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Background: The approach to apply multivariate pattern analyses based on neuro 
imaging data for outcome prediction holds out the prospect to improve therapeutic 
decisions in mental disorders. Patients suffering from panic disorder with agoraphobia 
(PD/AG) often exhibit an increased perception of bodily sensations. The purpose of this 
investigation was to assess whether multivariate classification applied to a functional 
magnetic resonance imaging (fMRI) interoception paradigm can predict individual 
responses to cognitive behavioral therapy (CBT) in PD/AG.

Methods: This analysis is based on pretreatment fMRI data during an interoceptive 
challenge from a multicenter trial of the German PANIC-NET. Patients with DSM-IV PD/
AG were dichotomized as responders (n = 30) or non-responders (n = 29) based on the 
primary outcome (Hamilton Anxiety Scale Reduction ≥50%) after 6 weeks of CBT (2 h/
week). fMRI parametric maps were used as features for response classification with linear 
support vector machines (SVM) with or without automated feature selection. Predictive 
accuracies were assessed using cross validation and permutation testing. The influence 
of methodological parameters and the predictive ability for specific interoception-related 
symptom reduction were further evaluated.

results: SVM did not reach sufficient overall predictive accuracies (38.0–54.2%) for 
anxiety reduction in the primary outcome. In the exploratory analyses, better accuracies 
(66.7%) were achieved for predicting interoception-specific symptom relief as an alterna-
tive outcome domain. Subtle information regarding this alternative response criterion but 
not the primary outcome was revealed by post hoc univariate comparisons.
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conclusion: In contrast to reports on other neurofunctional probes, SVM based on 
an interoception paradigm was not able to reliably predict individual response to CBT. 
Results speak against the clinical applicability of this technique.

Keywords: panic disorder, agoraphobia, cognitive behavioral therapy, interoception, functional magnetic 
resonance imaging, diagnostic classification, machine learning, support vector machines

inTrODUcTiOn

Applying multivariate pattern analysis (MVPA) techniques 
from the field of machine learning to functional magnetic 
resonance imaging (fMRI) data has been proposed as a strategy 
to develop diagnostic or predictive tools for mental disorders. 
MVPA integrates potentially discriminative information from 
multiple brain locations, states, or imaging modalities instead of 
analyzing them in insolation. MVPA techniques are applied to 
learn decision rules (classifiers) based on labeled training data. 
These rules are subsequently applied to diagnostically label previ-
ously unseen data (1–8). Particularly, support vector machines 
(SVM) have been used to extract meaningful information 
from noisy and high-dimensional fMRI data (5, 6). Predicting 
individual therapeutic outcomes in psychiatric patients (includ-
ing those with anxiety disorders) is an emergent focus of these 
methodological efforts (9–15). Responses to pharmacotherapy 
and to psychotherapy have been proposed to be mediated by 
neurobiological factors (12, 14, 16–21). Therefore, predictive 
neuroimaging biomark ers are of particular scientific interest as 
candidate tools to guide clinical treatment decision in individual 
psychiatric patients (9, 14, 22).

Cognitive behavioral therapy (CBT) alone or in combination 
with pharmacotherapy is the first-line treatment of choice in 
patients suffering from panic disorder with agoraphobia (PD/AG)  
(23–29). While there is a clinically significant proportion of 
non-responders (26, 28, 30), there is only incipient but rapidly 
increasing knowledge of moderators and predictors of CBT 
response (12, 31, 32). Neural correlates of CBT in PD/AG have 
been investigated in fMRI group comparison studies suggesting 
a role of altered neural activity in networks regulating negative 
emotions as well as fear conditioning and extinction (12, 18, 21, 
33–36). Recently, first reports of successful applications of MVPA 
to predict individual CBT outcomes in PD/AG based on fMRI 
emerged: Hahn et al. reported an overall diagnostic accuracy of 
up to 82% using Gaussian process classifiers (GPCs) in a meta-
learning scheme to train models based on task fMRI data from 
a fear condition paradigm in an overlapping sample (11). Ball 
et al. utilized random forest classification based on an emotion 
regulation task. They reached accuracies of 79% in a mixed 
sample of PD and generalized anxiety disorder and 85% in the 
PD subsample (37).

