dy, (9) L, Tr/Dy, CH, (10) Face, 
L/Dy, CH

Egidi  
et al. (85)a

5 NR NR NR NR NR

Kosel  
et al. (71)

1 62/F 10 Neuroleptics DD OBL, L/CH

Magariños-
ascone  
et al. (63)a

1 59/F 4 NR NR Tr/Dy

Pretto  
et al. (72)a

1 72/F NR Neuroleptics NR Face, Cx, OBL, Tr, L/Dy

Sako  
et al. (20)

6 (1) 48/F, (2) 48/F, 
(3) 30/M, (4) 47/F, 
(5) 39/M, (6) 55/M

(1) 2, (2) 6, (3) 2, (4) 3, 
(5) 2, (6) NR

(1) SUL, (2) TPR, (3) RIS, (4) PPZ, 
(5) PPZ, (6) HAL

(1) (5) DD, (2) BD, 
(3) SCZ, (4) panic 
disorder, (6) neurosis

(1) Eye, OBL, Cx/Dy, (2) Cx, Tr, 
L/Dy, (3) L, Tr/Dy, (4) Cx, Tr/Dy, 
(5) Cx, L/Dy (6) NR

Gruber  
et al. (86)

9 (1) 66/F, (2) 70/F, (3) 56/F, 
(4) 71/M, (5) 38/M, 
(6) 76/F, (7) 70/F, 
(8) 75/F, (9) 47/F

(1) 5, (2) 6, (3) 11, 
(4) 3, (5) 10, (6) 6, 
(7) 2, (8) 2, (9) 3

(1) FLU, (2) FLU, (3) HAL,  
(4) PMZ, (5) FPZ, (6) FPX, 
(7) FLU, (8) MCP, (9) PZ

(1) (3) (4) (7) (9) DD, 
(2) AD, (5) SCZ, 
(6) psychosis, 
(8) gastritis

NR

Katasakiori 
et al. (73)a

1 40/NR NR NR NR NR

Kefalopoulou 
et al. (62)

1 42/M 3 LEV BD Eye, OBL, Cx, L/CH, Dy

Capelle  
et al. (87)

4 (1) 45/F, (2) 76/F, (3) 65/F, 
(4) 48/F

(1) 4, (2) 11, (3) 7, (4) 5 (1) FLUS, (2) HAL,  
(3) FLUS, PIM, (4) FLUS

(1) (4) DD, 
(2) nervousness, 
(3) DD, neurasthenia

(1) Eye, Cx, Tr, L/Dy, CH, 
(2) Eye, OBL CH, (3) Eye, OBL, 
Cx/Dy, CH, (4) OBL, L/CH

(Continued )
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Reference N Age/sex Disease duration, 
years

Neuroleptics indication Affected regions/type

Chang  
et al. (88)

5 (1) 36/M, (2) 47/F, (3) 
59/M, (4) 36/F, (5) 28/F

(1) 7, (2) 10, (3) 20, 
(4) 10, (5) 6

(1) TDZ, (2) TDZ, HAL,  
(3) TDZ, (4) HAL, (5) RIS

(1) SCZ, (2) (3) DD, (4) 
(5) BD

Generalized/Dy, CH

Kim et al. (74) 1 31/M 6 Neuroleptics NR Focal/Dy

Kovacs  
et al. (75)

1 18/M 0.6 HAL, RIS SCZ Face, Tr, L/Dy, CH

Spindler  
et al. (76)

1 41/M 3.5 TTX DD OBL/Dy

Woo et al. (89) 3 (1) 28/F, (2) 46/F,  
(3) 49/F

NR (1) ASP, QUE (2) HAL, LG, 
(3) Fluanxol depot

(1)–(3) SCZ (1) Face, Cx, Tr, L/Dy, (2) Cx/
Dy, (3) Face, Cx, Tr, L/Dy

Boulogne et al. 
(77)

1 44/M 15 CPZ, FPX, HAL, CMZ,  
LXP, ALMZ, RIS, OLZ

BD Cx, Tr/Dy, CH

Trinh  
et al. (78)

