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Growth factors (GFs) are cytokines that regulate the neural development. Recent evi-
dence indicates that alterations in the expression level of GFs during embryogenesis are 
linked to the pathophysiology and clinical manifestations of attention-deficit/hyperactivity 
disorder (ADHD) and autism spectrum disorders (ASD). In this concise review, we sum-
marize the current evidence that supports the role of brain-derived neurotrophic factor, 
insulin-like growth factor 2, hepatocyte growth factor (HGF), glial-derived neurotrophic 
factor, nerve growth factor, neurotrophins 3 and 4, and epidermal growth factor in the 
pathogenesis of ADHD and ASD. We also highlight the potential use of these GFs as 
clinical markers for diagnosis and prognosis of these neurodevelopmental disorders.

Keywords: biomarker, developmental disorders, autism spectrum disorder, attention-deficit/hyperactivity 
disorder, growth factors, cytokines, cerebral cortex, cognitive impairment

iNtrODUctiON

During neural development, a myriad of biological events occurs simultaneously, i.e., neurogenesis, 
gliogenesis, cellular migration, cell differentiation, synapse formation, etc. These neurobiological 
processes are orchestrated by several growth factors (GFs) and help shape the postnatal brain (1).  
In the postnatal brain, GFs have been extensively studied and most of them share similar cell functions 
to those reported in the neurodevelopment (2–4). Increasing evidence indicates that GFs modulate 
motor, emotional, and cognitive functions, which may explain several clinical manifestations of 
psychiatric disorders (5).

Neurodevelopmental disorders comprise a group of neurological conditions that are considered 
a public health problem with strong socioeconomic impact (6). These disorders have a very complex 
etiology and are characterized by early-onset during childhood. The initial pathological change 
appears to involve abnormal growth-factor expression during embryogenesis, which persist in the 
adulthood and may contribute to some clinical manifestations (6).

Some of the most common neurodevelopment disorders are autism spectrum disorder (ASD) 
and attention-deficit/hyperactivity disorder (ADHD). These disorders generate a poor global per-
formance throughout life. ADHD and ASD have a complex etiology and their pathophysiology 
remains unclear. ADHD and ASD are often comorbid disorders (7) that share some morphological, 
molecular, and functional characteristics, such as: abnormal growth of neural tissue (8), cognitive 
impairment (9), male preponderance, epigenetic components (8, 10), and abnormal expression 
levels of GFs in serum and brain. Remarkably, the expression level of some growth-factor correlates 
with the clinical manifestations of ADHD and ASD (11). This evidence suggests the role of GFs in 
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tAble 1 | Relationship between growth-factor levels and clinical symptoms in neurodevelopmental disorders.

Neurodevelopment 
disorder

Growth factor Population/animal model biological sample 
analyzed

related symptoms Genetic 
polymorphism

Attention-deficit/
hyperactivity disorder

Brain-derived neurotrophic 
factor (BDNF) ↓ (12–14)

Children and adolescents (14) Blood sample Hyperactivity (15) BDNF 
(rs10835210 and 
rs11030101) 
(16, 17)

Adult (12) Blood sample Impairment of spatial learning 
(13)

BDNF (rs6265/
Val) (18)Adult male spontaneous 

hypertensive rats (SHR) (13)
Hippocampus (13)

BDNF2lox/2lox/93 mice (19) Hippocampus, 
hypothalamus, and 
cortex (19)

Dopamine transporter knockout 
mice (DAT−/−) (20)

Frontal cortex (20)

Glial-derived neurotrophic 
factor ↑ (11, 21)

Children (21) Blood sample Inattention, hyperactivity and 
impulsivity behaviors (11)

Undefined

Nerve growth factor (NGF) ↑ 
(22, 23)

Children and adolescents (23) Blood sample Attentional, learning and 
memory impairments (24, 25)

NGF (rs6330) (24)

Adult male SHR (22) Blood sample

Neurotrophin-3 ↑ (21) Children (21) Blood sample Undefined Undefined

Vascular endothelial growth 
factor ↓ (26, 27)

Juvenile male stroke-prone 
spontaneously hypertensive rats 
(SHRSP) (26, 27)

Frontal cortex (27) Undefined Undefined

Insulin-like growth factor 2 
↑ (28)