An intensified and abnormal internal focus of attention to 
bodily sensations (interoception) is a characteristic feature 
observed in PD/AG (38, 39). This comprises increased self-
report of bodily symptoms (particularly cardiac) as well as their 
dysfunctional cognitive appraisal including catastrophizing (39). 
Interoception is therefore assumed to be an important determi-
nant of maintenance of PD/AG (28, 38, 39). It is thus specifically 

addressed by CBT via interoceptive exposure (28). Interoception 
can be effectively studied by fMRI and is associated with activity 
in a widespread cerebral network overlapping with established 
fear circuitry models (39–42).

The purpose of this investigation was to assess whether fMRI 
based on an interoception task acquired at multiple sites com-
bined with SVM, a well-established MVPA technique, can predict 
CBT response of individual patients with PD/AG. Beyond that, 
we aimed at further exploring the influence of methodological 
decisions and the predictive ability for specific interoception-
related symptom reduction. We additionally performed univari-
ate group analyses comparing responders and non-responders to 
assess feature set information content and to evaluate the general 
suitability of the paradigm to detect neural processes related to 
therapy response.

MaTerials anD MeThODs

subjects
This investigation is based on fMRI data in a subset of patients 
of the multicenter, randomized-controlled trial “Mechanism of 
action in CBT” (MAC) (43) within the framework of the German 
research network PANIC-NET (44). Primary goal of the MAC 
trial is to identify mechanisms through which CBT achieves its 
beneficial effects as well as mediators and moderators of response. 
It involves the acquisition of a broad spectrum of clinical, behav-
ioral, physiological, experimental, and genetic data. Written 
informed consent was obtained from all participants in accord-
ance with the Declaration of Helsinki. The randomized clinical 
trial (isrctn.org identifier: ISRCTN80046034) was approved by 
the ethics committee of the Medical Faculty of the Technische 
Universität Dresden (agreement EK 164082006). The neuroimag-
ing components were approved by the ethics committee of the 
Medical Faculty of the RWTH Aachen University, Aachen (agree-
ment EK 073/07) and at all local sites (43).

The overall MAC sample involved adult outpatients (n = 369) 
who met criteria for a current primary diagnosis of PD/AG (43) 
according to DSM-IV-TR (45). Only moderate exclusion criteria 
were adopted to allow for typical comorbidity seen in routine 
care. They comprised comorbid psychotic or bipolar I disorders, 
current substance dependence or abuse, a current suicidal intent, 
borderline personality disorder, ongoing psychotherapeutic or 
psychopharmacological treatment as well as procedure-specific 
contraindications. Psychometric assessments in participants of  
the fMRI substudy included the Hamilton Scale for Anxiety 
(HAM-A) (46, 47), Beck Depression Inventory (BDI-II) (48), 
Anxiety Sensitivity Index (49), Clinical Global Impression (50), 
PD/AG Scale (51), trail-making task (52), and digit span task 
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from the German Wechsler Adult Intelligence Scale—Revision 
IV (53). Patients received manualized exposure-based CBT 
encompassing 12× 100 min treatment sessions (two subgroups 
either with or without therapist-guided exposure) or were allo-
cated to a wait-list control group (data not used in this analysis). 
Please see the MAC methods paper for full details on patient 
recruitment, treatment, and data collection (43). A subgroup of 
patients (n = 89) were invited to participate in the fMRI substudy 
(33). This analysis is based on a subsample (n = 59) representing 
all PD/AG patients who completed CBT (including the assess-
ment of clinical outcomes) as well as an interoception fMRI task 
(41) at baseline and fMRI data quality assessment (see Figure S1 
in Supplementary Material for a flowchart of patient selection). 
Analogous to Hahn et  al. (11) a reduction in HAM-A scores 
≥50% (primary outcome) from baseline to posttreatment assess-
ment was used as a standard criterion for treatment response 
(43). Data from responders (n = 30) and non-responders (n = 29) 
were analyzed here. Demographic and clinical details of respond-
ers and non-responders are presented in Table  1. Statistical 
assessment of clinical and demographical data was accomplished 
using IBM SPSS Statistics (version 22, IBM, Armonk, NY, USA, 
RRID:SCR_002865).

