

Therapeutic Potential of Selectively Targeting the α_{2C} -Adrenoceptor in Cognition, Depression, and Schizophrenia—New Developments and Future Perspective

Madeleine Monique Uys¹, Mohammed Shahid² and Brian Herbert Harvey^{1*}

¹ Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa, ² Orion Pharma, Orion Corporation, Nottingham, United Kingdom

OPEN ACCESS

Edited by: Ming D. Li,

Zhejiang University, China

Reviewed by: Carlos M. Opazo,

The University of Melbourne, Australia Albert Gjedde, University of Copenhagen, Denmark

> *Correspondence: Brian Herbert Harvey brian.harvey@nwu.ac.za

Specialty section:

This article was submitted to Molecular Psychiatry, a section of the journal Frontiers in Psychiatry

Received: 17 October 2016 Accepted: 24 July 2017 Published: 14 August 2017

Citation:

Uys MM, Shahid M and Harvey BH (2017) Therapeutic Potential of Selectively Targeting the α_{2C}-Adrenoceptor in Cognition, Depression, and Schizophrenia— New Developments and Future Perspective. Front. Psychiatry 8:144. doi: 10.3389/fpsyt.2017.00144 $\alpha_{2A^{-}}$ and $\alpha_{2C^{-}}$ adrenoceptors (ARs) are the primary $\alpha_{2^{-}}$ AR subtypes involved in central nervous system (CNS) function. These receptors are implicated in the pathophysiology of psychiatric illness, particularly those associated with affective, psychotic, and cognitive symptoms. Indeed, non-selective α_2 -AR blockade is proposed to contribute toward antidepressant (e.g., mirtazapine) and atypical antipsychotic (e.g., clozapine) drug action. Both α_{2C} and α_{2A} -AR share autoreceptor functions to exert negative feedback control on noradrenaline (NA) release, with α_{2C} -AR heteroreceptors regulating non-noradrenergic transmission (e.g., serotonin, dopamine). While the α_{2A} -AR is widely distributed throughout the CNS, α_{2C} -AR expression is more restricted, suggesting the possibility of significant differences in how these two receptor subtypes modulate regional neurotransmission. However, the α_{2C} -AR plays a more prominent role during states of low endogenous NA activity, while the α_{2A} -AR is relatively more engaged during states of high noradrenergic tone. Although augmentation of conventional antidepressant and antipsychotic therapy with non-selective α_2 -AR antagonists may improve the rapeutic outcome, animal studies report distinct yet often opposing roles for the α_{2A} - and α_{2C} -ARs on behavioral markers of mood and cognition, implying that non-selective a2-AR antagonism may compromise therapeutic utility both in terms of efficacy and side-effect liability. Recently, several highly selective α_{2C} -AR antagonists have been identified that have allowed deeper investigation into the function and utility of the α_{2C} -AR. ORM-13070 is a useful positron emission tomography ligand, ORM-10921 has demonstrated antipsychotic, antidepressant, and pro-cognitive actions in animals, while ORM-12741 is in clinical development for the treatment of cognitive dysfunction and neuropsychiatric symptoms in Alzheimer's disease. This review will emphasize the importance and relevance of the α_{2C} -AR as a neuropsychiatric drug target in major depression, schizophrenia, and associated cognitive deficits. In addition, we will present new prospects and future directions of investigation.

Keywords: Alzheimer's disease, α_{2C} -antagonism, schizophrenia, depression, cognition, ORM-10921

INTRODUCTION

The α_2 -adrenoceptor (AR) plays an important role in modulating the release of noradrenaline (NA) and various other important neurotransmitters in the central nervous system (CNS), providing a solid construct why drugs that target these receptors have clinical utility in several major neuropsychiatric disorders (1). The α_{2} - (and α_{1} -) AR plays a prominent role in the functioning of the prefrontal cortex (PFC) and as such mediates the effect of normal, aroused, and stressed NA levels on memory and other cognitive processes (2). To this end α_2 -AR antagonists mianserin and mirtazapine have seen widespread use in the therapy of major depressive disorder (MDD), while almost all atypical antipsychotics display moderate to potent levels of α_2 -AR antagonism, which has been suggested to underlie the atypical profile of antipsychotics such as clozapine, quetiapine, risperidone, and asenapine (3, 4). Importantly, both conventional antipsychotics (5-7) and antidepressants (8-10) show improved efficacy following augmentation with an α_2 -AR antagonist. Furthermore, cognitive parameters are also influenced by α_2 -AR modulation with α_2 -AR antagonism shown to improve attentional, verbal, and episodic memory deficits in patients with frontal dementia, although spatial working memory is unaffected (11). This is because stimulation of the cortical postsynaptic α_{2A} -AR by NA is critical in the function of specific cognitive domains such as working memory (12), which is why α_2 -AR agonists are successfully used in the treatment of cognitive aspects of attention-deficit hyperactivity disorder (ADHD) (13). However, studies have indicated that α_2 -AR subtypes may not equally contribute to these beneficial effects on mood, psychotic, and cognitive disorders. In fact, findings from transgenic mouse studies have indicated distinct and sometimes opposing roles for the α_{2A} -AR and α_{2C} -AR (14–16), the two primary α_2 -AR subtypes involved in the regulation of CNS neurotransmission (refer to Table 1 for summary). Before the availability of sufficiently subtype-selective ligands, evidence from transgenic mouse studies have indicated a potential therapeutic role for selective antagonism of the α_{2C} -AR in MDD, schizophrenia and associated cognitive impairment (16). More recently, the availability of highly selective α_{2C} -AR antagonists for use in preclinical research has produced evidence confirming the antipsychotic-like, antidepressant-like, and pro-cognitive effects of this treatment strategy in animal models of schizophrenia and MDD (17-21). Genetic studies have also highlighted the potential involvement of the α_{2C} -AR in these neuropsychiatric illnesses, with evidence that genetic polymorphism of the α_{2C} -AR

is associated with dysfunction in MDD (22), ADHD (23), and schizophrenia (24). With the first highly selective α_{2C} -AR subtype antagonist, ORM-12741, showing improvement of cognitive parameters in Alzheimer's Disease in Phase IIa clinical trials (25) and against a back-drop of evidence from transgenic mouse and other translational rodent models, the potential therapeutic benefit of selectively blocking α_{2C} -ARs for the treatment of cognitive dysfunction in mood and psychotic disorders has attracted renewed interest. This review will summarize evidence from transgenic mouse models relating to the function of the α_{2C} -AR in related neuropsychiatric function as well as present studies reporting on the therapeutic efficacy of selective α_{2C} -AR antagonists in illness-specific models of MDD and schizophrenia in rats. Following a short overview of the functional roles for $\alpha_{\scriptscriptstyle 2A}$ and $\alpha_{\scriptscriptstyle 2C}\text{-}ARs,$ we will outline reasons for renewed interest in selective α_{2C} -AR antagonism as a therapeutic target, its role in neurotransmitter regulation, and the evidence base for targeting this receptor for treating MDD and schizophrenia. We close with a brief discussion on the potential therapeutic benefits for α_{2C} -AR modulation in other neuropsychiatric disorders and highlight progress in developing α_{2C} -AR-related tools and technology to facilitate future basic and clinical research.

