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JWH-018 and AKB48 are two synthetic cannabinoids (SCBs) belonging to different struc-
tural classes and illegally marketed as incense, herbal preparations, or chemical supply for 
theirs psychoactive cannabis-like effects. Clinical reports from emergency room reported 
psychomotor agitation as one of the most frequent effects in people assuming SCBs. 
This study aimed to investigate the psychostimulant properties of JWH-018 and AKB48 
in male CD-1 mice and to compare their behavioral and biochemical effects with those 
caused by cocaine and amphetamine. In vivo studies showed that JWH-018 and AKB48, 
as cocaine and amphetamine, facilitated spontaneous locomotion in mice. These effects 
were prevented by CB1 receptor blockade and dopamine (DA) D1/5 and D2/3 receptors 
inhibition. SPECT-CT studies on dopamine transporter (DAT) revealed that, as cocaine and 
amphetamine, JWH-018 and AKB48 decreased the [123I]-FP-CIT binding in the mouse 
striatum. Conversely, in vitro competition binding studies revealed that, unlike cocaine and 
amphetamine, JWH-018 and AKB48 did not bind to mouse or human DAT. Moreover, 
microdialysis studies showed that the systemic administration of JWH-018, AKB48, 
cocaine, and amphetamine stimulated DA release in the nucleus accumbens (NAc) shell 
of freely moving mice. Finally, unlike amphetamine and cocaine, JWH-018 and AKB48 did 
not induce any changes on spontaneous [3H]-DA efflux from murine striatal synaptosomes. 

Abbreviations: AKB48, N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide; DA, dopamine; DAT, dopamine trans-
porter; JWH-018, naphthalen-1-yl-(1-pentylindol-3-yl)methanone; HAL, 4-[4-(4-chlorophenyl)-4-hydroxypiperidin-
1-yl]-1-(4-fluorophenyl)butan-1-one; haloperidol; GBR 12783, 1-(2-benzhydryloxyethyl)-4-[(E)-3-phenylprop-2-enyl]
piperazine;dihydrochloride; NAc shell, nucleus accumbens shell; [123I]FP-CIT, (123I-2β-carbomethoxy-3β-(4-iodophenyl)-N-
(3-fluoropropyl)nortropane); SCH23390, 8-chloro-3-methyl-5-phenyl-1,2,4,5-tetrahydro-3-benzazepin-7-ol.
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The present results suggest that SCBs facilitate striatal DA release possibly with different 
mechanisms than cocaine and amphetamine. Furthermore, they demonstrate, for the 
first time, that JWH-018 and AKB48 induce a psychostimulant effect in mice possibly by 
increasing NAc DA release. These data, according to clinical reports, outline the potential 
psychostimulant action of SCBs highlighting their possible danger to human health.

Keywords: aKB48, cocaine, dopamine transporter, microdialysis, sPecT-cT imaging, JWh-018, synthetic 
cannabinoids, psychostimulants

inTrODUcTiOn

According to the European Drug Report, 100 new abused sub-
stances have been detected for the first time in 2016 (1). Recent 
literature reported that an incredibly huge number of synthetic 
cannabinoids (SCBs) has been detected and commonly abused 
in the US, Europe, and Australia as Marijuana substitutes (2). 
Indeed, they are not preferred over cannabis but recreationally 
used to circumvent legal, work- and cost-related obstacles.

The consumption of SCBs can cause adverse events that  
directly jeopardize the subjects’ lives or promote harmful conse-
quences as agitation, tachycardia, sudden cardiac arrest, and sei-
zures along with liver and kidney failure. Suicide and self-injury 
have also been reported in individuals consuming SCBs (3).

JWH-018 (1-pentyl-3-(1-naphthoyl)indole) and AKB48 
(N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide), 
respectively, classified as naphthoylindoles and adamantylin-
dazoles, have been seized in different countries (4, 5). In vitro 
binding studies shown that JWH-018 and AKB48 display 
nanomolar affinity for both CD-1 murine and human CB1 and 
CB2 receptors, presenting a slight preference for CB2 receptors (6, 
7). In particular, in CD-1 murine preparation, AKB48 and JWH-
018 displayed a similar affinity for CB1 receptors [Ki = 5.34 and 
5.82 nM, respectively; (6)], while AKB48 showed a slightly higher 
affinity than JWH-018 [Ki = 9.53 and 3.24 nM, respectively; (6)] 
for human CB1 receptors. Based on these findings, it seems likely 
that, compared to other SCBs, the two compounds might induce 
similar or higher in vivo effects.

CB1 receptors are highly expressed as limbic regions, such as 
the ventral tegmental area (VTA), the nucleus accumbens (NAc), 
ventral pallidum and prefrontal cortex (PFC). SCBs probably act 
in these brain regions by modulating reward, addiction, and cog-
nitive functions (8). In line with this view, several rodent studies 
showed that these compounds, similar to other drugs of abuse, 
affect the mesolimbic dopaminergic transmission (7, 9, 10) and 
influence conditioned behaviors (11, 12).