A secondary response criterion was available in a subgroup of 
54 out of 59 patients (see Multivariate Classification on explora-
tory analyses): this was based on the assessment of the intensity of 
bodily symptoms (SI) and experienced anxiety (EA) during two 
sessions of “interoceptive exposure” to bodily sensations during 
CBT (43, 54). Self-report data on SI and EA were documented on 
a scale from 0 to 10 before (fourth CBT session) and after (fifth 
CBT session) an interoceptive exercise (IE) involving repeated 
self-guided exposure at home. The interoceptive exposure 
involved a wide range of bodily stimuli. To calculate the sum-
mary “interoceptive” score used here, the summary measures 
of the three stimuli with largest effect sizes: breathing through a 
straw, rotating around the longitudinal body axis, and hyperven-
tilation were chosen (54). Absolute between-session differences 
of SI and EA scores were averaged over these three stimuli to 
obtain cumulated measures of SI or EA reduction in individual 
patients. Patients with a cumulated SI and EA reduction above 
or below the group mean were classified as responders and 
non-responders, respectively. This alternative response criterion 
resulted in a further subgrouping of IE responders (n = 26) and IE 
non-responders (n = 28). Interoception-based response was not 
associated with overall response based on 50% HAM-A reduction 
(χ2 = 0.297, p = 0.586). See Table S1 in Supplementary Material 
for clinical and demographical characteristics of IE responders 
and non-responders.

fMri Data acquisition and First-level 
analyses
Data acquisition was accomplished at four imaging centers using 
T2*-weighted gradient echo echo-planar imaging (225 volumes, 
36 slices, matrix 64 × 64, field of view 210 mm, reconstructed as 
3.6 mm × 3.6 mm × 3.6 mm voxels, echo time 35 ms, repetition 
time 3,000 ms, and flip angle 90°) at 3 T (Aachen and Münster: 
Achieva, Philips, Best, Netherlands; Berlin: GE Healthcare, Little 

Chalfont, UK; Dresden: Magnetom Trio, Siemens, Erlangen, 
Denmark).

During the fMRI scan, participants performed a mental track ing 
paradigm (41) adapted from the so-called “Schandry task” (55). 
The paradigm examines the effects of focusing one’s attention 
internally (interoception) vs. externally (exteroception) using a 
block design with four blocks. External stimuli were identical 
in both conditions: hard to hear clicking sounds (n  =  104 per 
block): during exteroception, participants were instructed to 
silently count the clicking sounds and to subsequently report 
the number of clicks. During interoception, participants were 
instructed to silently count their own heartbeats and to report the 
number of heartbeats counted in a particular interval. Subjects 
were randomized to either start with an interoception or extero-
ception block (see Table 1). In total, two blocks of interoception 
(I1, I2) and two blocks of exteroception (E1, E2) were presented. 
This paradigm had been validated previously in anxiety sensitive 
females (41).

Preprocessing and first-level analyses were conducted with 
SPM51 (RRID:SCR_007037). Images were realigned, normalized 
and resliced (voxel size 2 mm × 2 mm × 2 mm), and smoothed 
with a Gaussian kernel (full width at half maximum: 8  mm). 
Movement correction parameters were used as regressors in the 
first-level model. Data were filtered with a high-pass filter (cutoff 
period of 128  s). The two blocks of interoception and the two 
blocks of exteroception, respectively, were added to build one 
condition (I = I1 + I2; E = E1 + E2) (41).