DISTINCT ROLES FOR α_2 -AR SUBTYPES

The α_2 -AR is a member of the G-protein-coupled receptor (GPCR) superfamily, belonging to the rhodopsin-like or Class A GPCR receptors (45). α_2 -ARs couple to heterotrimeric G_{i/o} proteins when activated by their endogenous agonist, leading to inhibition of adenylyl cyclase and voltage-gated calcium channels, and activation of mitogen-activated protein kinase signaling cascades (15, 46). In the CNS, GPCRs and ion channels are targeted to the membrane of dendritic postsynaptic terminals in and around the postsynaptic density (PSD) *via* interaction with various scaffolding proteins (45). These proteins function as adaptors, regulators, and effectors of postsynaptic signaling to enable neural transmission and biological response. Spinophilin in particular is associated with the α_2 -AR (45), the relevance of which will be discussed later.

The presynaptic α_2 -AR autoreceptor inhibits NA synthesis and release and as such plays an important role in negative feedback, while presynaptic a2-AR heteroreceptors located on dopaminergic, serotoninergic, glutamatergic, and other terminals regulate the release of these latter transmitters (15, 46). Postsynaptic activation of α_2 -ARs in turn modulates neuronal excitability via regulation of ion channels, including the direct modulation of inwardly rectifying potassium channels and the indirect modulation of hyperpolarization-activated channels (46). While presynaptic action at α_2 -ARs affect neuropsychiatric processes through a cascade of effects on neurotransmitter feedback and regulation, postsynaptic activation of α_2 -ARs, specifically the α_{2A} -AR, is associated with critical regulation and strengthening of working memory (12). Indeed, prefrontal cortical networks regulating various aspects of attention, cognition, and emotion require optimal catecholamine signaling, including stimulation of postsynaptic α_2 -ARs by NA to regulate "top-down" control of the

Abbreviations: ADHD, attention-deficit hyperactivity disorder; AR, adrenoceptor; BDNF, brain-derived neurotrophic factor; cAMP, cyclic adenosine monophosphate; CNS, central nervous system; DOPA, 3,4-dihydroxyphenylalanine; DA, dopamine; FST, forced swim test; FSL, Flinders Sensitive Line; FRL, Flinders resistant line; GABA, gamma-aminobutyric acid; HPA-axis, hypothalamicpituitary-adrenal axis; HVA, homovanilic acid; KO, knockout; MAPK, mitogenactivated protein kinase; MK-801, dizolcipine; MWM, Morris Water Maze; NA, noradrenaline; NMDA, *N*-methyl-D-aspartate; NORT, novel object recognition test; OE, overexpressing; PCP, phenylcyclidine; PPI, prepulse inhibition; PSD, postsynaptic density; SIR, social isolation reared/social isolation rearing; SSRI, selective serotonin reuptake inhibitor; TCA, tricyclic antidepressant; 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, serotonin; 5-HTP, 5-hydroxytryptophan.

Parameter	α2c	α _{2A}	Reference
CNS distribution	10% of α_2 -ARs in CNS Located primarily in the striatum, hippocampus, olfactory tubercle, cortex	90% of α_2 -ARs in CNS Widely spread throughout CNS structures	(26–28)
NA	NA has higher affinity and potency for α ₂₀ -AR Slower deactivation upon removal of NA Slow presynaptic negative feedback at low endogenous NA concentrations (10–100 nM) Receptor density is regulated by the synaptic availability of NA	rer deactivation upon removal of NA presynaptic negative feedback at low endogenous NA concentrations 100 nM) Faster deactivation upon removal of NA Fast presynaptic negative feedback at high endogenous NA concentrations (0.1–10 μM)	
5-HT	Modulates 5-HT synthesis to lesser extent than α_{2A} -ARMain modulator of 5-HT synthesisInhibits 5-HT release to a lesser extent than α_{2A} -ARMain inhibitor of 5-HT release		(31–33)
DOPA	Antagonism increases and agonism decreases synthesis via feedback inhibition on tyrosine hydroxylase		
Cognitive parameters	$\alpha_{\text{2C}}\text{-}AR$ antagonism improves spatial and working memory	$\alpha_{2\text{A}}\text{-}\text{AR}$ agonism improves spatial and working memory; enhances cognition	(34–39)
Antidepressant activity	$\alpha_{2C}\text{-}AR$ activation increases immobility in the FST $\alpha_{2C}\text{-}AR$ deactivation decreases immobility in the FST	$\alpha_{2\text{A}}\text{-}\text{AR}$ antagonism increases immobility and insensitivity to the effects of tricyclic antidepressants in the FST	(17, 18, 21, 40–42)
Antipsychotic activity	α_{2c} -AR-agonism improves deficits in PPI in transgenic α_{2c} -OE mice Selective α_{2c} -AR antagonists improve PPI deficit in other rodent models	$\alpha_{\text{2A}}\text{-}AR$ antagonism does not improve PPI deficits	(17–20, 43, 44)

TABLE 1 | Summary of opposing effects mediated through the α_{2C} -AR and the α_{2A} -AR.

AR, adrenoceptor; DA, dopamine; DOPA, 3,4-dihydroxyphenylalanine; CNS, central nervous system; NA, noradrenaline; 5-HT, serotonin; FST, forced swim test; KO, receptor knockout; OE, receptor overexpression; PPI, prepulse inhibition test.

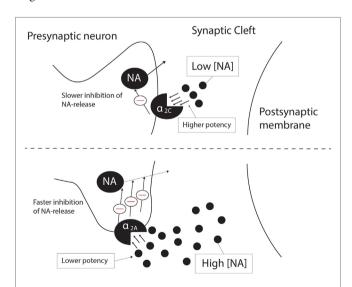
PFC over subcortical regions (12, 47). This explains, for example, why α_2 -AR agonists favoring the α_{2A} -AR have beneficial effects on memory and cognition in ADHD. However, α_2 -AR-mediated regulation of CNS function extends to the peripheral nervous system too. In this regard, the gut microbiome is increasingly being seen as a causal factor in psychiatric illness (48). Gut status is enabled to signal the CNS via a number of monoaminergic receptors located in the enteric nervous system (48), in particular dopamine (DA) (D₂), serotonin (5-HT₃; 5-HT₄), and NA receptors, the latter via inhibition of vagal (parasympathetic) activity through presynaptic α_2 receptors (49). Notwithstanding the neurophysiological importance of postsynaptic α_2 -AR activation, the literature increasingly points to selectively targeting specific α_2 -AR subtypes to exert control over presynaptic modulation of various neurotransmitter feedback systems associated with cognitive and affective functioning. While α_2 -ARs are collectively important in neural transmission, this review will delineate the therapeutic effects associated with modulation of the presynaptic α_{2C} -AR.