It has been reported that SCBs may have atypical side effects, 
often larger and more negative than those of natural cannabi-
noids. For example, as detected by National Poison Data System 
that tracks US poison control calls, agitation is the most common 
adverse effect of SCBs consumption observed in humans (3), 
while other reported side effects are irritability, sadness, restless-
ness, aggression, combativeness, and psychomotor agitation 
(13–15). Differently, high doses of Δ9-THC or cannabis intoxica-
tion can cause, among other adverse events, xerostomia, injected 
conjunctivae, tachycardia, and psychotic effects (including 

hallucinations and paranoia) (14). Extreme agitation, irritabil-
ity physical violence, convulsions, and nephrotoxicity have also 
been reported after SCBs consumption (16). Preclinical data 
have reported that JWH-018 (17), AKB48 (7) and other SCBs 
(7) increase, in a narrow range of doses, spontaneous locomotion 
in mice. This behavioral effect resembles the psychostimulant 
action of cocaine (18–22) and amphetamine (23–25). Moreover, 
previous in vivo microdialysis studies demonstrated that JWH-
018, at the dose of 0.25 mg/kg i.p. [but not at lower (0.125 mg/kg 
i.p.) or higher (0.5 mg/kg i.p.) doses], increases dopamine (DA) 
transmission in the NAc shell but not in the NAc core and in the 
mPFC (9). Similar pharmacological properties were displayed by 
subsequent chemical generations of SCBs (7, 10, 26). However, 
the mechanism of action of JWH-018, AKB48, and their analogs 
is still not completely understood.

This study, by combining different experimental approaches, 
such as in  vitro (binding), in  vivo (behavioral tests, imaging 
and microdialysis) and ex vivo (synaptosome) ones, aimed at 
clarifying how these SCBs modulate dopaminergic signaling and 
whether these putative effects could be relevant for their locomo-
tion facilitating properties. In particular, the effects of JWH-018 
and AKB48 have been compared to those induced by cocaine and 
amphetamine, two psychostimulant drugs affecting the dopamine 
transporter (DAT) in a different way. Indeed, while cocaine acts 
as a DAT blocker by directly binding to DAT and, thus, prevent-
ing the translocation of DA, amphetamine competes with DA for 
binding to the empty transporter, leading to the reverse transport 
(efflux) of DA from the intracellular compartment to the synaptic 
cleft, thus exerting indirect effects [e.g., it reverses the action of 
VMAT2; (27)]. In view of the results obtained, the involvement 
of CB1 receptor- and the D1/D2 receptor-mediated mechanisms in 
the behavioral effects induced by JWH-018 and AKB48 has also 
been evaluated.

MaTerials anD MeThODs

animals
Male ICR (CD-1®) mice, 25–30  g (Harlan Italy; S. Pietro al 
Natisone, Italy), were group-housed (8–10 mice per cage; floor 
area per animal was 80  cm2; minimum enclosure height was 
12  cm) on a reverse12:12-h light-dark cycle, temperature of 
20–22°C, and humidity of 45–55%; and were provided ad libitum 
access to food (Diet 4RF25 GLP; Mucedola, Settimo Milanese, 
Milan, Italy) and water. The experimental protocols performed 
in this study were in accordance with the new European 
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Communities Council Directive of September 2010 (2010/63/
EU) a revision of the Directive 86/609/EEC and were approved 
by the Italian Ministry of Health and by the Ethical Committee 
of the University of Ferrara and of the University of Cagliari 
(microdialysis studies). Moreover, adequate measures were taken 
to minimize the number of animals used and their pain and 
discomfort.

Drug Preparation and Dose selection
Amphetamine sulfate, cocaine, ketamine hydrochloride, JWH-
018, and AKB48 were purchased from LGC Standards (LGC 
Standards S.r.L., Sesto San Giovanni, Milan, Italy), xylazine 
hydrochloride from Sigma-Aldrich (St. Louis, MO, USA) and 
GBR 12783 dihydrochloride, AM-251, SCH23390, and haloperi-
dol from Tocris (Bristol, United Kingdom).

For in  vivo behavioral studies, all compounds (JWH-018, 
AKB48, amphetamine sulfate, cocaine hydrochloride, AM-251, 
SCH23390, and haloperidol) were initially dissolved in absolute 
ethanol and Tween 80 and then diluted to the final volume with 
saline (0.9% NaCl; final ethanol or Tween 80 concentration = 2%) 
The ethanol, Tween 80, and saline solution were also used as 
vehicle. Drugs were administered by intraperitoneal injection in 
a volume of 4 μl/g. The used doses of JWH-018 (0.3 and 1 mg/
kg i.p.) and AKB48 (0.3 and 1 mg/kg i.p.) were chosen based on 
previous studies (6, 7, 9, 10).

For in vitro release experiments, JWH-018 and AKB48 were 
dissolved in absolute ethanol (ethanol = vehicle; maximum con-
centration = 0.04% v/v). The used concentrations of JWH-018, 
AKB48, cocaine, and amphetamine were chosen on the basis of 
previous studies (7, 17, 28, 29). Moreover, for in vivo DaTSCAN, 
imaging studies, the [123I]-FP-CIT (123I-2β-carbomethoxy-3β-(4-
iodophenyl)-N-(3-fluoropropyl)nortropane, [123I]-IDaTSCAN) 
was purchased from GE Healthcare B.V. Den Dolech 2 
NL-5612 AZ, Eindhoven, The Netherlands (specific activity 
2.5–4.5  ×  1014  Bq/mmol at the date and time of calibration; 
radiochemical purity >97%).

spontaneous locomotor activity
The spontaneous locomotor activity was measured by using the 
ANY-maze video tracking system (Ugo Basile, application ver-
sion 4.99 g Beta). The mouse was placed in a square plastic cage 
(60 cm × 60 cm) located in a sound- and light-attenuated room 
and motor activity was monitored for 240 min. Four mice were 
monitored in parallel in each experiment. Parameters measured 
were distance traveled (meter), total time in the peripheral zone 
(seconds), total time in the central zone (seconds), and immobility 
time (seconds; the animal was considered immobile when 95% of 
his image remained in the same place for at least 2 s). Parameters 
were analyzed every 15 min for a maximum of 240 min and to 
avoid mice olfactory cues, cages were carefully cleaned with a 
dilute (5%) ethanol solution and washed with water between 
animal trials. All experiments were performed between 9:00 a.m. 
and 1:00 p.m.