Multivariate classification
Maps representing either the simple contrast “interoception” (I) 
(i.e., the respective beta-map) or the differential contrast “intero-
ception > exteroception” (I > E) in individual subjects were used 
as features for subsequent multivariate classification and post hoc 
univariate group comparisons.

General Approach and Hypothesis Tests
Modeling and validation were implemented using the Machine 
learning Application for NeuroImaging Analyses (MANIA, 
version 2.5) (56). Diagnostic performance was assessed using 
leave-one-out cross-validation (57). The statistical significance 
of inferentially tested methods was estimated using permutation 
testing (58) with 100 permutations.

Support vector machine models tested here were based on soft-
margin support vector classification (C-SVC) from LIBSVM (59). 
In SVM models, a hyperplane is defined in order to distinguish 
between responders and non-responders. Models are optimized 
using a kernel by maximizing the margin of separation between 
groups based on the datasets closest to the hyperplane. Model 
parameters can be chosen to adjust model complexity. In this 
particular case, the penalty-term C adjusts the models’ tolerance 
for misclassifications in the training dataset (57, 60–62).

Support vector machines can be combined with different 
methods for dimensionality reduction and feature selection (FS) 
with the aim to improve diagnostic accuracies (57, 63). In this 

1 http://www.fil.ion.ucl.ac.uk/spm.
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TaBle 1 | Basic characteristics of responders and non-responders to cognitive behavioral therapy in the main analysis (primary outcome, responder-threshold: 50% 
HAM-A reduction compared to pretreatment baseline).

responders non-responders Test statistic df p

Number 30 29

Sex Female 18 (60.0%) 19 (65.5%) χ2 = 0.192 1 0.661c

Male 12 (40.0%) 10 (34.5%)

Age (years) 36.8 ± 12.2 37.3 ± 10.1 t = −0.198 57 0.844a

Education Lower secondary 13 (43.3%) 18 (62.1%) χ2 = 2.990 2 0.212c

Higher secondary 11 (36.7%) 9 (31.0%)
University 6 (20.0%) 2 (6.9%)

Site (n) Aachen 0 (0.0%) 2 (6.9%) χ2 = 4.140 3 0.247c

Berlin 11 (36.7%) 7 (24.1%)
Dresden 10 (33.3%) 14 (48.3%)
Münster 9 (30.0%) 6 (20.7%)

CBT arm Therapist-guided 14 (46.7%) 19 (65.5%) χ2 = 2.126 1 0.192c

Non-guided 16 (53.3%) 10 (34.5%)

Randomized first fMRI condition (n) Interoception 17 (56.7%) 11 (37.9%) χ2 = 2.076 1 0.150c

Exteroception 13 (43.3%) 18 (62.1%)