1 27/F 7 RIS Developmental 
delay, behavioral 
disturbance

Eye, Face, Cx, Tr/Dy

Puri et al. (79) 1 51/F 8 HAL SCZ OBL, L/Dy

Shaikh  
et al. (90)

8 (1) 52/F, (2) 58/F, (3) 52/F, 
(4) 29/M, (5) 62/F, (6) 
47/F, (7) 48/F, (8) 38/F

(1) 9, (2) 4, (3) 5, (4) 9, 
(5) 1, (6) 4, (7) 7, (8) 4

(1) CPZ, TPZ, (2) ARP,  
(3) ARP, ZPD, (4) ARP, ZPD, 
RPD, OLZ, (5) PMZ, (6) MCP, 
(7) RIS, (8) HAL

NR (1) NR/Dy, (2) NR/Dy, (3) Eye, 
OBL, Cx, Tr, L/Dy, (4) OBL, Cx, 
Tr, L/Dy, (5) OBL, Cx, Tr, L/Dy, 
(6)–(8) NR/Dy

Pouclet-
Courtemanche 
et al. (19)

19 (1) 40/F, (2) 33/F, (3) 
69/F, (4) 45/F, (5) 51/F, 
(6) 43/F, (7) 56/F, (8) 
27/F, (9) 26/F, (10) 61/F, 
(11) 54/F, (12) 59/F, (13) 
69/F, (14) 55/F, (15) 64/F, 
(16) 55/F, (17) 56/F, (18) 
58/F, (19) 64/F

(1) 2.4, (2) 5.7, (3) 
11, (4) 2.7, (5) 3.1, 
(6) 3.7, (7) 3.3, (8) 
1.4, (9) 4.2, (10) 10.4, 
(11) 1.8, (12) 7.4, (13) 
10.3, (14) 4.4, (15) 
1.5, (16) 2.6, (17) 2.7, 
(18) 38.2, (19) 2.9

(1) ASP, CMZ, (2) HAL, CMZ, 
FPX, (3) TDZ, (4) PIM, OLZ, 
(5) HAL, TDZ, OLZ, (6) PIM, HAL, 
(7) CMZ, (8) ASP, (9) ASP, RIS, 
(10) LEV, VER, MCP, (11) CMZ, 
CPZ, (12) CMZ, (13) LEV, SUL, 
ALMZ, (14) RIS, OLZ, (15) CMZ, 
(16) MCP, (17) CMZ, ALMZ, 
(18) HAL, PMP, CMZ, OLZ, 
(19) ASP, HAL

(1)–(3), (7),  
(10)–(12), (14), (15), 
(17)–(19) DD, (4) 
Tourette syndrome, 
DD, (5), (6), (8), 
(13) psychosis, 
(9) childhood 
disintegrative 
disorder, (16) 
nausea

NR/Dy, CH

NR, not reported; Neuroleptics: ALMZ, alimemazine; ASP, amisulpiride; ARP, aripipirazole; BPD, benperidol; CPZ, chlorpromazine; CMZ, cyamemazine; DPD, droperidol; FLUS, 
fluspirilene; FPX, flupentixol; FPZ, fluphenazine; LEV, levomepromazine; LG, largactil; LXP, loxapine; HAL, haloperidol; MCP, metoclopramide; OLZ, olanzapine; PIM, pimozide; PMP, 
pipamperone; PMZ, promethazine; PPZ, perphenazine; PZ, perazine; QUE, quetiapine; RIS, risperidone; RPD, risperdal; SUL, sulpiride; TDZ, thioridazone; TPZ, trifluoperazine; TTX, 
thiothixene; TPR, tiapride; VER, veralipride; ZPD, ziprasidone. Indication: AD, anxiety disorder; BD, bipolar disorder; DD, depressive disorder; PTSD, post-traumatic stress disorder; 
SCZ, schizophrenia. Affected regions and type: Eye, eyelids (blepharospasm), OBL, orobuccolingual; Cx, cervical; Tr, truncal; L, limb; DT, dystonia; CH, choreiform movements.
aReports of patients with tardive syndrome within a larger cohort of dystonia patients.
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GPi Target Determination
So far, bilateral DBS targeting the posteroventral part of the GPi 
has been used in patients with TDS (see Table 3). More specifi-
cally, the posteroventrolateral part of the GPi was chosen as the 
optimal target in most previous reports (9, 10, 18, 74, 75, 77, 83, 
86, 87) but the posteroventromedial part of the GPi was also tar-
geted in two reports (67, 81) (Figures 1A–C). Ventral two-thirds 
of the posterior GPi is the primary motor cortex-related territory 
that shows a somatotopic organization (Figure  1C) (92). The 
supplementary motor area-related territory locates more dorsal 
and anterior to the motor cortex-related territory (92). Dorsal 
one-third of the posterior GPi is the prefrontal cortex-related 
territory, while the most medial part of the GPi corresponds to 
the limbic cortex-related territory (92). Imaging with stereotactic 
MRI or CT-MRI fusion method is usually employed to define 
the anatomical targets (76). The stereotactic coordinates for the 
GPi are 19–22 mm lateral to the anterior commissure–posterior 
commissure line, 2–4  mm anterior to the mid-commissural 