In Vivo DaTscan, imaging studies
SPECT-CT studies have been performed using a YAP(S)PET 
scanner (30–33). The spatial resolution of the system was verified 

for 123I, using a NEMA NU 4-2008 phantom (34) with hot rods 
ranging from 1 to 5 mm. 18 CD-1 male mice were divided into 
six different groups (three mice per treatment). During the 
scanning procedure, each mouse was previously anesthetized by 
intramuscular injections of a mixture of ketamine and xilazine 
(respectively, 100 and 20 mg/kg), and submitted to a pretreatment 
(by intraperitoneal injection) with vehicle (see drug preparation 
and animal dose determination), cocaine (20 mg/kg), ampheta-
mine sulfate (10 mg/kg), JWH-018 (1 mg/kg), or AKB48 (1 mg/
kg). A control group (i.e., naïve untreated mice) was also included 
in the study. Thirty minutes after drug administration, all mice 
were submitted to an intravenous injection with a solution of 
[123I]-DaTSCAN (15–20 MBq, ≤200 µl). The body temperature of 
the animals was maintained at 37°C during the imaging sessions 
and under the cage, between imaging sessions, using a heating 
lamp. The SPECT–CT whole-body images were acquired at 1 h 
and 30 min after [123I]-FP-CIT injection, with the initial tomo-
graphic acquisition starting nearly 15  min after the injection. 
Each SPECT-CT whole-body acquisition consisted of one bed 
positions (36 mm), 60 min, 128 views over 360 (35). The used 
energy window is 119–219 keV and the images were reconstructed 
by using the iterative EM-ML algorithm, including the collimator 
response. CT images have been acquired, using the digital X-ray 
imaging system integrated into the YAP(S)PET scanner (36). 
Acquisition parameters for X-ray projections were X-ray tube 
voltage = 35 keV, anode current = 1 mA, exposure = 1 s, 64 views 
over 360, and magnification factor  =  1.2. Subtraction of dark 
noise contribution and flat field corrections was accomplished to 
obtain final images. The CT data were reconstructed by using the 
FDK algorithm. Amide software (37) has been used for images’ 
registration, visualization and analysis. The size of the ROIs was 
voxels (100  mm3 volume), corresponding to entire striatum. 
These ROIs were used as a template. To avoid the variability of 
the slice selection and to gain statistical power, the entire striatum 
volume for the analysis was used. The template was positioned 
manually (without changing the size and form of the ROIs) on 
the SPECT images with the backing of anatomical information 
from LONI MAP 2003 MRI mouse atlas (38, 39). For analysis of 
striatal [123I]-FP-CIT binding, two consecutive horizontal slices 
(total thickness approximately 4  mm) with the highest striatal 
binding were selected. The landmarks for positioning were the 
intra-orbital glands, striatum, and the borders of the brain. Striatal 
binding ratios are expressed as average activity per unit volume 
[Bq/mm3], each value has been calculated as the ratio between 
the activity inside the ROI and the ROI volume, normalized for 
injected activity and for mouse brain weight.

[3h]-Win 35,428 competition Binding 
experiments
Competition binding experiments were carried out incubating 
8 nM [3H]-WIN 35,428 (specific activity 84 Ci/mmol; Perkin 
Elmer, Boston, MA, USA) with CHO membranes transfected 
with human DAT (Perkin Elmer) or mouse striatal synapto-
somes with different concentration of the examined compounds 
for 120 min at 4°C. Non-specific binding was determined in 
the presence of 1 µM GBR 12783. At the end of the incubation 
time, bound and free radioactivity were separated by filtering 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


4

Ossato et al. Psychostimulant Effect of Synthetic Cannabinoids

Frontiers in Psychiatry | www.frontiersin.org August 2017 | Volume 8 | Article 130

the assay mixture through Whatman GF/B glass fiber filters 
in a Brandel cell harvester (Brandel, Unterföhring, Germany). 
Filter bound radioactivity was counted in a Perkin Elmer 
2810TR scintillation counter (Perkin Elmer).

In Vivo Brain Microdialysis studies
Male ICR (CD-1®) mice, 25–30  g (ENVIGO. Harlan Italy;  
S. Pietro al Natisone, Italy) were anesthetized with Isoflurane (3%;  
200 ml/min) and implanted with vertical dialysis probe (1 mm 
dialyzing portion) prepared with AN69 fibers (Hospal Dasco, 
Bologna, Italy) in the NAc shell (A  +  1.4, L 0.4 from bregma, 
V-4.8 from dura) according to the mouse brain atlas by Paxinos 
and Franklin (40). On the day following surgery, probes were 
perfused with Ringer’s solution (147  mM NaCl, 4  mM KCl, 
2.2 mM CaCl2) at a constant rate of 1 µl/min. Dialyzate samples 
(10 µl) were injected into an HPLC equipped with a reverse phase 
column (C8 3.5 um, Waters, USA) and a coulometric detector 
(ESA, Coulochem II) to quantify DA. The first electrode of 
the detector was set at +130 mV (oxidation) and the second at 
−175 mV (reduction). The composition of the mobile phase was 
as follows: 50 mM NaH2PO4, 0.1 mM Na2-EDTA, 0.5 mM n-octyl 
sodium sulfate, 15% (v/v) methanol, pH 5.5. The sensitivity of the 
assay for DA was 5 fmol/sample. At the end of each experiment, 
animals were sacrificed and their brains removed and stored in 
formalin (8%) for histological examination to verify the correct 
placement of the microdialysis probe.