The presynaptic α_2 -AR consists of three subtypes which are conserved across mammalian species, identified as the $\alpha_{2A/D}$, α_{2B} , and α_{2C} -AR-subtypes; the $\alpha_{2A/D}$ designation refers to a small difference in amino acid sequence in rodents (α_{2D}) as opposed to that in humans and rabbits (α_{2A}) (50, 51). The rodent α_{2D} -AR, however, is presumed to reflect the same physiological processes and pharmacological outcomes as the α_{2A} -AR, and studies on this receptor in rodents is, therefore, reported as findings for the α_{2A} -AR. The α_2 -AR subtypes have dissimilar tissue distribution patterns, along with distinct physiological and pharmacological profiles (51, 52). While all three receptors are present in the CNS, the α_{2B} receptor is mainly expressed in the thalamus and does not seem to contribute to CNS auto- and heteroreceptor function (53). The α_{2A} -ARs and α_{2C} -ARs, on the other hand, are the primary α_2 -ARs modulating neurotransmission in the CNS (33, 53, 54), with the α_{2C} -AR recognized to play a very distinct and specific role in memory, cognition, and mood disorders in a manner different to that of the α_{2A} -AR. These separate effects will become evident in this review, and are summarized in **Table 1**.

Although 90% of α_2 -ARs in the CNS are contributed by the α_{2A} -AR, the expression of the α_{2C} -AR is more discrete, constituting approximately 10% of the total (26). Nevertheless, the α_{2C} -AR seems to play a very important role in neurotransmission and potentially in the dysregulation observed in neuropsychiatric illness. Thus α_{2C} -ARs densely populate the ventral and dorsal striatum and the hippocampus in humans (27, 51, 55), monkeys, and rodents (56). Dense population in the olfactory tubercle is also evident, while more subtle cortical expression is also evident (27, 28). The cerebellum is devoid of these receptors. Importantly, these same brain areas are populated by the α_{2A} -AR, among others (27, 57, 58). The specific distribution pattern for the α_{2C} -AR asserts its role in illnesses involving hippocampal and striatal dysfunction, such as schizophrenia and MDD, and in conditions characterized by cognitive deficits and cognitive decline involving these cortico-limbic structures (e.g., Alzheimer's disease) (27, 59-61).

The distribution of α_{2C} -ARs in human, monkey, and rodent brains are analogous (55, 56, 59, 62), implying that neuropharmacological data from transgenic mouse models and from rodent animal models may be relevant for humans also. Due to the paucity of sufficiently subtype-selective ligands, of which only a few have become available for preclinical investigation during the last decade (17–19, 63), transgenic mouse models have predominantly been used in earlier work to shed light on the physiology and pharmacology of the different α_2 -AR subtypes. Transgenic mouse models employ targeted genetic deletion or overexpression of the α_{2A} -AR and/or α_{2C} -AR to examine consequence of loss or gain of receptor function, respectively (16). Findings from these transgenic mouse models have suggested distinct and often seemingly opposing CNS roles for the α_{2A} -AR and α_{2C} -AR, with the implication that non-selective α_2 -AR modulation might potentially negate beneficial effects which could be attained by subtype-selective targeting.

Studies in genetically modified mouse models predicting antipsychotic-, antidepressant-, and pro-cognitive-like effects has brought to light an important role for the α_{2C} -AR, as illustrated by a modulation of behavior and neurotransmission akin to that seen in neuropsychiatric disorders like MDD, schizophrenia, and their associated cognitive deficits (16, 40, 43, 64-67). However, transgenic mouse studies may suffer from the unknown contribution by physiological compensatory changes that take place as a consequence of lifelong absence or overexpression of α_2 -ARs (17). For example, Sallinen et al. (43) demonstrated deficient sensorimotor gating (see Cognitive Deficits Associated With MDD and Schizophrenia) in α_{2C} -KO mice, suggesting that α_{2C} -AR antagonism may induce effects likened to psychotomimetic agents such as phencyclidine (PCP). This contradicts recent findings described in the social isolation rearing (SIR) and N-methyl-D-aspartate (NMDA)-antagonist models of schizophrenia where selective α_{2C} -AR antagonists, improved sensorimotor gating deficits (18, 20). This type of anomaly underscores the necessity to verify results obtained using transgenic mouse models with studies employing selective α_{2C} -AR ligands in more naturalistic animal models with good validity for the chosen human disorder.


The next section discusses findings regarding the role of the α_{2C} -AR as auto- and heteroreceptor in regulating neurotransmitters implicated in depressive and psychotic disorders. The findings from early studies in transgenic mouse models and studies using moderately selective α_2 -AR subtype ligands are reported and are aligned with new evidence using novel highly subtype-selective ligands, where available.

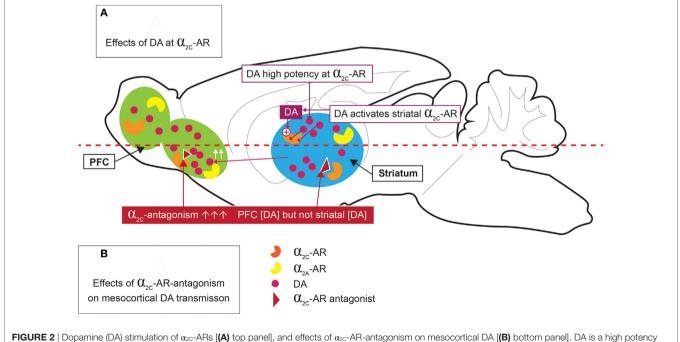
ROLE OF THE α_{2c} -AR IN REGULATING KEY NEUROTRANSMITTERS

Despite a number of new theories that have been put forward to explain the underlying biology and development of mood and psychotic disorders, targeting monoaminergic transmission as a construct toward understanding and treating these disorders remains a relevant subject of investigation [reviewed in Ref. (68)]. The latter review emphasizes that while oxidative stress, neuroinflammation and neuroplastic/degenerative events are implicated in these disorders, selectively and appropriately targeting monoaminergic processes remains a core construct in novel antidepressant and antipsychotic drug development. The α_{2C} -AR is associated with various effects on monoamine turnover. When treated with the subtype non-selective α_2 -AR agonist, dexmedetomidine, agonist-induced decreases in monoamine levels were absent in α_{2C} -OE mice, while concentrations of DA, NA, and serotonin (5-HT) were shown to be increased in the brains of α_{2C} -KO mice (67). Deactivation of α_{2C} -ARs might thus facilitate increased CNS monoamine levels, which could be of benefit in disorders where monoamine dysfunction is apparent. However, α_{2C} -heteroreceptors modulate other neurotransmitters implicated in the pathophysiology of these disorders, such as γ -aminobutyric acid (GABA), glutamate, and acetylcholine, as will be discussed.