point, and 4–6 mm inferior to the intercommissural line (10, 62, 
63, 70, 73, 74, 80–82, 84, 86, 87, 89). Pouclet-Courtemanche et al. 
suggested that the locations of active electrodes as far as they were 
positioned within the posterolateral part of the ventral GPi might 
not be optimal in terms of clinical benefit (19). In a previous case 
report, a target that was 1–2 mm above, 1.5 mm rostral, and 2 mm 
medial to the usual target in dystonia was chosen to selectively 
stimulate the facial area (71). However, this single case was an 
exception because, as shown in Table 3, the GPi active contacts 
that are usually used are the same as in primary dystonia. During 
surgery, MERs are often used to detect neuronal discharges in the 
GPi. Intraoperative macrostimulation has also been used to assess 
the therapeutic effects of DBS and to determine thresholds for 
capsular stimulation and visual phosphene detection (76).

Stimulating Paradigms
Postoperatively, most ventral contacts of the DBS leads located 
within the GPi were usually used with the monopolar stimulating 
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TABLe 3 | Detailed information about GPi-DBS in patients with tardive syndrome.

Reference evidence 
level

Target Active contacts/
electrodes used

Mode Parameters % improvement Follow-up time (M)

Trottenberg 
et al. (67)

4 PV-GPi C + 1−/Med 3387 M 3.0 V, 150 Hz, 210 µs BFMDRS-M 73
AIMS 54

6

Nandi  
et al. (64); 
Yianni  
et al. (68)a

4 PV-GPi 0–4 + /Med 3387 B 4.0–7.0 V, 130–180 Hz, 
150–240 µs

BFMDRS-M 28
BFMDRS-D 39
AIMS 42

12

Schrader  
et al. (69)

4 GPi NR/Med 3387 M 6.5 V, 60 Hz, 60 µs AIMS 63 5

Krause  
et al. (80)

4 GPi Most ventral contact/
Med 3387

M NR, 130–180 Hz, 210 µs BFMDRS-M (1) NR, (2) −2, 
(3) −1

(1) lost, (2), (3) at 
most 36

Eltahawy  
et al. (70)

4 PV-GPi R C + 2− L 
C + 2−3−/Med 3387

M 2.6 V, 40 Hz, 210 µs BFMDRS-M 60 18

Trottenberg 
et al. (82)

4 PVM-GPi C + 1− or 2−/Med 
3387

M 2.7 V, 144 Hz, 111 µs 
(mean)

BFMDRS-M (1) 76, (2) 93, 
(3) 93, (4) 98, (5) 75
BFMDRS-D (1) 80, (2) 100, 
(3) 100, (4) 100, (5) 100

6

Franzini  
et al. (10)

4 PVL-GPi Most ventral contact/
Med 3389

M 1.0 V, 130 Hz, 90 µs BFMDRS-M (1) 86, (2) 88 12

Halbig  
et al. (81)a

4 PVM-GPi C + 1− or 2−/Med 
3387

M 3.1 V, 142 Hz, 106 µs 
(mean)

BFMDRS-M (1) 77, (2) 93 NR

Cohen  
et al. (84)