striatal synaptosome Preparation
On the day of the experiment, the animal was euthanized, the 
brain was rapidly removed, and both striata isolated. Thereafter, 
a crude synaptosomal (P2) fraction was prepared as follows: 
the striata were suspended in ice-cold buffered sucrose solu-
tion (0.32 M, pH 7.4) and homogenized. The homogenate was 
centrifuged (10 min, 2,100 g, 4°C) to remove nuclei and debris. 
The supernatant was further centrifuged at 13,500 g for 20 min 
at 4°C. For [3H]-WIN 35,428 binding experiments, the P2 pellet 
was resuspended in 50 mM Tris–HCl, 100 mM NaCl, pH 7.4. For 
[3H]-DA release experiments, the P2 pellet was then resuspended 
in 5 ml of Kreb’s solution (mM: NaCl 118; KCl 4.4; CaCl2 1.2; 
MgSO4 1.2; KH2PO4 1.2; NaHCO3 25; glucose 10), gassed 20 min 
with a mixture of 95% O2 plus 5% CO2 containing [3H]-DA 
(50 nM; Perkin Elmer, Monza, Italy), disodium EDTA (0.03 mM), 
and ascorbic acid (0.05 mM; to prevent [3H]-DA degradation).

spontaneous [3h]-Da release
After synaptosomal preparation, 0.5 ml aliquots of the suspension 
were distributed on microporous filters placed at the bottom of 
a set of parallel superfusion chambers maintained at 37°C and 
perfused with aerated (95% O2/5% CO2) Kreb’s solution (0.3 ml/
min). After 30  min of superfusion to equilibrate the system, 
5-min fractions were collected from the 30th to the 75th min 
(nine samples). When required, after the collection of three 
basal samples, amphetamine (10 µM), cocaine (100 nM), JWH-
018 (100 nM, 1 µM), AKB48 (100 nM, 1 µM), and vehicle were 
added to the perfusion solution in order to evaluate their effects 
on spontaneous [3H]-DA release. At the end of the experiment, 

the radioactivity of the samples and filters was determined by 
liquid scintillation spectrometry (LS1800 Beckman). In view of 
the results obtained, in a separate set of experiments, [3H]-DA 
uptake was also evaluated.

[3h]-Da Uptake experiments
After synaptosomal preparation, the suspension was main-
tained under a light and continuous oxygenation (95% O2, 5% 
CO2) for 20 min at 37°C. Thereafter, 0.5 ml aliquots of striatal 
synaptosomal suspension were prepared. When required the 
selective DA reuptake blocker GBR 12783 (100  nM, Sigma-
Aldrich, USA), cocaine (100  nM), amphetamine (1  µM), 
JWH-018 and AKB048 (100  nM, 1  µM), and vehicle were 
added and after 5 min the synaptosomes were incubated for 
10 min with 50 nM [3H]-DA. After this period, the reaction 
was stopped by filtration through microporus nylon filters 
(0.45  µm, 13  mm; Analytical Technology, Brugherio, Italy). 
The filters were then washed with 1 ml ice-cold Kreb’s solu-
tion and the radioactivity accumulated on synaptosomes was 
extracted by eluting two times with 1 ml of warm NaOH (1 N) 
and then determined by liquid scintillation spectrometer. 
Non-specific uptake was measured by following the same 
procedure at 0°C.

resUlTs

studies on spontaneous locomotor 
activity in Mice
The acute i.p. administration of JWH-018 (0.3 mg/kg), ampheta-
mine (10 mg/kg), and cocaine (20 mg/kg) induced long-lasting 
increases in the total distance traveled (i.e., spontaneous loco-
motion) by the mice, while AKB48 (1  mg/kg) facilitated the 
spontaneous locomotion only in the first 15 min after the injec-
tion [Figure  1A; significant effect of treatment (F4,560  =  64.65, 
p < 0.0001), time (F15,560 = 120.40, p < 0.0001), and time × treat-
ment interaction (F60,560 = 4.628, p < 0.0001)]. In particular, the 
effects of JWH-018 or cocaine lasted 90 min, while amphetamine 
increased the mouse spontaneous locomotion also from 135 to 
210 min after drug administration.

JWH-018, amphetamine, and cocaine reduced the immo-
bility time in mice, while AKB48 increased it 30 min after the 
drug administration [Figure  1B; significant effect of treatment 
(F4,560  =  199.3, p  <  0.0001), time (F15,560  =  79.13, p  <  0.0001), 
and time ×  treatment interaction (F60,560 = 10.39, p < 0.0001)]. 
Differently to mice treated with cocaine and amphetamine, JWH-
018- and AKB48-injected animals spent more time in the central 
zone [Figure 1D; significant effect of treatment (F4,560 =  70.37, 
p < 0.0001), time (F15,560 = 32.48, p < 0.0001), and time × treat-
ment interaction (F60,560 = 12.24, p < 0.0001)] than in the periph-
eral area of the cage [Figure 1C; significant effect of treatment 
(F4,560 = 9.751, p < 0.0001), time (F15,560 = 13.33, p < 0.0001), and 
time × treatment interaction (F60,560 = 4.394, p < 0.0001)].