HAM-A Before CBT 24.0 ± 5.5 25.1 ± 5.3 t = −0.784 57 0.436a

After CBT 7.9 ± 3.3 18.1 ± 5.2 t = −8.996 46.7 <0.001a,*

BDI-II Before CBT 15.9 ± 9.9 17.0 ± 7.9 t = −0.469 57 0.641a

After CBT 6.5 ± 5.3 12.9 ± 8.8 t = −3.361 45.4 0.002a,*

ASI Before CBT 30.9 ± 9.7 31.0 ± 12.1 t = −0.025 57 0.980a

After CBT 12.9 ± 6.8 18.8 ± 10.4 t = −2.580 57 0.012a,*

CGI Panic symptoms 5 (4–7) 5 (4–7) 0.570b

Anxiety 3 (1–6) 4 (3–5) 0.009b,*

PAS 21.0 ± 8.2 29.6 ± 6.2 t = −4.553 57 <0.001a,*

TMT (s) A 26.3 ± 9.5 27.1 ± 8.3 t = −0.337 57 0.737a

B 59.6 ± 20.1 58.5 ± 17.7 t = 0.210 57 0.834a

Digit span task Total 15.1 ± 2.8 14.2 ± 3.1 t = 1.152 57 0.254a

Comorbid depression (n)d Before CBT 10 (33.3%) 9 (31.0%) χ2 = 0.036 1 0.850c

After CBT 1 (3.7%) 6 (20.7%) χ2 = 4.248 1 0.039c,*

All test results without further specification were obtained at the first visit at base line assessment of CBT and represent “number (percentage),” “mean ± SD” or “median (range).”
*denotes statistical significance (p < 0.05).
at-test.
bMann–Whitney U-test.
cχ2-test.
dbased on BDI-II scores.
CBT, cognitive behavioral therapy; HAM-A, Hamilton Scale for Anxiety; BDI-II, Beck Depression Inventory II; ASI, Anxiety Sensitivity Index; CGI, Clinical Global Impression; PAS, PD/
AG Scale; TMT, trail-making task.
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study, whole-brain datasets were masked to reduce dimensional-
ity and preselect features (64). Additionally, models were tested 
either without any automated FS, with a simple filter (based on 
results of a two-sample t-test) or with recursive feature elimina-
tion using linear SVMs (SVM-RFE). SVM-RFE is an iterative 
procedure in which unimportant features are removed based on 
their SVM weights. Compared to the simple filters, SVM-RFE 
takes dependencies among features into account (65). Here, we 
used the greedy approach to SVM-RFE (56, 66). The effects of FS 
on an exemplary feature set are illustrated in Figure 1.

We performed hypothesis-based tests on six different models 
with standard methodological choices to test whether these 
models were able to identify individual responders and non-
responders (50% HAM-A reduction) based on pretreatment 
fMRI: Contrast-maps (I, I > E) were downsampled to a voxel size 

of 4 mm × 4 mm × 4 mm using SPM representing the rounded 
original voxel size in order to limit feature set dimensional-
ity by avoiding redundancies only introduced during image 
registration. The Automated Anatomical Labeling (AAL) atlas 
(67) resampled to an identical resolution was used as a mask 
to restrict analyses predominantly to voxels representing gray 
matter. For each of the two contrasts (I, I  >  E), we assessed 
modeling without further automated FS, with a t-test filter and 
with SVM-RFE. For models with FS, the number of features to 
be selected was n = 4,557 (20% of voxels within the AAL mask). 
We did not further restrict the number of features here to avoid 
models based on only one or few coherent brain region compris-
ing multiple voxels. For all six linear C-SVC models, we chose 
an intermediate value of the penalty term (C = 1), the default 
setting in LIBSVM.

http://www.frontiersin.org/Psychiatry/
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FigUre 1 | Exemplary weight maps illustrating typical feature sets in the main analysis: (a) without feature selection (FS), (B) with FS by a t-test-based filter,  
(c) with FS by SVM-RFE. Illustrations were created using Mango (http://ric.uthscsa.edu/mango/).
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Further Exploratory Analyses
Further potentially influencing factors were tested separately in 
exploratory analyses to identify factors that may improve diag-
nostic performance: (i) to assess whether interoception-related 
symptom relief would be a better predictable therapy response 
by SVM based on this fMRI interoception paradigm, we used 
the results of the alternative response criterion taking into 
account the response to an interoceptive challenge (IE respond-
ers vs. IE non-responders) (54). This contrasts with the standard 
HAM-A-based response criterion which focusses on clinically 
relevant general anxiety reduction. (ii) Different methodological 
decisions (feature set preparation, classification algorithm, mod-
eling parameters, and software): the cost parameter was varied 
systematically C = {0.01, 1, 100} for all analogous analyses with 
the main hypothesis tests and for all tests described hereafter. 
Another automated FS method was evaluated: selection by SVM 
weights. The influence of further gray matter masks was assessed: 
the cortical or subcortical Harvard-Oxford atlas (68–71) and a 
combined mask including the bilateral amygdala and parahip-
pocampal gyrus as defined by Talairach labels (72, 73) in the 