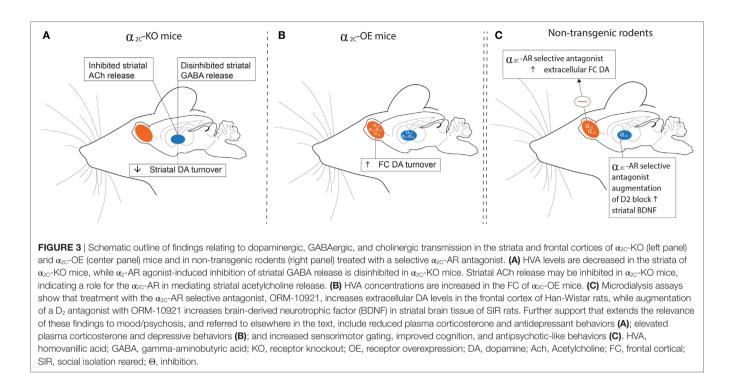
Noradrenaline

The α_{2A} -AR and α_{2C} -AR are the main autoreceptors involved in presynaptic feedback inhibition of NA, with the α_{2B} -AR making no significant contribution to NA feedback inhibition (14). However, the potency and affinity of NA at the α_{2C} -AR is higher than that for the α_{2A} -AR (14, 29, 69), and evidence from peripheral and CNS tissue demonstrates that the α_{2C} -AR would inhibit NA release at low [10-100 nM, adapted from Ref. (14)] endogenous concentrations of NA as opposed to high [0.1 -10 µM, adapted from Ref. (14)] concentrations for the α_{2A} -AR (14, 26). Deactivation kinetics also differs for the α_{2A} -AR and α_{2C} -AR, with the α_{2C} -AR displaying much slower deactivation upon removal of NA than the α_{2A} -AR (29). Despite their more modest presentation in the CNS, α_{2C} -ARs will, therefore, have distinct effects on a number of important neurotransmitters (see below), while its effects on NA'ergic transmission cannot be underestimated. Along with the α_{2A} -AR, α_{2C} -ARs are involved in the presynaptic negative feedback loop on NA release in the cortex, although α_{2C} -AR-mediated presynaptic inhibition occurs more slowly than that mediated by α_{2A} -ARs (26). Figure 1 depicts this proposed differential regulation on NA feedback and receptor pharmacodynamics mediated by α_{2A} -ARs and α_{2C} -ARs. Furthermore, the α_{2C} -AR produces a limited inhibition of NA release (maximum 20-30% in hippocampal tissue) in contrast to the α_{2A} -AR (26), which would suggest that from a therapeutic perspective, α_{2C} -AR modulation would provide a more subtle and targeted effect on NA release, while limited effects on NA release

FIGURE 1 | Differential presynaptic inhibition of NA release by the α_{2c} -AR (top panel) and the α_{2A} -AR (bottom panel). At low endogenous NA concentrations (10–100 nM), the α_{2c} -AR is responsible for inhibition of NA release, while the α_{2A} -AR inhibits NA release at high endogenous NA concentrations (0.1–10 μ M). α_{2c} -AR-mediated inhibition of NA release is a slower process than that of α_{2A} -AR-mediated inhibition, although the potency and affinity of NA is higher at the α_{2c} -AR than at the α_{2A} -AR. See text for more detail. NA, noradrenaline; Θ , inhibition.


could potentially dampen the potential for cardiovascular side effects, which are a significant concern with α_{2A} -AR antagonism (26). Ordway and co-workers demonstrated that the density of α_{2C} -AR binding sites increases 3 weeks after the destruction of NA terminals in the rodent cerebral cortex, which suggests that α_{2C} -AR density is regulated by the synaptic availability of NA. In contrast, altered α_{2A} -AR density was not observed under the same conditions (30). This effect of synaptic availability on α_{2C} -AR expression might imply a unique role for the α_{2C} -AR in disorders characterized by noradrenergic dysregulation, such as MDD and schizophrenia.

The α_{2C} -AR has also been implicated in α_{2} -autoreceptormediated modulation of hippocampal and cortical DA and NA synthesis via feedback inhibition on tyrosine hydroxylase, which converts tyrosine to the DA precursor 3,4-dihydroxyphenylalanine (DOPA) (31). These authors used early subtype-specific antagonists and agonists to measure levels of DOPA and NA in rodent hippocampus and cerebral cortex, with $\alpha_{2B/C}$ -AR antagonists increasing synthesis of DOPA and $\alpha_{2B/C}$ -AR agonists decreasing its synthesis. Although the ligands used in this study were $\alpha_{2B/C}$ -AR specific ligands, the expression of α_{2B} -ARs is limited to the hypothalamus and does not seem to contribute to auto- and heteroreceptor function in the CNS (53). This study also reported that α_{2A} -AR specific antagonism and agonism were devoid of effects on DOPA. However, a limitation of this study is that the subtype-specific ligands used also present with some antagonist activity at 5-HT_{1A} receptors (32). α_{2C} -AR selective antagonism could, however, play a role in increasing DA and NA levels and thus be of benefit in the treatment of neuropsychiatric illness. Nevertheless, these findings need to be confirmed using novel, highly subtype-selective α_2 -AR ligands.


Dopamine

The high expression of α_{2C} -ARs in the striatum allows it to modulate presynaptic DA release and DA-mediated behaviors (26). Of particular interest is that Zhang and co-workers (64) provided early evidence for the ability of DA to function as an activating ligand on striatal α_{2C} -ARs, while Sallinen and co-workers (18) used a novel α_{2C} -AR selective antagonist (ORM-10921) to show increased in vitro α_{2C} -AR potency and selectivity ratios in the presence of DA as agonist (Figure 2). These authors also reported that ORM-10921 increases extracellular DA levels in the rodent PFC. In support of the correlation between DA activity and α_{2C} -AR activity, early studies indicated changes in brain DA metabolism in α_{2C} -KO and α_{2C} -OE mice (67) (Figure 3). α_{2C} -OE mice show higher levels of the DA metabolite homovanillic acid (HVA) in the frontal cortex but not in the striatum compared to wild-type controls, whereas α_{2C} -KO animals showed lower HVA concentrations in the striatum (67), although not in the frontal cortex (Figure 3). These findings suggest decreased striatal but not frontal cortical DA turnover in response to $\alpha_{\text{2C}}\text{-}AR$ deactivation and increased cortical DA turnover in response to α_{2C} -AR stimulation. Therefore, an important relationship exists between DA and the α_{2C} -AR. The therapeutic potential of this can be realized in the targeting of α_{2C} -ARs in disorders characterized by mesolimbic-cortical DA imbalance, such as schizophrenia or as demonstrated in SIR rats (20).

 α_{2C} -ARs also modify D-amphetamine-induced hyperlocomotion. Here D-amphetamine administration is associated with increased DA and NA release in the caudate nucleus and nucleus accumbens of the dorsal and ventral striatum, respectively, as well as in the PFC, together with co-presenting hyperactive behavior (70–72). Hyperlocomotion was further increased in

FIGURE 2 | Dopamine (DA) stimulation of α_{2c} -ARs [(A) top panel], and effects of α_{2c} -AR-antagonism on mesocortical DA [(B) bottom panel]. DA is a high potency agonist at the α_{2c} -AR, where it may have significant implications for DA release in the striatum and prefrontal cortex (PFC). α_{2c} -AR antagonism increases PFC DA levels, but not striatal DA levels.

 $\alpha_{2C}\text{-}KO$ mice following D-amphetamine administration, while D-amphetamine-induced hyperlocomotion was attenuated in $\alpha_{2C}\text{-}OE$ mice (66). Subsequent studies with methylphenidate, a drug which also increases DA release and blocks DA and NA reuptake, showed increased response rates in a cognitive task sensitive to alterations in striatal DA levels in $\alpha_{2C}\text{-}KO$ mice (73). The effects of drugs that increase synaptic DA could, therefore, be enhanced by antagonism of the $\alpha_{2C}\text{-}AR$, further emphasizing the role of $\alpha_{2C}\text{-}ARs$ in regulating DA release and metabolism.