The facilitation of spontaneous locomotion induced by 
JWH-018 (0.3 mg/kg) and AKB48 (1 mg/kg) was prevented by 
a pretreatment with AM 251 [1 mg/kg i.p.; Figure 1E: significant 
effect of treatment (F3,56 = 13.74, p < 0.0001), time (F1,56 = 31.88, 
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FigUre 1 | Effect of the systemic administration of vehicle, amphetamine (10 mg/kg i.p.), cocaine (20 mg/kg i.p.), JWH-018 (0.3 mg/kg i.p.), and AKB48 (1 mg/kg 
i.p.) on the total distance traveled (a), on the immobility time (B), and on the total time spent in the peripheral and central area (c,D) of the mouse. Interaction of 
JWH-018 and AKB48 with the selective CB1 receptor antagonist AM 251 [6 mg/kg, i.p.; (e)], the D1 receptor antagonist SCH23390 [0.1 mg/kg i.p.; (e)], and the D2 
receptor antagonist haloperidol [HAL; 0.05 mg/kg i.p.; (e)]. AM 251, and SCH23390 + HAL were administered 20 min before synthetic cannabinoids injection. Data 
are expressed as meters (total distance traveled) and as seconds (immobility time; time in the peripheral and central zone). Data represent the mean ± SEM of eight 
determinations for each treatment. Statistical analysis was performed by two-way ANOVA followed by Bonferroni’s test for multiple comparisons (a–D) or by 
one-way ANOVA followed by Tukey’s test (e). *p < 0.05, **p < 0.01, ***p < 0.001 versus vehicle; §§p < 0.01 versus JWH-018; ++p < 0.01 versus AKB48.
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FigUre 2 | Sample slice from a [123I]-FP-CIT SPECT/CT image of a vehicle [(a–c); respectively, coronal, transverse, and sagittal plan], cocaine [(D–F); respectively, 
coronal, transverse, and sagittal plan], and JWH-018 [(g–i); respectively, coronal, transverse, and sagittal plan] treated mice. ROIs for the striatum.
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p  <  0.0001), and time  ×  treatment interaction (F3,56  =  17.59, 
p < 0.0001)] or by the coadministration of SCH23390 (0.1 mg/
kg i.p.) and haloperidol [0.05 mg/kg i.p.; Figure 1E: significant 
effect of treatment (F3,56 = 13.74, p < 0.0001), time (F1,56 = 31.88, 
p  <  0.0001), and time  ×  treatment interaction (F3,56  =  17.59, 
p < 0.0001)]. AM 251, SCH23390, and haloperidol by themselves 
did not alter the spontaneous locomotion in mice (Figure 1E).

In Vivo DaTscan, imaging studies
Intense, symmetrical [123I]-FP-CIT binding was observed in the 
striatum of control mice (images not shown). Vehicle injection 
did not change [123I]-FP-CIT binding in the striatum of mice 
(Figures 2A–C). The acute systemic injection of cocaine (20 mg/
kg i.p.; Figures 2D–F) or amphetamine (10 mg/kg i.p.; images not 
shown) induced significant decreases of the [123I]-CIT binding in 
the striatum of mice (reduction of ~40 and ~25%, respectively; 
Figure 3). Similarly, the administration of JWH-018 (1 mg/kg i.p.; 
Figures 2G–I) or AKB48 (1 mg/kg i.p.; images not shown) decreased 
the [123I]-FP-CIT binding in the striatum of mice (reduction of ~39 
and ~42%, respectively; Figure 3); these effects were comparable 
to those caused by the administration of cocaine (Figure 3).

competition Binding experiments on Mice 
and human DaT
Competition binding experiments with the reference compound 
GBR 12783 revealed that it displays a similar affinity for human 
and mouse DAT (Table 1). As expected, cocaine showed affin-
ity for DAT in the nanomolar range, with Ki values of 174 and 
193  nM in CHO membranes transfected with human DAT or 
mouse striatal synaptosomes, respectively. Amphetamine bound 
human and mouse DAT with affinity values of 554 and 622 nM, 
respectively. Interestingly, the SCBs JWH-018 and AKB48 
were able to bind human DAT with affinity values of 7,183 and 
4,588 nM, respectively (Table 1).

In Vivo Microdialysis study
Basal NAc shell extracellular DA levels were 15 ± 5 fmol/10 μl 
sample. Systemic administration of amphetamine (10  mg/
kg i.p.), cocaine (20  mg/kg i.p.), JWH-018 (0.3  mg/kg i.p.), 
and AKB48 (0.3 mg/kg i.p.) significantly increased NAc shell 
extracellular DA levels in the awake and freely moving mice 
(Figures  4A–D). Interestingly, JWH-018 or AKB48 had a 
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TaBle 1 | Affinity values of GBR 12783, cocaine, amphetamine, JWH-018, and 
AKB48 to DAT obtained from [3H]-WIN 35,428 competition binding experiments 
in human CHO membranes transfected with DAT and in mouse striatal 
synaptosomes.

compounds hDaT-chO membranes 
Ki (nM)

Mouse striatal  
synaptosomes Ki (nM)

GBR 12783 1.93 ± 0.14 1.72 ± 0.11
Cocaine 174 ± 13 193 ± 16
Amphetamine 554 ± 47 622 ± 53
JWH-018 7,183 ± 528 >10,000
AKB48 4,588 ± 326 >10,000

Data are expressed as mean ± SEM.