Children (28) Blood sample Undefined Undefined

FGFR1 ↓ (29) Fgfr1f/f;hGfapCre mice Dorsal telencephalon 
(29)

Spontaneous motor 
hyperactivity (29)

Undefined

Autism spectrum 
disorder

TGF-β1 ↓ (30) Children (30) Blood sample Low adaptive behaviors, 
stereotypy, irritability and low 
social interaction (30)

Undefined

Epidermal growth factor ↓ 
(31, 32)

Adult (31) Blood sample Hyperactivity, deficit in gross 
motor skills, tendency for tip 
toeing (32)

Undefined
Children (32) Blood sample

BDNF ↑ (33, 34) Valproic acid (VPA)-treated rat 
offspring (33)

Hippocampus (33) Undefined Undefined

Children (34) Blood sample

Neurotrophin-4 ↓ (35) Children (35) Blood sample Undefined Undefined

Hepatocyte growth factor 
↓ (36)

Children (36) Blood sample Undefined Undefined

Arrows represent the level variation: increased expression (upward position) and reduced expression (downward position).
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the pathophysiology of these disorders. Herein, we summarize 
the current evidence obtained in humans and animal models 
that associate GFs levels with ADHD and ASD (Table 1). This 
correlation unveils the attractive possibility to use GFs as sero-
logical biomarkers to establish diagnosis and prognosis for these 
disorders.

AtteNtiON-DeFicit/HYPerActivitY 
DisOrDer

The ADHD has the highest incidence rate among all neurode-
velopmental disorders (37). ADHD is characterized by inappro-
priate levels of inattention, hyperactivity, and impulsivity (15). 
These patients have evident social and academic problems that 
affect their global performance (38, 39). During the childhood, 

the main manifestation of ADHD is hyperactivity, which is com-
monly identified at the preschool, whereas inattention becomes 
more evident at elementary school (7). Children with ADHD 
also present negative emotionality, high emotional lability, and 
poor emotion management (39). During adolescence, patients 
with ADHD have high risk to suffer motor vehicle accidents, 
spontaneous sexual encounters, sexual diseases, unwanted preg-
nancies, drug abuse, poor social relationship, legal problems, etc. 
(37). Some of these ADHD symptoms persist until adulthood 
(37). In adults, ADHD induces a predisposition toward deficient 
relationships, substandard job performance, low socioeconomic 
status, and poor quality of life (37). ADHD is highly comorbid 
with other psychiatric or neurodevelopment disorders, such as 
oppositional defiant disorder, major depressive disorder, and 
anxiety disorders (37, 40).
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Catecholamine dysfunction is the main hypothesis to explain 
ADHD pathophysiology; specifically, the dysfunction in dopa-
mine receptors D4, D5, and in dopamine transporter proteins  
(15, 41) in prefrontal cortex, nucleus accumbens, striatum, sub-
stantial nigra, ventral tegmentum, and frontal cortex (6). The 
homeostasis of dopamine system requires the brain-derived 
neurotrophic factor (BDNF), a widely expressed neurotrophin 
in brain cortex and hippocampus (42). BDNF is critical in the 
synthesis, release, and uptake of dopamine in nigro-striatal 
dopaminergic neurons (43, 44) and plays a fundamental role 
in neuronal survival, plasticity, and proliferation (12). During 
development, BDNF and its receptors TrkB not only promote 
survival and differentiation of neurons but also are involved in 
neural plasticity in adulthood (13). Alteration in BDNF/TrkB 
activity is implicated in midbrain dopaminergic dysfunction 
reported in ADHD, which may explain the development of the 
main symptoms (45). Low serum levels of BDNF in ADHD can 
persist until adulthood (12). This indicates that BDNF signaling 
alteration occurs across life spam in patients with ADHD.

Polymorphisms rs11030101 and rs10835210 have been asso-
ciated with a high risk to develop ADHD (16, 17). Some BDNF 
polymorphism are related to gender. The BDNF polymorphism 
rs6265/Val is more frequent in women with ADHD (18). This 
polymorphism has also been associated with susceptibility to 
neuroticism and anxiety (46), which may explain some psychiatry 
comorbid disorders. Conditional BDNF mice (BDNF2lox/2lox/93), 
characterized by low BDNF expression in the hippocampus, 
hypothalamus, and cortex, develop hyperactivity and aggres-
sion after stress (19), which supports the role of BDNF in the 
processing of motor control or in the worsening of hyperactivity 
symptoms of ADHD.