Serotonin

Less evidence is available to delineate the role of the α_{2C} -AR on serotonergic function. The hippocampal and cortical synthesis of the serotonin (5-HT) precursor, 5-hydroxytryptophan (5-HTP), via the rate-limiting enzyme tryptophan hydroxylase, seems to be dependent on both α_{2A} -ARs and α_{2C} -ARs in the rodent, with α_{2A} -ARs emerging as the main α_2 -AR modulating 5-HT synthesis (31). Non-selective α_2 -AR agonism decreases 5-HTP levels in rodent hippocampus and cerebral cortex, while an increase in cortical 5-HTP levels seems to be largely induced by α_{2A} -specific antagonism, with a $\alpha_{2B/C}$ -AR antagonist producing an *increase* in 5-HTP levels (markedly less than that by a α_{2A} -AR antagonist). These effects were not mirrored in the hippocampus, although $\alpha_{2B/C}$ -AR specific antagonism decreased hippocampal 5-HTP levels in this brain region (31). Similarly, α_2 -AR-agonist-induced inhibition of 5-HT release is dependent on both α_{2A} -ARs and α_{2C} -ARs, although the α_{2C} -AR exerts a more subtle effect on 5-HT release (33). These authors demonstrated that α_{2C} -KO mice present with lower disinhibition of agonist-induced 5-HT release in hippocampal and occipito-parietal cortex slices compared to α_{2A} -KO mice. The α_{2A} -AR is, therefore, the main α_2 -AR regulating 5-HT release and possibly 5-HT synthesis. Nevertheless, selective

antagonism of the α_{2C} -AR could result in meaningful increases in 5-HT release and region-specific 5-HT synthesis (e.g., provoking serotonergic behaviours in Flinders Sensitive Line (FSL) rats (21)), which may be of importance in various neuropsychiatric illnesses characterized by altered serotonergic neurotransmission, such as obsessive compulsive disorder, MDD, and schizophrenia. Confirmation of these findings using highly selective α_{2C} -AR subtype ligands and in appropriate animal models is, therefore, warranted (e.g., FSL rats; 21).

Gamma-Aminobutyric Acid

Apart from effects on the synthesis and release of monoamines, the α_{2C} -AR is an important mediator of striatal, but not hippocampal GABA release (65) via heteroreceptor actions. While α_{2C} -ARs and α_{2A} -ARs are located on different striatal neurons, almost all GABAergic projection neurons in the striatum contains α_{2C} -ARs (60), which project to the globus pallidus and substantia nigra (74). Inhibition of striatal GABA release by an α_2 -AR antagonist (RX821002) is completely blocked in α_{2C} -KO mice, while enhancement of striatal GABA release by an α_2 -AR agonist is maintained in these mice, suggesting that inhibition of striatal GABA release is strongly mediated by the α_{2C} -AR (65). Striatal GABAergic transmission and response to α₂-AC modulation is depicted in Figure 3. This response was not found with respect to hippocampal GABA release (65). These findings could suggest that selective blockade of the α_{2C} -AR may mediate disinhibited GABA release in brain regions with dense dopaminergic innervation and low noradrenergic innervation (3). Considering the presence of α_{2C} -ARs in the striatum (particularly the reward centers), and the role of GABAergic transmission in mania and the action of mood stabilizers (75), selective α_{2C} -AR antagonism could be of value in disorders like schizophrenia in which

deficient GABAergic transmission may play a pathophysiological role (76).

Glutamate

Although it is known that α_{2A} -AR modulate glutamate release via heteroreceptor-mediated cross-talk at glutamatergic neurons (77, 78), very little information is available on the specific role of the α_{2C} -AR on central glutamatergic neurotransmission. Additional studies delineating the role of the α_{2C} -AR on glutamatergic neurotransmission is warranted. Non-selective a2-AR antagonism per se does not seem to be beneficial in reversing NMDA-antagonist-induced cognitive impairment in rodent models (79), while non-selective α_2 -AR agonism may ameliorate these impairments (80-82). Contrasting the aforementioned findings, a_{2C}-AR selective antagonists JP-1302, ORM-10921 and ORM-12741 reverse cognitive and social dysfunction in NMDAantagonist-induced animal models of neuropsychiatric illness (17–19), indicating a beneficial role of selective α_{2C} -AR antagonism (and not agonism) in attenuating symptoms induced by hypoglutamatergic states, although the mechanism is uncertain.

Disturbances in glutamate are well described in MDD and schizophrenia, while glutamatergic transmission represents an important target in pharmacological management of these disorders (68). Non-selective activation of α_2 heteroreceptors on glutamatergic neurons by NA reduces glutamate release in various brain areas implicated in MDD and schizophrenia, including the frontal cortex, ventral tegmental area, hippocampus, and nucleus accumbens (77, 83). Moreover, the treatment arsenal for both MDD and schizophrenia include drugs that are α_2 -AR antagonists that would thus facilitate disinhibition of glutamate release. In support of this notion, the addition of a non-selective α_2 -AR-antagonist to a D₂-blocker *increases* frontal cortical glutamatergic neurotransmission in rodents to a similar extent as the atypical antipsychotic clozapine, while at the same time improving cognitive and negative symptoms (3, 7, 84). Notably, clozapine has a threefold to fourfold higher α_{2C} over α_{2A} selectivity ratio and one of the highest α_{2C} over D_2 selectivity ratios compared to other antipsychotics. The novel antipsychotic asenapine also presents with increased affinity for the α_{2C} -AR and has good efficacy in treating both positive and negative symptoms of schizophrenia (4). Like that observed with clozapine and following the combination of a α_2 -AR lytic with a DA antagonist (7, 84), asenapine enhances frontal cortical glutamate transmission via DA activation of D1 receptors (85). Considering the above described effects of α_2 -lytic activity on prefrontal cortical glutamatergic transmission (84), measuring frontal cortical NMDA currents in NMDA-antagonist model of schizophrenia might elucidate the effects whereby α_{2C} -AR selective antagonists improve NMDA-induced behavioral deficits.

Thus, the above findings suggest that α_{2C} -AR antagonism allows the regulation of cortical glutamatergic transmission, which may underscore a therapeutic option in schizophrenia and cognitive dysfunction in particular. The involvement of α_{2C} -ARs in the inhibition of striatal GABA release as mentioned above (65), could also indicate an indirect role of the α_{2C} -AR in glutamate release, since glutamate release is also tonically regulated by GABAergic interneurons (86).