4 GPi C + 1−/Med 3387 M (1) 4.0 V, 130 Hz, 90 µs, 
(2) 3.4 V, 130 Hz, 120 µs

BFMDRS-M (1) 88, (2) 63
BFMDRS-D (1) 100, (2) 53

(1) 7, (2) 13

Starr  
et al. (83)a

4 PVL-GPi C + 1−/NR NR 2.5–3.6 V, 185 Hz, 
210 µs (mean)

BFMDRS-M (1) 100, (2) 80, 
(3) 6, (4) 53

(1) 26, (2) 27, (3) 17, 
(4) 9

Damier  
et al. (18); 
Thobois  
et al. (9)

3 PVL-GPi C + 0− or 1−. 
(Lateral to the 
AC–PC, anterior to 
the PC, below the 
ICL) = (20.1, 15.3, 
3.9) (mm, mean)/
Med 3387

M 2.5–5.0 V, 130 Hz, 
150 µs

ESRS (1) 44, (2) 73, (3) 44, 
(4) 75, (5) 57, (6) 74, (7) 62 
(8) 68, (9) 48, (10) 64
AIMS (1) 50, (2) 62, (3) 35, 
(4) 58, (5) 37, (6) 67, (7) 33 
(8) 78, (9) 69, (10) 67

6

Egidi  
et al. (85)a

4 GPi NR/Med 3387 and 
3389

M NR, 100–185 Hz, 
60–450 µs

BFMDRS-M 47
BFMDRS-D 55 (mean)

NR

Kosel  
et al. (71)

4 GPi R C + 4− L C + 1−/
Med 3387

M 3.5–3.8 V, 130 Hz, 90 µs BFMDRS-M 35 18

Magariños-
ascone  
et al. (63)a

4 GPi NR/Med 3389 NR NR, 60–130 Hz, 
90–210 µs

BFMDRS-M 48
BFMDRS-D 44

12

Pretto  
et al. (72)a

4 GPi NR/NR NR 4.1 V, 185 Hz, 90 µs BFMDRS-M 80–90 6

Sako  
et al. (20)

4 PV-GPi (1) 3 + 2−, (2), (3), 
(5) C + 1−, or 2−, 
(4) R C + 0−1−2−, L 
C + 1−2−/Med 3387

(1) B, (2)–(5) 
M

1.6–4.4 V, 60–130 Hz, 
450 µs

BFMDRS-M (1) 88, (2) 90, 
(3) 58, (4) 100, (5) 92, (6) 85
BFMDRS-D (1) 78, (2) 89, 
(3) 75, (4) 100, (5) 67, (6) 72

(1) 39, (2) 48, (3) 15, 
(4) 13, (5) 6, (6) 3

Gruber  
et al. (86)

4 PVL-GPi (1), (2), (4), (5), (7), (8) 
0 + 1− or 1 + 2−, 
(3), (6) C + 1−/Med 
3387 and 3389

(1), (2), (4), (5), 
(7), (8) B, (3), 
(6) M

1.4–3.8 V, 130–180 Hz, 
60–90 µs

BFMDRS-M (1) 80, (2) 84, (3) 
88, (4) 90, (5) 100, (6) 64, (7) 64, 
(8) 87, (9) 87
BFMDRS-D (1) 95, (2) 50, (3) 
77, (4) 67, (5) 100, (6) 25, (7) 33, 
(8) 63, (9) 100
AIMS (1) 79, (2) 70, (3) 100, (4) 81, 
(5) 100, (6) 73, (7) 33, (8) 85, (9) 86

(1) 80, (2) 59, (3) 55, 
(4) 32, (5) 47, (6) 32, 
(7) 28, (8) 26, (9) 28
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Reference evidence 
level

Target Active contacts/
electrodes used

Mode Parameters % improvement Follow-up time (M)

Katasakiori 
et al. (73)a

4 GPi NR/Med 3387 M NR BFMDRS-M 94
BFMDRS-D 84

12

Kefalopoulou 
et al. (62)

4 GPi C + 0− or 1−/Med 
3387

M 2.5–3.6 V, 185 Hz, 
250–450 µs

BFMDRS-M 91
AIMS 77

6

Capelle  
et al. (87)