The role of BDNF in ADHD pathophysiology is not fully 
understood, but the evidence in animal research provides clues to 
understand the biochemical mechanism that underlie this condi-
tion. These patients show several alterations in cognitive process 
and memory performance (47) that may be due to hypoactivation 
of prefrontal cortex (48). In the spontaneous hypertensive rats, an 
animal model for ADHD, have been found low levels of BDNF and 
TrkB in the hippocampus that were related to memory impair-
ment (13). These findings suggest that cognitive manifestations of 
ADHD might be associated with alterations in BDNF signaling. 
In dopamine transporter knockout mice (DAT−/−), another ani-
mal model for ADHD, low expression level of BDNF mRNA and 
TrkB receptors were found in frontal cortex (20). BDNF regulates 
two crucial circuits, the fronto-striatal-cerebellar and the ventral 
striatal-limbic circuits in normal brain (45). Neural circuits in 
prefrontal cortex and cerebellum, which modulate the attentional 
process, thoughts, emotions, social behavior, and motor control, 
are implicated in ADHD symptomatology (37).

Patients with ADHD show ~5% reduction in brain volume  
(15) in several regions, such as corpus callosum, orbitofrontal 
cortex, hippocampus, amygdala, basal ganglia, temporal lobe, 
prefrontal cortex, caudate, and cerebellum (49). Low levels 
in BDNF expression may explain this volume reduction, as 
demonstrated in late-onset forebrain-specific BDNF knockout 
(CaMK-BDNFKO) mice (50). On the other hand, patients with 
the pure form of ADHD lack microstructural changes in white 

matter tracts (40). In this study, the authors associated these 
microstructural changes with the clinical manifestations of 
ADHD and reported that the brain volume in gray and white mat-
ter correlates to poor cognitive processing, attention and motor 
planning (37). Interestingly, BDNF-deficient (bdnf−/−) mice show 
a significant reduction in myelin proteolipid protein and myelin 
basic protein in the hippocampus and cortex, with a subsequent 
deficit in myelination (15). Altogether, these data support the 
hypothesis that the BDNF signaling pathway is associated with 
changes of cognitive performance and brain structure in ADHD. 
Several pharmacological treatments that modulate the symptoms 
of ADHD can also modify GFs levels. Tricyclic antidepressants 
and the selective serotonin reuptake inhibitors increase the levels 
of BDNF (15). Methylphenidate, the main drug prescribed for 
ADHD, increases the BDNF expression in the prefrontal cortex 
(51, 52). A 6-week administration of methylphenidate recuper-
ates the plasma levels of BDNF in children with ADHD (42).

Glial-derived neurotrophic factor (GDNF) is another GF- 
related to the pathophysiology of ADHD. GDNF is widely 
involved in the survival of serotonergic and dopaminergic neurons 
because it has neuroprotective effects against neuroinflammation 
and oxidative damage (21). Untreated children with ADHD show 
high plasma levels of GDNF (21). These high GDNF levels have a 
positive correlation with inattention, hyperactivity, and impulsiv-
ity behaviors (11), which are the main clinical manifestations of 
ADHD. Remarkably, psychostimulants, such as MPH, increase 
levels of GDNF mRNA in the hippocampus and prefrontal 
cortex (51). Furthermore, nerve growth factor (NGF) is involved 
in neuronal development and brain plasticity of cholinergic 
neurons that are important in attentional processing. Therefore, 
dysregulation of NGF levels have been associated with the patho-
physiology of ADHD (23). At genetic levels, the single nucleotide 
polymorphism (rs6330) is associated with the risk of ADHD (24). 
High NGF levels are found in an animal model of ADHD (22). 
Interestingly, children and adolescents with ADHD show high 
NGF serum levels (23). These alterations in the pro-NGF and/
or NGF levels are related to attentional, learning, and memory 
impairments shown by ADHD patients (24, 25). Neurotrophins 
also play a role in the pathophysiology of ADHD (21). Alterations 
in neurotrophin-3 (NTF3) expression are considered a risk factor 
for ADHD in childhood (2). Serum NTF3 levels are increased in 
untreated patients (21).