Acetylcholine

Dysfunctional central cholinergic transmission has been implicated in the underlying pathophysiology of mood disorders, cognitive dysfunction, and schizophrenia [reviewed in Ref. (87)], while various drugs target the cholinergic system in an attempt at improving the above symptoms (88-90). Deficits in cholinergic transmission are also central to cognitive and memory dysfunction evident in Alzheimer's disease (91). α_2 -adrenergic heteroreceptors, as well as D2 receptors, inhibit the release of acetylcholine (1). Similarly, the α_{2C} -AR might be involved in the presynaptic regulation of cholinergic transmission. Since acetylcholine inhibits GABA release (92), Zhang and Ordway (65) have posited that α_{2C} -AR effects on striatal GABA release (described above) might be attributed to the location of α_{2C} -ARs on striatal cholinergic neurons. These authors have also reported that the α_{2C} -AR mediates inhibition of striatal adenylyl cyclase and acetylcholine release, while these effects might be related to tonic activation of the α_{2C} -AR by DA (64, 65). A selective α_{2C} -AR antagonist might thus disinhibit striatal acetylcholine release that in turn may decrease extracellular striatal DA (87) (Figure 3). The findings of Zhang and Ordway (65) might thus be applicable to a neuropsychiatric disorder characterized by striatal dopaminergic over-activity, such as schizophrenia. A complex interplay of cortico-striatal cholinergic, GABAergic, and glutamatergic transmission has been described in the pathophysiology of schizophrenia (87), along with cholinergic regulation of dopaminergic and serotoninergic transmission and vice versa. However, more evidence in this regard using α_{2C} -AR selective ligands is required to enable more definitive conclusions regarding the interplay of the α_{2C} -AR, the cholinergic system and the effect of this interplay in neuropsychiatric disorders. Importantly though, the selective α_{2C} -AR antagonist, ORM-12741, has demonstrated favorable effects on episodic memory in patients with Alzheimer's disease (25), thus providing proof of concept regarding targeting of the α_{2C} -AR in disorders of cognition, possibly *via* beneficial effects on cholinergic neurotransmission.

The α_{2C} -AR thus seems to play a distinct role in monoaminergic, GABAergic, glutamatergic, and possibly cholinergic neurotransmission, making it a promising target in several neuropsychiatric illnesses characterized by dysregulation in the aforementioned pathways, in particular MDD, schizophrenia, and conditions associated with cognitive decline. The potential therapeutic role of the α_{2C} -AR in these conditions, including an overview of evidence implicating its involvement in associated cognitive processes, will now be presented.

THERAPEUTIC POTENTIAL OF TARGETING THE α_{2C} -AR IN MDD AND SCHIZOPHRENIA

Behavioral Deficits Associated With MDD

A genetic polymorphism of the α_{2C} -AR has been associated with emotional dysfunction in MDD (22). The α_{2C} -AR is densely expressed in the hippocampus, an area that is prominent in the pathophysiology of MDD (93). MDD is thought to be characterized, at least in some patients, by deficits in monoamine activity and diminished inhibitory neural control of the hippocampus and PFC over the hypothalamic–adrenal–pituitary axis (HPA-axis), resulting in HPA-axis over-activity with reduced negative feedback and hypercortisolaemia (94). Additionally sleep alterations, deficient neurotrophic signaling and the effects of chronic stress on neurotrophic factors and hippocampal atrophy has been hypothesized to underlie the complex pathophysiology of the disorder (95, 96). Aside from limbic function, the hippocampus plays an important role in learning and memory, and hippocampal atrophy could account for the cognitive deficits that accompany MDD (93).

Antidepressants generally increase the levels of NA, 5-HT and DA to varying degrees depending on the class of antidepressant (97). However, about 40% of patients do not respond to the most commonly used conventional antidepressants (98, 99). Considering that α_{2C} -ARs are densely expressed in the hippocampus, this AR subtype might be a potential target to address hippocampal-related disturbances in MDD. α_2 -AR dysregulation in depressive disorders is widely described in the literature [Ref. (46) for review], with increased α_2 -AR density found in platelets and in post-mortem brain tissue of depressed suicide completers in the locus coeruleus, temporal and frontal cortex, hippocampus and hypothalamus (100-103). Moreover, receptor upregulation has been specifically associated with the α_{2A} -AR subtype in depressed states (104–106). The role of the α_2 -AR in the action of antidepressants is also fairly well described, of particular relevance being the α_2 -AR antagonist antidepressants, mirtazapine and mianserin (107, 108). Indeed, α_2 -AR downregulation is induced by tricyclic antidepressants (TCAs) and mirtazapine in rodents and depressed humans (brain and platelets), although regional differences in α_2 -AR downregulation have been noted in the CNS [reviewed in Ref. (46)].

The rodent forced swim test (FST) is a well-described predictive model for antidepressant drug screening (109, 110). In this test, rodents are exposed to inescapable swim stress where the adoption of an immobile posture during re-exposure is thought to reflect failure in persistent escape-directed behavior, purported to model certain behavioral aspects of MDD such as the psychological feeling of "entrapment" and the replacement of active coping strategies with passivity (109, 111, 112), also resembling avolition and despair noted in MDD. Specifically, an increase in immobility time is considered to reflect the aforementioned depressive-like manifestations. The majority of antidepressants reduce immobility time in the FST (109).

The α_2 -AR has been implicated in mediating the antidepressant (or anti-immobility) effects of TCAs in the FST, while activation of the α_{2A} -AR subtype seems to be essential in this regard (41, 46). Interestingly, the α_{2C} -AR plays an opposite role in regulating antidepressant effects in the FST. Early studies in α_{2C} -OE models in mice have suggested that α_{2C} -AR activation increases depressive behaviour in the FST, with α_{2C} -OE mice displaying increased immobility compared to wild-type-controls (40) (**Figure 3B**), an effect not attributed to altered locomotor activity (67). On the other hand, α_{2C} -KO mice demonstrate an antidepressive phenotype (40) (**Figure 3A**). These findings might explain why relatively non-selective α_2 -AR agonists (113–115) and certain non-selective α_2 -AR antagonists have both shown antidepressant-like effects in the FST. Recently these findings have been confirmed in rodents using subtype-selective α_{2C} -AR antagonists. Acute administration of highly subtype-selective α_{2C} -AR antagonists, JP-1302 (17), ORM-10921 (18, 21) and ORM-12741 (19) to Sprague Dawley and Han-Wistar rats was found to decrease immobility in the FST (see Table 2), providing evidence that selective α_{2C} -AR antagonism harbors therapeutic antidepressant effects. Although the aforementioned findings were predominantly from acute studies, we recently reported that chronic ORM-10921 reduced FST immobility time in the FSL rat, a genetic rodent model of MDD (21). Moreover, these effects were not seen with the non-selective α_2 -AR antagonist idazoxan (21). These findings constitute the first findings for an antidepressantlike effect of an α_{2C} -AR antagonist within a translational and pathological construct-driven approach (16). The beneficial effect of α_{2A} -AR agonism on immobility in the FST as mentioned earlier and the increased immobility of α_{2C} -OE mice observed in this test emphasizes that both the absence/minimization of α_{2A} -AR antagonism and the presence of α_{2C} -AR antagonism might be required for antidepressant-like effects. Earlier, we discussed how α_{2A} -AR antagonism bolsters 5-HT transmission (33). Various studies have supported a therapeutic advantage for augmenting conventional antidepressants with α_2 -AR antagonists. Dhir and Kulkarni demonstrated potentiated anti-immobility effects in the FST when fluoxetine and venlafaxine are augmented with yohimbine (9). This effect is mirrored in the clinic, where the addition of yohimbine to selective serotonin reuptake inhibitor (SSRI) treatment hastens antidepressant response and increases the number of responders compared to SSRI treatment alone (116). Enhanced clinical response to SSRI's, venlafaxine, and bupropion is also evident following augmentation with the α_2 -AR antagonist antidepressant mirtazapine, showing an early-onset of action (107, 117) as well as an almost doubling of the remission rate (118, 119). Clearly there is strong argument for adding an α_2 -AR antagonist to conventional antidepressant therapy.