FigUre 3 | Striatal uptake of [123I]-FP-CIT in control mice (naïve) and in mice 
after the administration of vehicle, amphetamine (10 mg/kg), cocaine (20 mg/
kg), JWH-018 (1 mg/kg), and AKB48 (1 mg/kg). Means and SDs are shown. 
Significance levels are *p < 0.05, **p < 0.01.
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different profile of action. In fact, JWH-018 induced a long-
lasting increase of NAc shell extracellular DA levels (~150% 
of baseline values; Figure  4C), while AKB48 caused a rapid 
and significant increase in extracellular DA levels in the NAc 
shell of mice, reaching a peak value (~150% of baseline values) 
40 min (Figure 4D) after its administration.

effects of cocaine, amphetamine, JWh-
018, and aKB48 on spontaneous [3h]-Da 
release in striatal synaptosomes
In synaptosomes from mouse striatum, spontaneous [3H]-DA 
efflux tended to decrease during the collection period (from 30 
to 75  min from the start of perfusion, Figure  5). As expected, 
the perfusion with amphetamine (10 µM), or cocaine (100 nM), 
induced a significant increase in spontaneous [3H]-DA efflux 
from mouse striatal synaptosomes (Figures  5A–C). On the 
other hand, JWH-018 and AKB48 (100 nM and 1 µM) did not 
affect spontaneous [3H]-DA efflux from striatal synaptosomes 
(Figures 5B,C, respectively).

effects of cocaine, amphetamine, JWh-
018, and aKB48 on [3h]-Da Uptake
As shown in Figure 6, cocaine (1 µM) and amphetamine (1 µM) 
reduced [3H]-DA uptake in mouse striatal synaptosomes in the 
order of 50 and 40%, respectively. At 20 nM, GBR 12783 produced 
a similar inhibition of [3H]-DA uptake as found with 100 nM of 
cocaine. On the contrary, JWH-018 and AKB48 were ineffective 
on [3H]-DA uptake at the tested concentrations (100  nM and 
1 µM, Figure 6).

DiscUssiOn

The present multidisciplinary study, for the first time, directly 
compared the effects of JWH-018 and AKB48, with those of 
cocaine and amphetamine, to provide further insights on the 
mechanism of action possibly underlying the psychomotor 
stimulant effects of SCBs.

The behavioral studies, first, showed that JWH-018 (0.3 mg/kg) 
e AKB48 (1  mg/kg) facilitated spontaneous locomotion in mice 
through CB1 receptor- and DA-dependent mechanisms. In fact, the 
motor facilitation induced by the two SCBs was prevented by the 
CB1 receptor antagonist AM-251 as well as by the simultaneous 
blockade of DA D1 and D2 receptors. The SCBs-induced motor 
facilitation probably occurs in a narrow range of doses since SCBs 
mainly inhibited both spontaneous and stimulated motor activity 
in CD-1 mice (6, 7, 10, 41, 42). Motor impairment is one of the 
main behavioral effects observed after systemic administration of 
cannabinoid receptor agonists (43, 44), and it has been associated 
with the stimulation of cerebellum and basal ganglia CB1 receptors 
(43, 45, 46). However, preclinical studies reported that cannabinoid 
receptor agonists time- and dose-dependently modulated rodent 
spontaneous locomotion in a biphasic fashion, with a facilitation 
and an inhibition at low and high doses, respectively. This biphasic 
effect has been displayed by the endocannabinoid anandamide 
(47), Δ9-THC (41, 48) along with the synthetic compounds WIN 
55,212-2 (44), JWH-018-R (17), 5 F-ADBINACA, AB-FUBINACA, 
and STS-135 (42), suggesting that it is typical of the cannabinoid 
system and not of a single molecule class (43).

Although the acute administration of either JWH-018 
(0.3 mg/kg) or AKB48 (1 mg/kg) induced a prompt facilitation 
of mouse spontaneous locomotion, the profile of action of the 
two compounds is different. In particular, while the effect of 
JWH-018 is long-lasting, AKB48 only induces a transitory 
(15 min) increase, after which the inhibitory effect of the com-
pound prevails, as evidenced by the significant increase in the 
animal’s immobility time (Figure  1B). These diverse profiles 
are probably due to the different doses of JWH-018 (0.3  mg/
kg) and AKB48 (1 mg/kg) used, and to their pharmacokinetic, 
rather than pharmacodynamics, properties (see also below). It 
seems likely that the steric hindrance of the adamantly group 
of AKB48 delays the passage through the blood–brain barrier 
or limits a quick bond to CB1 receptors. Furthermore, although 
JWH-018 [Ki = 5.82 nM; (6)] and AKB48 [Ki = 5.34 nM; (7)] 
show similar nanomolar affinity for CD-1 mouse CB1 receptor, 
their in  vivo behavioral responses are quantitatively different, 
being JWH-018 more effective (7).

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


FigUre 5 | Effect of cocaine [100 nM; (a)], amphetamine [10 µM; (a)], JWH-018 [100 nM and 1 µM, (B)], and AKB48 [100 nM and 1 µM, (c)] on spontaneous 
[3H]-dopamine (DA) efflux from striatal synaptosomes obtained from CD-1 mice. Data are expressed as percentage of basal values and represent the mean ± SEM 
of 4–6 repetitions for each treatment. ***p < 0.001 significantly different from the respective control group according to ANOVA followed by Newman–Keuls test for 
multiple comparisons.