WFU PickAtlas toolbox.2 The voxel size was kept either at its level 
after preprocessing (2 mm × 2 mm × 2 mm) or further increased 
to 6  mm  ×  6  mm  ×  6  mm in order to modify the feature set 
dimensionality. When different voxel resolutions were combined 
with FS, the number of features to be selected was adjusted to 
constantly reflect 20% of voxel within in the respective resam-
pled mask. The Pattern Recognition for Neuroimaging Toolbox 
(PRoNTo, version 1.1, RRID:SCR_006908) (64) was used instead 
of MANIA. Both toolboxes rely on C-SVC from LIBSVM. 
However, there are some conceptual differences: while MANIA 
adopts the original linear C-SVC implementation from LIBSVM, 
PRoNTo uses precomputed linear kernels that are subsequently 
passed to LIBSVM. Both toolboxes are relatively new scientific 
software. We thus also wanted to exclude that simple data 
handling issues significantly influence MVPA results. Finally, 
we tested GPCs based on the Gaussian Processes for Machine 
Learning (74) implementation in MANIA (mean function: mean 

2 http://fmri.wfubmc.edu/software/pickatlas.
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TaBle 3 | Results of an exploratory analysis with an interoception-specific response criterion (prediction of a reduction of bodily symptoms and anxiety during an 
interoceptive task, IE-responders vs. IE-non-responders).

glM contrast Feature selection (Fs) accuracy (p) sensitivity (%) specificity (%)

I – 50.0% (0.48) 50.0 50.0
I t-Test filter 63.0% (0.14) 69.2 57.1
I SVM-RFE 48.2% (0.55) 50.0 46.4

I > E – 57.4% (0.21) 57.7 57.1
I > E t-Test filter 66.7% (0.02) 65.4 67.9
I > E SVM-RFE 57.4% (0.15) 57.7 57.1

p-Values are reported only in order to exemplify the relationship between the observed accuracies and the distribution of chance level accuracies, but do not reflect planned 
hypothesis tests.
Models based on C-SVC (C = 1). FS to select 20% of voxels. Statistical significance assessed by permutation testing.
INT, interoception; EXT, exteroception; SVM-RFE, recursive feature elimination using support vector machines.

TaBle 2 | Results of main classification approaches to predict general anxiety reduction after CBT (hypothesis tests).

glM contrast Feature selection (Fs) accuracy (p) sensitivity (%) specificity (%)

I – 39.0% (0.89) 36.7 41.4
I t-Test filter 39.0% (0.91) 40.0 37.9
I SVM-RFE 39.0% (0.91) 36.7 41.4

I > E – 39.0% (0.89) 30.0 48.3
I > E t-Test filter 54.2% (0.33) 50.0 58.6
I > E SVM-RFE 42.4% (0.79) 40.0 44.8

Models based on C-SVC (C = 1). FS to select 20% of voxels. Statistical significance assessed by permutation testing.
INT, interoception; EXT, exteroception; SVM-RFE, recursive feature elimination using support vector machines.
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zero, covariance function: linear, likelihood function Likert). All 
analysis steps and parameters not explicitly mentioned here were 
identical with the inferentially tested models.

Post Hoc Univariate group comparisons
In order to assess the information content of the fMRI data to 
interpret multivariate classification performance, we addition-
ally conducted a conventional univariate whole-brain analysis 
of response effects after therapy in patients. These were carried 
out with SPM. The “full factorial” design option was used with 
the factor “response to therapy” (yes, no) as independent factor. 
Separate analyses of variance were performed for both, the simple 
contrast I and the differential contrast I > E for both response cri-
teria (HAM-A reduction and interoception criterion). The main 
effect of response was assessed. Results were cluster-size corrected 
for multiple comparisons on the cluster level at p < 0.05. This was 
equivalent to p < 0.001 with a minimum cluster extent of k = 42 
contiguous resampled voxels with our given scanning parameters 
as estimated based on a Monte Carlo simulation implemented in 
Matlab (75).