The Novel Object Recognition Test (NORT) (see Cognitive Deficits Associated With MDD and Schizophrenia) measures recognition memory and is reliant on hippocampal function, while both this cognitive parameter (120, 121) and hippocampal function has been shown to be deficient in patients with MDD (93). Recently, an important role for the α_{2C} -AR in this test has been demonstrated in the FSL rat, using the selective α_{2C} -AR antagonist ORM-10921 in a chronic treatment paradigm (21). This study found that selective α_{2C} -AR antagonism reversed deficits in novel object recognition memory in FSL rats, constituting the first findings for a pro-cognitive effect of a selective α_{2C} -AR antagonist using an illness-specific construct-driven translational model of MDD.

Altered circadian rhythm is a well-recognized biomarker of MDD (68), with HPA-axis dysregulation and hypercortisolaemia underlying the pathophysiology of the disorder (94). Since stress and MDD are causally linked, stress-induced increases in gluco-corticoids have been suggested to mediate hippocampal atrophy and neurodegeneration evident in depressed individuals (93, 122). This incapacitation of the hippocampus leads to impaired cognitive function as well as a perpetuation of the stress response, the latter due to an inability of the hippocampus to exert top-down control over the HPA-axis (122). Long-term exposure to elevated

Parameter investigated	Findings in transgenic $\alpha_{\text{2C}}\text{-}\text{OE}$ mice	Findings in transgenic $\alpha_{\text{2C}}\text{-KO}$ mice	Findings in rodents and humans using highly selective $\alpha_{\text{2C}}\text{-}\text{AR}$ antagonists
Neurotransmission Monoamine levels	α_2 -agonist-induced decreases in whole brain DA, NA, and 5-HT levels is absent in α_{2C} -OE mice and OE-wt controls (67)	Increased levels of DA, NA, and 5-HT in whole brains of α_{2C} -KO mice and KO-wt mice after treatment with α_2 -agonist (67)	-
	Stress-induced elevations in whole brain HVA and 5-HIAA responses are attenuated in α_{2C} -OE mice vs. OE-wt controls (40)	Stress-induced elevations in whole brain HVA and 5-HIAA in α_{2C} -KO mice was similarly to KO-wt controls (40)	
Dopamine turnover	Increased cortical DA turnover in α_{2C} -OE mice (higher HVA levels) vs. OE-wt mice (67)	Decreased striatal DA turnover in $\alpha_{\text{2C}}\text{-KO}$ mice (lower HVA levels) vs. KO-wt mice (67)	ORM-10921 increases extracellular DA in rodent prefrontal cortex (18)
	Increased whole brain HVA levels in α_{2C} -OE mice vs. OE-wt controls with a trend toward increased DOPAC (40)	Decreased whole brain DOPAC and HVA concentrations in α_{2C} -KO mice vs. KO-wt controls (40)	
Markers of neuronal activity	α_{2C} -OE mice do not present with altered cortical and hippocampal levels of JunB and c-fos mRNA vs. OE-wt controls (40)	$\begin{array}{l} \alpha_{\text{2C}}\text{-}\text{KO} \text{ mice have increased cortical and} \\ \text{hippocampal levels of JunB and c-fos mRNA vs.} \\ \text{KO-wt controls. This difference disappears after} \\ \text{stress} (40) \end{array}$	-
Dopaminergic drug-induced hyperlocomotion	D-amphetamine-induced hyperlocomotion is attenuated in α_{2C} - OE mice vs. OE-wt controls (66)	D-amphetamine-induced hyperlocomotion is further increased in α_{2C} -KO mice vs. KO-wt controls (66)	-
Dopaminergic drug- induced cognitive reward responses	-	Increased response rates to methylphenidate in cognitive task sensitive to altered striatal DA in α_{2C} -KO mice vs. KO-wt controls (73)	-
Striatal gamma- aminobutyric acid (GABA) release	-	α_2 -AR antagonist-induced inhibition of striatal GABA release is disinhibited in α_{2c} -KO mice vs. KO-wt mice (65)	-
Cognition Working memory in MWM	α_{2C} -OE mice show impaired navigation strategies vs. OE-wt controls Impaired navigation can be reversed	-	ORM-12741 and ORM-10921 attenuates MK-801 disrupted learning in Sprague Dawley rats (18, 19)
Working memory in	by an α ₂ -AR antagonist (19, 34–36)	α ₂ -AR agonist-induced working memory	ORM-12741 attenuates PCP-disrupted working
radial-arm maze		improvements are more pronounced in $\alpha_{\text{2C}}\text{-}\text{KO}$ mice vs. KO-wt controls (37)	memory in Sprague Dawley rats (19) ORM-12741 attenuates age-related memory and
			learning deficits Sprague Dawley rats (19) ORM-12741 improves episodic memory in Alzheimer's patients with a tendency to improve working memory (25)
Response learning in T-maze	-	α_2 -AR agonist does not induce improvements in response learning α_{2C} -KO or KO-wt control mice, with no differences noted in drug naive α_{2C} -KO vs. wt control mice (37)	-
Passive avoidance learning	α ₂₀ -OE mice show normal passive avoid- ance behavior vs. OE-wt controls (34)	-	-
Depression FST	Increased FST immobility time in α _{2c} - OE mice vs. OE-wt mice (40)	Decreased FST immobility time in α ₂₀ -KO mice vs. KO-wt controls (40)	JP-1302 decreases FST immobility time in Sprague Dawley rats (17) ORM-12741 decreases FST immobility time in Sprague Dawley rats (19) ORM-10921 decreases FST immobility time in Sprague Dawley rats (18) ORM-10921 decreases FST immobility time in FSL rats (21)

TABLE 2 | Neurochemical and behavioral findings in transgenic α_{2c} -OE or α_{2c} -KO mice, and data from rodent and human studies employing highly selective α_{2c} -AR antagonists.