FigUre 4 | Effect of the systemic administration of cocaine [20 mg/kg i.p.; (a)], amphetamine [10 mg/kg i.p.; (B)], JWH-018 [0.3 mg/kg i.p.; (c)], and AKB48 
[0.3 mg/kg i.p.; (D)] on dopamine (DA) transmission in the nucleus accumbens (NAc) shell of mice. Results are expressed as mean ± SEM of change in DA 
extracellular levels expressed as the percentage of basal values. *p < 0.05, ***p < 0.001 versus vehicle (NAc shell n = 13) (two-way ANOVA, Tukey’s HSD post hoc).
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Normally, rodents tend to move in the perimeter of an arena 
(i.e., thigmotaxis), thus, spending there more time than in the 
center of the apparatus. As from an ethological point of view, a 
mouse that spends more time in an open space is less concerned 
about being attacked by predators. In fact, the animal’s occupancy 
of the peripheral areas, either in corners or near the walls, has 

been identified as an index of “timidity” (49) or “anxiety” (50, 
51). The present behavioral data also demonstrate that JWH-018 
and AKB48 qualitatively increase the mouse spontaneous motor 
activity (total distance traveled) in a similar way to cocaine (18–
22) and amphetamine (23–25). However, in respect to cocaine 
and amphetamine, the two SCBs displayed a different behavioral 
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FigUre 6 | Effects of cocaine (1 µM), the selective dopamine (DA) reuptake 
blocker GBR 12783 (20 nM), amphetamine (1 µM), JWH-018 (1 µM, 
100 nM), and AKB48 (1 µM, 100 nM) on [3H]-DA uptake in striatal 
synaptosomes from CD-1 mice. The drugs were added to synaptosomes 
5 min before [3H]-DA and uptake was measured for 10 min at 37°C. A 
same volume of drug vehicle (Kreb’s solution or ethanol) was added 5 min 
before [3H]-DA incubation in the control/vehicle groups, respectively. The 
effect of the treatments on [3H]-DA uptake is expressed as percent of 
control values, i.e., tritium content measured in untreated synaptosomal 
aliquots, always assayed in parallel (100 ± 3%, n = 4; indicated by a 
dashed line). Unspecific uptake was measured at 0°C. Each treatment bar 
represents the mean ± SEM of four determinations ran in duplicate. 
**p < 0.01, *p < 0.05 significantly different from GBR 12783 20 nM; 
°°p < 0.01, °p < 0.05 significantly different from amphetamine 1 µM; 
▪▪p < 0.01, ▪p < 0.05 significantly different from cocaine 100 nM according 
to one-way ANOVA followed by Newman–Keuls test for multiple 
comparisons.
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profile as assessed by evaluating the mouse arena’s exploration. In 
fact, unlike the two psychostimulants, SCBs increase the animal’s 
standing time at the center of the arena, suggesting an “anxiolytic-
like” profile in the open field context (52, 53). This behavior, unu-
sual for the mouse, suggests that the administration of SCBs may 
cause a reduction in the danger perception (54). This finding is in 
line with previous data demonstrating that CB1 receptor agonists, 
at least at low doses, induced anxiolytic effects in rodents (52, 
55–57). However, it cannot be ruled out that the motor stimula-
tion effect associated with motor sensory impairment caused by 
JWH-018 and AKB48 (7, 41) may lead the mouse to a loss of 
sensory contact with the walls of the box and to the consequent 
disoriented movements into the open space of the arena. In fact, 
spatial information collected by tactile sensations and integrated 
in visual control in rodents play a pivotal role of spatial orienta-
tion (58, 59). Conversely, cocaine and amphetamine increase the 
time spent in the peripheral arena, suggesting an “anxiogenic-
like” effect, which is typical of stimulant substances promoting 
catecholaminergic transmission (60, 61). This anxiogenic-like 
behavior causes greater alertness and attention in the mouse by 
promoting the combat and flight behavior that is typical of non-
predatory animals, such as the mouse (54).

As reported above, JWH-018- and AKB48-induced increases 
in motor activity were prevented by pretreatment with SCH23390 
(D1/5 receptor antagonist) and haloperidol (D2/3 receptor antago-
nist), thus suggesting that increased DA transmission underlies 

the SCBs motor-stimulant properties. This is consistent with the 
implication of dopaminergic mechanisms in the motor-stimulant 
properties of amphetamine and cocaine (19, 62, 63). In view of 
this, along with the different behavioral profile of action of the 
compounds under investigation, in vivo and in vitro experiments 
have been performed in order to evaluate their effects on dopa-
minergic system. Interestingly, in vivo DaTSCAN imaging studies 
demonstrated that, similarly to amphetamine and cocaine, either 
JWH-018 or AKB48 administration decreased the [123I]-FP-
CIT binding to DAT in mice striatum. In consideration of this 
finding, in vitro experiments have been performed to verify the 
possible direct interaction between the two SBCs and DAT. In 
fact, previous data proposed that both cannabinoid agonists and 
antagonists inhibit DAT activity via molecular targets other than 
CB1 receptors (64). The present in  vitro competition binding 
experiments clearly indicated that, unlike cocaine and ampheta-
mine, JWH-018 and AKB48 did not bind to DAT expressed in 
mouse striatal nerve terminals, while they showed only a low 
affinity (micrometer range) for human DAT in CHO transfect 
cell membranes. The affinity values of cocaine and amphetamine 
for human DAT, observed in this present study, are in line with 
literature data (65, 66). Despite various paper reported the affinity 
values of GBR 12783, cocaine, and amphetamine in rat striatum, 
this is the first study, to our knowledge, reporting [3H]-WIN 
35,428 competition binding experiments of these compounds 
in mouse striatal synaptosomes, where they show affinity values 
similar to those found on human DAT. In line with the binding 
results, this study also demonstrates that, in contrast to cocaine 
and amphetamine, neither JWH-018 nor AKB48, at the concen-
tration tested, significantly affected [3H]-DA uptake from murine 
striatal synaptosomes. This is in apparent contrast with some lit-
erature data showing that cannabinoids significantly reduces DA 
uptake in striatal nerve terminals or slices (64, 67, 68). However, 
in line with the present results, a previous study (69) failed to 
observe alterations of DA uptake following treatment of mouse 
striatal synaptosomes with some SCBs. Although other possibility 
cannot be definitely ruled out, it seems likely that these discrepan-
cies could be due to the different experimental conditions used in 
the reported studies (i.e., different cannabinoid receptor agonists, 
different drug concentrations, different DA concentration, and 
time of incubation).