4 PVL-GPi 1−2 + /Med 3387 B 4.5 V (mean), 130–
160 Hz, 90–210 µs

BFMDRS-M (1) 91, (2) 70, 
(3) 88, (4) 87
BFMDRS-D (1) 88, (2) 50, 
(3) 100, (4) 50

(1) 27, (2) 30, (3) 16, 
(4) 36

Chang  
et al. (88)

4 PV-GPi C + 1− or 2−. 
(Lateral to the 
AC–PC, anterior to 
the MCP below the 
ICL) = (20.75, 5.5, 
0.65) (mm, mean)/
Med 3387

M 2.5–3.6 V, 90–185 Hz, 
180–210 µs

BFMDRS-M 71
BFMDRS-D 48
AIMS 77 (mean)

(1) 76, (2) 58, (3) 34, 
(4) 29, (5) 27

Kim et al. (74) 4 PVL-GPi NR/Med 3389 M 2.98 V, 89 Hz, 165 µs 
(mean)

BFMDRS-M 97
BFMDRS-D 100

20

Kovacs  
et al. (75)

4 PVL-GPi NR/Med 3389 NR NR BFMDRS-M 97
BFMDRS-D 96

12

Spindler  
et al. (76)

4 GPi C + 1−/NR M 3.3 V, 185 Hz, 90 µs AIMS 67 <60

Woo  
et al. (89)

4 PV-GPi C + 1−/Med 3387 M 3.5–3.9 V, 130–180 Hz, 
90–210 µs

BFMDRS-M (1) 76, (2) 100, 
(3) 54

(1) 120, (2) 3, (3) 3

Boulogne 
et al. (77)

4 PVL-GPi C + 1−/NR M 3.5 V, 130 Hz, 90 µs AIMS 79 120

Trinh  
et al. (78)

4 GPi NR/NR NR NR BFMDRS-M 90
BFMDRS-D 87

18

Puri  
et al. (79)

4 GPi NR/NR NR 2.5–3.0 V, 130 Hz, 
190 µs

AIMS 55 6

Shaikh  
et al. (90)

4 GPi (Lateral to the  
AC–PC line, anterior 
to the MCP, below 
the ICL) = (20.6, 
2.9, −1.1) 
(mm, mean)/NR

M 3.0–4.0 V, 60–185 Hz, 
90–450 µs

BFMDRS-M (1) 87, (2) 67, 
(3) 100, (4) 100, (5) 78, (6) 88, 
(7) 67, (8) 94

(1) 48, (2) 60, (3) 6, 
(4) 36, (5) 36, (6) 60, 
(7) 30, (8) 12

Pouclet-
Courtemanche 
et al. (19)

2 and 3 PV-GPi Contacts in 
posteroventral  
GPi/Med 3387

M 3.17 V, 133 Hz, 120 µs 
(mean)

ESRS 60
AIMS 63

12 (5 patients) and 
72–132 (14 patients)

NR, not reported; AC, anterior commissure; PC, posterior commissure; MCP, mid-commissural point; ICL, inter-commissural line; Med, medtronic; BFMDRS-M, Burke-Fahn-Marsden 
Dystonia rating scale motor score, BFMDRS-D, Burke-Fahn-Marsden Dystonia rating scale disability score; AIMS, abnormal involuntary movements scale; ESRS, extrapyramidal 
symptoms rating scale. Target: PV, posteroventral; PVM, posteroventromedial; PVL, posteroventrolateral; GPi, globus pallidus internus. Mode: B, bipolar; M, monopolar.
aReports of patients with tardive syndrome within a larger cohort of dystonia patients.
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modes (9, 10, 16, 18–20, 62, 67, 69–71, 74, 76, 77, 80–82, 84–86, 
88–90), and rarely with the bipolar modes (20, 64, 68, 86, 87) 
(Table 3). Stimuli were applied with amplitudes ranging from 2.7 
to 4.5  V and a high frequency setting (>100  Hz) with a pulse 
width of 60–240  µs; alternatively, low frequency stimulation 
(<100  Hz) with a pulse width of 120–450  µs was also often 
applied (10, 18–20, 67, 68, 71, 74, 76, 77, 79, 84–90) (Table 3). 
The stimulation parameters used in TDS were similar to those 
applied in primary dystonia.