Vascular endothelial growth factor (VEGF) has an important 
role during brain development and repair (27). In stroke-prone 
spontaneously hypertensive rats were found downregulation of 
VEGF (26, 27), VEGFR-1 (Flt-1), and VEGFR-2 (Flk-1) receptors, 
endothelial nitric oxide synthase and the phosphorylated Akt in 
frontal cortex (26, 27). Since alterations on VEGF signaling have 
been associated with degeneration of cerebral cortex, it is possible 
that these alterations are implicated in cerebral abnormalities of 
patients with ADHD (26, 27).

Insulin-like growth factor 2 (IGF2) regulates normal develop-
ment of cerebellum and hippocampus (50, 53), both of which 
are affected in ADHD (43, 44). Recently, IGF2 DNA methylation 
may be as predisposing factor to develop ADHD (33, 54, 55). 
In fact, prenatal exposure to high-fat and -sugar diet promotes 
IGF2 DNA methylation at birth that, in turn, has been positively 
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associated with higher ADHD symptoms (28). Another GF that 
has also been implicated in hyperactive behavior include the 
fibroblast growth factor. In rodents, disruption of the Fgfr1 gene 
in dorsal telencephalon causes spontaneous motor hyperactivity 
and significant reductions in specific types of cortical inhibitory 
neurons (29). In humans, the role of FGFR in the etiology of 
ADHD has been suggested by pathway analysis of FGFR1b and 
FGFR2b activation, but further study is needed to support this 
assertion (56). In summary, the development of ADHD may be 
influenced by the interaction of multiple molecules and concomi-
tant epigenetic factors, but confirmatory studies are required to 
reveal more definitive associations.

AUtisM sPectrUM DisOrDer

Autism spectrum disorder is a neurodevelopmental disorder 
(35, 57) that is typically diagnosed between 2 and 6 years of age 
(8). ASD is characterized by impaired social communication, 
repetitive, or stereotyped behaviors and low interest for environ-
ment stimuli (7, 58). Patients with ASD have maladjustment 
in emotional response, anxiety, impaired emotional learning, 
limited interest in surrounding environment, and deficit in 
communication and social interactions (32, 59). ASD pathology 
has several associated symptoms that are generated by comorbid 
disorders. These comorbid symptoms often include: seizures, 
anxiety, intellectual impairment, hyperactivity, hyper or hypo- 
responsiveness to stimulus, sleep disruption, aggressive behavior, 
etc. (8). Consequently, ASD is considered a complex disorder 
with important epigenetic components (8, 60, 61).

Acetylation is a common feature of the neurotrophic proteins 
encoded by at least 18 genes dysregulated in patients with ASD 
(62, 63). While there is some evidence of the role of immune 
system dysregulation in the etiology of autism (64), it is possible 
that acetylation, lysine methylation/demethylation of histones, 
and inflammatory mediators affect mutual signaling pathways 
in both the nervous system and the immune system (65). 
Increasing evidence suggests that the abnormal increase of brain 
cortex and minicolumnar abnormalities observed in autism are 
driven by excess neuronal production (66–68). This hypothesis 
has been supported by neuroimaging studies (69–71) and three-
dimensional neural cultures (a cerebral organoid model) with 
induced pluripotent stem cells (72). Since GFs regulate different 
aspects of neural development, including brain growth, stem cell 
proliferation, and cell survival, this evidence supports their role 
in the development of ASD (32) and may explain the enlargement 
of prefrontal and temporal cortex that persists until adulthood 
(73). The hyper-functioning in certain neural circuits observed 
in autism may be due to this uncontrolled growth of neural con-
nections (35, 57, 74).