resUlTs

Performance of inferentially Tested 
standard approaches
Tested models did not yield significant diagnostic accuracies to 
identify individual responders and non-responders (50% HAM-A 
reduction) based on pretreatment fMRI with an interoception 
task. Overall accuracies ranged from 39.0 to 54.2% with sensitivi-
ties from 30.0 to 50.0% and specificities from 37.9 to 58.6%. See 
Table 2 for detailed results.

exploratory analyses
Further exploratory analyses aiming at methodological factors 
(feature set preparation, classification algorithm, modeling 
parameters, and software) did also not yield above-chance diag-
nostic performance. Overall accuracies ranged from 33.9 to 
54.2% with sensitivities from 30.0 to 60.0% and specificities from 
27.6 to 58.6%. An overview of models tested and detailed results 
are presented in Tables S2 and S3 in Supplementary Material.

Analyses with an alternative response criterion specifically 
aiming at a reduction of symptoms directly related to interocep-
tion (IE responders vs. IE non-responders) exhibited higher diag-
nostic accuracies compared with the standard response criterion. 
Overall accuracies ranged from 50.0 to 66.7% with sensitivities 
from 50.0 to 69.2% and specificities from 46.4 to 67.9%. See 
Table 3 for detailed results.

Post Hoc Univariate group comparisons
Conventional univariate group comparisons revealed a main 
effect of therapy response only for the interoception-specific  
response criterion with the contrast I  >  E (Figure S2 in Sup-
plementary Material). No significant effects were observed for 
the interoception-specific outcome with the simple contrast I or 
for the HAM-A based primary outcome (contrasts I and I > E).

DiscUssiOn

Diagnostic modeling based on a pretreatment interoception task 
with standard fMRI and voxel-wise SVM including FS did not 
achieve significant accuracies to predict individual CBT response 
in a randomized, controlled multicenter study. Using these meth-
odological choices, we could not reach diagnostic performances 
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of alternative models with different fMRI tasks. Such models 
have been reported by Hahn et al. in a fear conditioning fMRI 
paradigm (Gaussian process classifier in a meta-learning scheme) 
in an overlapping patient cohort within the MAC trial (11) and by 
Ball et al. in an emotion regulation task (37).

To interpret this negative finding regarding diagnostic accu-
racy for the primary endpoint (HAM-A reduction), it would be 
desirable to assess the following two questions separately: (1) 
Does the task fMRI data set convey sufficient information about 
the diagnostic question of interest? (2) Are the feature extraction 
and classification methods suitable to derive sufficiently powerful 
diagnostic models based on that information? In SVM as well as 
in MVPA in general, these two aspects are highly interconnected 
(patterns in MVPA are truly multivariate representations and 
conceptually different from univariate results in standard fMRI 
group analyses) (64, 76). Therefore, the following observation 
needs to be interpreted with caution: In post hoc univariate whole-
brain analyses, we observed a significant main effect of response 
only for the alternative interoception-based response criterion 
with the differential contrast (I > E) (Figure S2 in Supplementary 
Material). This was the feature definition with which the best 
performance for diagnostic classification was achieved as well 
(see Exploratory Analyses). Therefore, in this study, the accuracy 
of SVM models followed the effects seen in univariate analyses. 
This may indicate that the interoception task did generally not 
yield sufficient information about the HAM-A based general 
response (primary outcome). However, one has to keep in mind 
that multivariate classification models can, in principle, utilize 
subthreshold information from multiple voxels, but even highly 
significant univariate group-level results do not guarantee high 
classification accuracies (2).

Thus, these negative findings may indicate that fear condi-
tioning and extinction (11) as well as emotion regulation (37) 
may better reflect neural mechanisms involved in CBT and may 
therefore be more suitable to serve as a predictive tool than an 
interoceptive task, especially if measures of general anxiety are 
used as a reference standard for response. The fear conditioning 
paradigm has also been used to differentiate between PD/AG 
with and without depressive comorbidity (77).