Effects on Motor Symptoms
Data from the STARDYS study group (18, 19) have verified the 
beneficial effects of bilateral GPi-DBS in patients with TDS. 
Following a prospective multicenter trial using double-blind 
evaluations at 6  months after surgery, reports showed that in 
all patients, the extrapyramidal symptoms rating scale (ESRS) 
scores decreased to less than 60% of the preoperative baseline, 
and that there was a 49% reduction of the total ESRS scores 
in the stimulation “on” conditions when compared to the 
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FiGURe 1 | Deep brain stimulation of the globus pallidus internus (GPi). Electrodes are placed in the ventroposterolateral part of the GPi (the 
posterodorsolateral part of the GPi is partially removed). (A) Dorsoposterior view of the GPi. (B) Ventroposterior view of the GPi. (C) Schematic drawing of GPi-DBS 
with active contact (red) placed within the posteroventrolateral GPi. Colors indicate the territories receiving limbic- (yellow), prefrontal- (blue), motor- (white), and 
supplementary motor (red) cortex-related inputs. OPT, optic tract.
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“off ” conditions. Pouclet-Coutemanche et al. showed that this 
therapeutic impact remained at 12 months after surgery, with a 
58% (p < 0.0001) decrease of the total ESRS scores and a 50% 
(p < 0.0001) decrease of the total AIMS scores (19). Given the 
results obtained from the study with long-term (6–11  years) 
follow-up with the patients (n = 14), they also reported a per-
sistent improvement of TDS patients’ conditions, with a 60 and 
63% decrease from preoperative baselines in the total ESRS and 
AIMS scores, respectively (19).

Multiple case reports document that TDS-associated motor 
symptoms could be alleviated immediately or within a few days 
after the GPi-DBS was initiated (10, 67, 75, 77, 81, 82, 84, 86, 
87). Among the TDS symptoms, choreiform dyskinesia tended 
to respond to DBS earlier than tonic postural dystonia, which 
gradually improved over weeks or months (18, 68, 70, 77, 84, 87, 
88). Therapeutic efficacy of GPi-DBS seemed to be higher in the 
choreiform and dystonic movements than in the fixed dystonias 
(10, 20, 86, 90). Shaikh et al. reported that meaningful improve-
ments in neck and truncal dystonias were most challenging to 
achieve, but could develop gradually over 48  months after the 
stimulation was initiated (90). Prospective studies with blind 
assessments also showed that GPi-DBS could alleviate TDS 
symptoms regardless of their subtypes (e.g., chorea and dystonia) 
or body distributions (18, 19).

The beneficial effects from GPi-DBS could produce an 
improvement in daily life activities in patients with disabilities 
due to TDS. Using the Burke-Fahn-Marsden Dystonia rating 
scale (BFMDRS), a systematic review showed that GPi-DBS pro-
duced a 74% improvement of disability scores (p < 0.0001) (93). 
Using the 36-item Short Form General Health Survey, Gruber 
et  al. also reported a 46% improvement in total subscores for 
physical health (86). However, a prospective study using Lehman 
quality of life (QOL) Interview showed no significant change in 

QOL before and 6 months after surgery in seven patients with 
TDS (19).

Effects on Non-Motor Symptoms
Two separate case series reports (71, 86) show that GPi-DBS pro-
duced a significant improvement of mood in patients with TDS, 
as determined by the Hamilton rating scale for depression, the 
Beck Depression Inventory Score, and the Montgomery-Åsberg 
Depression rating scale (MADRS). However, a prospective study 
on 16–19 patients found that the mean scores of both the MADRS 
and the positive and negative syndrome scale did not change 
significantly up to 1 year after surgery (19).

Gruber et al. reported no significant change in cognitive func-
tions of nine patients before and after surgery, as determined by the 
Mattis Dementia rating scale (MDRS), the Multiple Wording Test 
part B, the Rey Auditory Verbal Learning Test, and the digit span 
task (86). Pouclet-Courtemanche et al. published a prospective 
study on 16–19 patients to show the results of neuropsychological 
tests using Mini-Mental State Examination (MMSE), the Frontal 
Assessment Battery (FAB), and the MDRS (19). They found that 
there were no significant changes in the mean scores of both the 
MMSE and FAB up to 1 year after surgery, while the mean scores 
of the MDRS improved at 3 months and persisted for 1 year after 
surgery (p < 0.05). Thus, it is likely that in TDS patients, GPi-DBS 
might not exert a negative impact on QOL, mood, or cognition.