The brain volume is considered as clinical indicator of certain 
psychiatry disorder (75). In patients with ASD, the brain enlarge-
ment and abnormal neuronal migration have been observed in 
regions, such as the subependymal cell layer, the granule layer in 
the dentate gyrus, the cornu ammonis subfield, and the amygdala 
(76). In contrast to this abnormal migration and brain overgrowth, 
some authors have reported a low rate of growth in other brain 
areas (77). In the post-mortem brain of patients with ASD has been 

observed a significant reduction of neuronal density in layer III, 
the total number of neuron in layer III, V and VI, and a decrease 
in the volume of neurons in layers V and VI at the fusiform gyrus 
(77). Another study reported a decrease in pyramidal neuron size 
in the inferior frontal cortex, specifically in the Brodmann’s areas 
44 and 45, which are brain regions involved in language process-
ing, imitation function, and sociality processing (78).

Children with autism show low expression levels of 
Neurotrophin-4 (NTF4) in blood, which have been correlated to 
impairments in neuroplasticity (35). TGF-β1 plasma levels are also 
reduced in autism and have a significant correlation with the low 
scores obtained in adaptive behaviors, stereotypy, irritability, and 
low social interaction (30). Similar findings have been reported in 
juvenile mice in which the treatment with TGF-β1 impairs social 
interaction and promotes repetitive and stereotyped behaviors. 
Intriguingly, TGF-β1 overexpression has the opposite effects in 
adult stages (79).

Brain-derived neurotrophic factor serum levels are significantly 
increased in autism (34). High expression of BDNF is also found in 
a model of autism [valproic acid (VPA)-treated rat offspring] (54). 
In addition to the high BDNF expression in hippocampus, the 
VPA-treated rats show low expression of p-Akt, Bcl-2, p-CaMKII, 
as well as a significant increase in Bax and caspase-3 expression 
(33). This evidence is consistent with that found in BTBR T+tf/J 
mice (another autistic mouse strain), which present a significant 
upregulation of BDNF expression and myelin protein, and low 
expression of glial fibrillary acidic protein (55).

Another GF involved in the pathophysiology of ASD is the 
epidermal growth factor (EGF). EGF strongly promotes cell 
proliferation and differentiation via MAPK, PKC, and Akt 
pathways in neural progenitor cells (4). Recently, EGF and its 
receptor protein (EGFR) have been proposed as biomarkers of 
schizophrenia, depression, and bipolar disorder [reviewed in 
Ref. (5)]. Interestingly, adult patients with high-functioning ASD 
show a significant reduction in serum levels of EGF as compared 
with controls (31). Similar findings are observed in children with 
ASD (32), who present persistent low plasma levels of EGF until 
adulthood (80). Remarkably, these low plasma levels negatively 
correlates with the severity of hyperactivity, the deficit in gross 
motor skills, and the tendency for tip toeing (32). In addition, 
patients with ASD show a reduction in Akt phosphorylation, 
EGFR overexpression and low levels of gamma-aminobutyric 
acid that correlate to the severity of alterations in several language 
components (81). Elevated Akt phosphorylation has also been 
found in prenatal exposure to valproate, a well-known animal 
model of autism (82). These animals show a significant growth of 
several brain regions, a common alteration that is also observed 
in autistic patients. Taken together, these data strongly support 
the notion that EGFR/AKT pathway may play an important role 
in the pathophysiology of ASD.

Hepatocyte growth factor (HGF) is another molecule that has 
been involved in the development of ASD (36, 83). Although low 
levels of HGF have been reported in patients with ASD, these 
findings could not be correlated to the severity of symptoms 
(36). HGF promotes morphogenesis and cell proliferation after 
binding to the c-Met receptor, a product of the MET gene (84). 
Interestingly, polymorphisms in the MET gene appear to confer 
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an increased susceptibility to autism and this gene is included in 
the chromosome 7q31 that has been linked to autism susceptibil-
ity (85, 86). This evidence suggests that HGF may represent an 
important factor in the pathogenesis of autism.

FUtUre APPrOAcHes iN 
NeUrODevelOPMeNtAl DisOrDers

Attention-deficit/hyperactivity disorder and ASD are neurode-
velopmental disorders with significant comorbidity. Increasing 
evidence indicates that they share some pathological features and 
some etiological factors. Alterations in the expression level of 
BDNF, GDNF, NGF, NTF3, NTF4, or EGF are common features 
between ADHD and ASD (Figure 1). Therefore, identifying all 
these aspects will allow to establish the clinical use of these GFs 
as biomarkers in ADHD and ASD.
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