Taking into account the above in  vitro results, the possibil-
ity that the observed JWH-018- or AKB48-induced reduction 
of [123I]-FP-CIT signal in the mice striatum is due to a direct 
interaction between the SCBs and DAT seems unlikely. A logi-
cal alternative explanation is that JWH-018 or AKB48 systemic 
administration induces an increase in the levels of endogenous 
DA which, in turn, competes with [123I]-FP-CIT for DAT. This 
hypothesis is supported by the present in vivo microdialysis results, 
showing that the systemic administration of a low dose of JWH-
018 (0.3 mg/kg) or AKB48 (0.3 mg/kg) stimulated extracellular 
DA levels in the NAc shell of freely moving mice. In particular, 
either JWH-018 or AKB48 caused a maximal increase to ~150% 
of baseline DA concentrations. However, in line with the drug 
behavioral profile, the effect of JWH-018 was long-lasting, while 
the effect of AKB48 was transient. As expected, either cocaine 
or amphetamine also increased DA extracellular levels and their 
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effects were significantly higher than those of the two SCBs. It is 
well established that the mechanism of action of these classes of 
drugs is different. Indeed, classical psychostimulants, as cocaine 
and amphetamine, increase DA neurotransmission by inhibiting 
the DAT activity in DA nigrostriatal and mesolimbic neuronal 
terminals; in particular the psychostimulant-induced increase 
in DA neurotransmission is mainly due to DA reuptake inhibi-
tion, an enhancement of DA release or to a combination of the 
two mechanisms (70–78). On the contrary, SCBs increase NAc 
shell DA release mainly through indirect CB1 receptor-mediated 
mechanisms. In fact, while CB1 receptors are not expressed 
on midbrain DA neurons (79), CB1 receptor activation closely 
modulates DA neuronal activity, through modulation of local 
circuitry in the midbrain (80). In mesolimbic DA pathway, CB1 
receptors are located in axon terminals forming either inhibitory 
or excitatory-type synapses with dopaminergic as well as non-
dopaminergic, putative GABAergic, neurons in the VTA, and 
systemic administration of CB1 receptor agonists enhances the 
bursting activity of VTA DA neurons, many of which project 
to the NAc shell (81). It has been reported that, by reducing the 
activity of GABAergic terminals, cannabinoids can facilitate 
dopaminergic activity through suppression of inhibitory input 
onto GABAA or GABAB receptors on DA neurons (80). In line 
with this, ex vivo whole cell patch clamp recordings from rat VTA 
DA neurons showed that JWH-018 decreases GABAA-mediated 
post-synaptic currents, suggesting that the stimulation of DA 
release observed in vivo might result from a disinhibition of DA 
neurons (26, 82, 83). The different mechanisms underlying the 
SBCs- or psychostimulants-induced DA release are confirmed 
by the present in vitro studies on striatum, including NAc, nerve 
ending. In fact, accordingly to their direct or indirect inhibitory 
modulation of DAT activity and DA-releasing effects, either 
amphetamine or cocaine significantly increased [3H]-DA efflux 
from mouse striatal synaptosomes. In this context, it is worth not-
ing that under the present experimental conditions (i.e., 0.3 ml/
min flow rate) DA levels in the perfusate have been reported to 
represent the net consequence of [3H]-DA release and reuptake 
(84). Differently, JWH-018 and AKB48 did not induce any effects 
on spontaneous [3H]-DA efflux from murine striatal synapto-
somes. These findings are in line with previous data showing that 
the CB1/CB2 cannabinoid receptor agonists WIN 55,212-2 and 
CP 55,940 had no effects on basal and electrically evoked DA 
release in the corpus striatum and the NAc slices (85). The lack of 
a presynaptic effect on terminals of nigrostriatal and mesolimbic 
dopaminergic neurons is also in accord with the absence of CB1 
receptor on dopaminergic terminals (see above). Taken together, 
these findings indicate that, at least at the concentration tested, 
the two SCBs did not affect the DAT activity, leading to hypoth-
esize that their inhibitory effects on the [123I]-FP-CIT binding to 
DAT in the mice striatum could be a consequence of an increase 
in endogenous DA levels.

cOnclUsiOn

The present data demonstrate, for the first time, that JWH-018 
and AKB48 induce psychostimulant effects in mice possibly 

related to the facilitation of NAc DA release induced by the 
two compounds. Although the motor activation induced by 
the tested SCBs or the two classical psychostimulants involve 
dopaminergic mechanisms, it seems likely that the two classes of 
compound recruit different neurochemical pathways in mouse 
nigrostriatal and mesolimbic regions. These data, according to 
clinical reports, outline the potential psychostimulant action 
of SCBs highlighting their possible danger to human health  
(16, 86–89).
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