Adverse Events
The overall complication rate of GPi-DBS for TDS is 9%, which 
is almost equivalent to that of GPi-DBS for other movement 
disorders (76, 94). There are no reports of death related to DBS 
in patients with TDS (95). However, a potential risk of suicide 
after GPi-DBS surgery has been suggested in patients with TDS 
(76, 96). Complications relating to the implanted DBS devices in 
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patients with TDS, such as displacement and misplacement of the 
DBS leads, have also been noted (19, 87). Pouclet-Courtemanche 
et al. reported other complications that include dysfunction of the 
active contacts, painful traction by the cable connection, and sud-
den stopping of the stimulator (19). Surgery-related infection (80, 
88) and venous infarction (83, 88) have also been documented. 
Electrostimulation-dependent complications, such as paresthe-
sia, shuffling gait, decreased sensitivity for precise and skillful 
movements, muscular contractions, phosphenes, scotoma, and 
dysarthria, have also been reported (67, 69, 80, 82, 87), although 
they were transient and addressed by adjustment of settings. 
Concerning psychiatric issues, Trottenberg et  al. reported that 
one of five patients with schizophrenia manifested a psychotic 
relapse 6  months after surgery (82). Pouclet-Courtemanche 
et al. reported that within 1 year after surgery, 8 of 19 patients 
experienced adverse psychiatric events that included depression, 
anxiety, manic states, delirium, agitation, and aggressiveness, 
although mental health was successfully restored with medical 
treatments (19).

Could STN-DBS Be a New Target for TDS?
Two separate case series reports document that STN-DBS pro-
duced striking improvement of motor symptoms in patients with 
TDS, as determined by the BFMDRS (65, 66). The average score 
improved by 89% compared to the baseline. Sun et al. reported 
that STN-DBS produced immediate symptomatic improvement, 
using lower stimulation parameters with longer battery life (66). 
They proposed that STN-DBS might enable better symptomatic 
control over GPi-DBS. However, there is currently a lack of 
head-to-head comparison between GPi and STN stimulation 
for primary dystonia and TDS (97). Furthermore, the effects of 
STN-DBS on the non-motor symptoms of TDS patients are still 
unknown. Several recent meta-analyses comparing the effects 
of GPi-DBS with STN-DBS in patients with Parkinson’s disease 
concluded that the risk of worsening depression with GPi-
stimulated patients was the same or even smaller than that with 
STN-stimulated patients (98–101). A selective decline in cogni-
tive functions with STN-DBS has also been highlighted in almost 
all the meta-analyses (98–103). These observations could be in 
part attributed to the reduction in dopaminergic drugs for STN-
stimulated patients (99, 100, 104). Given the extent of dopamine 

withdrawal in STN-stimulated patients in Parkinson’s disease, 
the results of studies comparing GPi and STN stimulations in 
these patients cannot be directly applied to primary dystonia or 
TDS. Therefore, well-designed randomized controlled trials will 
be required to select better targets for patients with dystonia, 
including those with TDS.

SUMMARY

Globus pallidus internus-DBS results in promising and continu-
ous improvement in motor function over months and possibly 
years, which may persist over 6–11 years in patients with TDS. 
There is no available evidence to demonstrate that GPi-DBS nega-
tively impacts QOL, mood, or cognition in patients with TDS. 
The complication rate of GPi-DBS for TDS is almost equivalent 
to that of GPi-DBS for other movement disorders. To obtain a 
higher level of clinical evidence about the precise efficacy of GPi-
DBS in reducing TDS, more well-designed double-blind trials are 
needed. In particular, it is important to clarify specific inclusion 
criteria for patient selection. One of the particular questions to 
be addressed in the near future is a comparison of STN-DBS and 
GPi-DBS efficacy in patients with TDS.
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