It is not possible to identify unequivocally the reasons why 
our diagnostic approach has failed, nonetheless, we believe that 
it is important to report this negative finding since the methodo-
logically diverse field of diagnostic MVPA in mental disorders 
is particularly susceptible to publication bias (7, 78, 79). Most 
importantly, interoceptive accuracy is still considered one of the 
major factors contributing to the development and maintenance 
of panic disorder (80).

Compared to other mental disorders (2, 7), few diagnostic 
MVPA studies have been reported to predict therapy outcomes  
in PD/AG so far (11, 37). Consequently, only a minority of available 
methods has been probed in this scenario. No consensus has yet 
been reached in the field as to which modeling techniques should 
be preferred (2, 6, 7). This is the first application of whole-brain 
voxel-based classification in this setting. Voxel-based approaches 
have been widely used in successful diagnostic modeling in other 
mental disorders (2, 7) and are commonly used for MVPA of fMRI 
data beyond diagnostic classification, particularly in combination 

with SVM (64). SVM are particularly suitable for classification 
in datasets with a high dimensionality (i.e., number of features) 
compared to the number of observations (i.e., patients) (81–83). 
We have applied a combination of techniques for dimensionality 
reduction (63) with the aim to improve diagnostic performance: 
(1) imaging data were downsampled to a lower resolution reducing 
the number of feature by a factor of 1/8 compared to the original 
preprocessed data, without expected relevant information loss 
given the original acquisition resolution and data smoothness. 
(2) Images were masked to exclude voxels outside gray matter. 
(3) We applied automated FS to only include the 20% most 
relevant voxels. Literature-based definition of regions of interest 
(81) was, however, not feasible since no sufficiently reliable prior 
knowledge for this purpose was available in the literature. We 
thus selected features based on the dataset itself. Please note that 
FS was strictly included in the CV to avoid circular reasoning 
(84). Failure to do that, for example, selection of regions of inter-
est after interpreting univariate group analyses in the same full 
dataset, is unfortunately a commonly observed mistake leading to 
overly optimistic estimates of diagnostic accuracies (7). Post hoc 
univariate group effects support the voxel-based approach with 
automatic FS: effects were only observed in few regions (see Post 
Hoc Univariate Group Comparisons; Figure S2 in Supplementary 
Material), so that the inclusion of finer-scale within-region pat-
terns, which is possible in voxel-based modeling, seems prefer-
able compared to large-scale inter-regional MVPA.

In addition to inferentially testing these established whole-
brain SVM approaches, we explored the influence of meth-
odological choices regarding feature set preparation, modeling 
parameters, and software. Furthermore, we assessed GPCs as an 
alternative to SVMs. However, we only observed minor differences 
in overall diagnostic accuracies and even none of these models 
reached clinically meaningful diagnostic performance. We thus 
conclude that the insufficient diagnostic accuracies observed in 
the hypothesis tests is not caused by insufficient methodological 
decisions within this range, highlighting the importance of fMRI 
task choice.

We also explored the diagnostic ability of our multivariate 
classification approach to predict reduction of symptoms directly 
related to interoceptive exposure. Better diagnostic accuracies 
were achieved with this alternative response criterion, particularly 
with the differential contrast (I > E) combined with simple auto-
mated FS (Table 3). Contrasts are used to test specific effects in 
general linear models of fMRI data (85). The differential contrast 
is aimed to be more specific for interoception than the simple 
contrast I as it excludes baseline effects and effects common to 
both task conditions. Though not directly amenable to statistical 
testing, results indicate that defining such specific differential 
contrasts facilitates improved feature extraction compared to 
simple contrasts (i.e., beta-maps). However, this in an explora-
tory result without independent validation and still no clinically 
useful diagnostic accuracies were achieved.

Some limitations apply to this work: subjects were stratified 
as responders or non-responders. Theoretically, response to 
therapy can be treated as a regression problem (86) instead of 
classification, particularly as some non-responders also experi-
enced clinically relevant anxiety reduction. Regression requires 
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