(Continued)

Parameter investigated	Findings in transgenic $\alpha_{\text{2C}}\text{-}\text{OE}$ mice	Findings in transgenic $\alpha_{\text{2c}}\text{-KO}$ mice	Findings in rodents and humans using highly selective $\alpha_{\text{2c}}\text{-}\text{AR}$ antagonists
Plasma corticosterone levels	Elevated stress-induced plasma corticosterone in α_{2C} -OE mice vs. OE-wt controls after repeated, but not acute stress (40)	Attenuated stress-induced plasma corticosterone in α_{2C} -KO mice vs. KO-wt controls (40)	-
Recognition memory in NORT	-	-	ORM-10921 improves object recognition memory (declarative memory) in the NORT in FSL rats (21)
Schizophrenia Sensory-motor gating	$\alpha_{\text{2c}}\text{-}OE$ mice present with higher PPI vs. OE-wt controls (43)	α_{2c} -KO mice present with deficient PPI vs. KO-wt controls (43)	JP-1302 reverses PCP-induced PPI deficits in Wistar and Sprague Dawley rats (17)
			ORM-12741 reverses PCP-induced PPI deficits in Sprague Dawley rats (19)
			ORM-10921 reverses SIR-induced PPI deficits in Sprague Dawley rats and augments the response to haloperidol on PPI to a similar extent as clozapine (20)
Social interaction	-	-	ORM-10921 and ORM-12741 attenuates PCP- induced social interaction deficits in Sprague Dawley rats (18, 19)
Recognition memory in NORT	-	-	ORM-10921 improves object recognition memory (declarative memory) in the NORT in SIR rats and augments the response to haloperidol to a similar extent as clozapine (20)

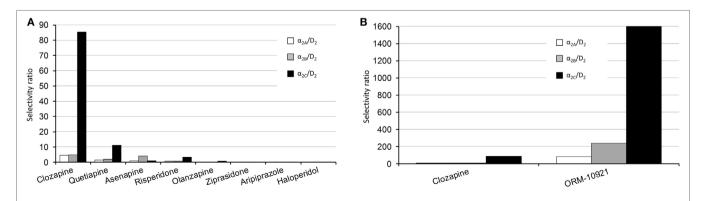
TABLE 2 | Continued

DA, dopamine; DOPAC, 3,4-dihydroxyphenylacetic acid; 5-HT, serotonin; HVA, homovanillic acid; 5-HIAA, 5-hydroxy indole acetic acid; SIR, social isolation reared; MWM, Morris water maze; NA, noradrenaline; FST, forced swim test; NORT, novel object recognition test; FSL, Flinders sensitive line; PCP, phenylcyclidine; MK-801, dizolcipine; KO, receptor knockout; OE, receptor overexpression; wt, wild-type animals; PPI, prepulse inhibition test.

cortisol levels induces regional upregulation of α_2 -ARs (123), which in turn could result in further decreased NA levels. In this regard, the α_2 antagonist and antidepressant mirtazapine has been associated with amelioration of HPA-axis hyperactivity in depressed patients (124, 125), albeit not necessarily related to clinical improvement. Interestingly, this amelioration of HPAaxis hyperactivity is not mirrored in rodents (126). In healthy volunteers, the acute administration of the α_2 -AR antagonist idazoxan has been associated with an attenuated normal diurnal fall in plasma cortisol, although dissipated following chronic treatment (127). Earlier studies on the other hand have shown that depressed patients exhibited much greater cortisol responses to vohimbine than controls (128). The α_{2C} -KO mouse demonstrates attenuated plasma corticosterone elevations vs. wild-type controls following different stressors, while α_{2C} -OE mice show more intense corticosterone responses compared to α_{2C} -KO (40) (Figures 3A,B). Interestingly, non-selective α_2 -AR antagonism seems to elevate plasma corticosterone levels and to potentiate corticosterone responses to restraint stress in rodents (129). More selective α_{2C} -AR antagonism might, therefore, elicit beneficial effects on HPA-axis functioning in depressive states. Previous studies have shown that both inhibition of corticosterone synthesis and injection of glucocorticoid receptor antisense oligonucleotides into the dentate gyrus of the hippocampus decreases immobility in the FST (130, 131). That the α_{2C} -AR is the only α_{2} -AR subtype expressed in this region in mice (67), together with the effects of α_{2C} -AR modulation on corticosterone levels and FST immobility, consolidates a valuable role for α_{2C} -AR antagonism in the treatment of MDD. Therefore, hypercortisolism in MDD may underscore a central dysfunctional adrenocortical feedback mechanism, with α_2 -ARs, and indeed the α_{2C} -AR subtype specifically, being important in regulating glucocorticoid responses.

Behavioral Deficits Associated With Schizophrenia

Associations between genetic polymorphism of the α_{2C} -AR and certain aspects of psychotic disorders have been reported (24). Furthermore, α_{2C} -ARs are most densely expressed in the striatum (132), where they are thought to play an inhibitory role (133). This dense expression has distinct importance when striatal dysfunction in schizophrenia is considered, especially its intricate connection to frontal cortical cognitive deficits (134). The α_{2C} -AR, therefore, represents a potentially beneficial pharmacological approach to modulate striatal deficits in schizophrenia and possibly other psychotic disorders. The PFC, striatum and hippocampus are implicated in schizophrenia, where noradrenergic and dopaminergic terminals presenting with α_{2C} auto and heteroreceptors are well-represented (27, 59). Despite the prominence of the DA hypothesis of schizophrenia, a hypothesis implicating noradrenergic dysfunction also has significant support in the literature (135).


The DA paradox is well described in schizophrenia (136), with mesolimbic hyperdopaminergic and mesocortical hypodopaminergic states being postulated. Excessive striatal DA is linked to positive symptoms, while cognitive dysfunction is linked to

deficits in cortical dopaminergic function (137). In Section "Role of the a2C-AR in Regulating Key Neurotransmitters," we discussed findings that suggest decreased striatal but not frontal cortical DA turnover in response to α_{2C} -AR deletion (**Figures 3A**,**B**), while increased cortical DA turnover has been noted in response to α_{2C} -AR overexpression (67). These early findings suggest a positive role for α_{2C} -AR antagonism in regulating mesolimbiccortical dopaminergic imbalances, which may have therapeutic value in schizophrenia. GABAergic and glutamatergic deficits are also implicated in schizophrenia disease pathology, where loss of GABAergic output onto secondary glutamatergic cortical neurons required for tonic control over subcortical dopaminergic neurons, results in increased mesolimbic dopaminergic firing (increased striatal DA release) and consequently the presentation of psychotic symptoms (86). As discussed earlier, the α_{2C} -AR strongly mediates striatal GABA release, while α_{2C} -AR deletion seems to disinhibit α_2 -AR antagonist-induced inhibition of GABA release (65). Here, α_{2C} -AR subtype-selective antagonism might present with more beneficial effects on striatal GABA release than non-selective α_2 -AR antagonism when applied as pharmacological treatment of schizophrenia.

The atypicality of antipsychotic drugs primarily reflects their reduced risk of extra-pyramidal side effects and to some extent improved efficacy against negative and cognitive symptoms of schizophrenia (138), over and above their efficacy against positive symptoms. Atypicality has, apart from actions at serotonergic receptors, been proposed to revolve around α-AR modulation, with α_1 and α_2 -AR antagonism suggested to contribute to stabilization of dysregulated dopaminergic activity (139). Indeed, in a thorough comparative study employing human receptor binding data, Shahid and colleagues (4) have shown that a number of atypical antipsychotics (clozapine, quetiapine, asenapine, risperidone, ziprasidone) possess significant a2-AR antagonist properties. Furthermore, quetiapine and in particular clozapine showed prominent α_{2C} over D_2 as well as α_{2C} over α_{2A} receptor selectivity. A pharmacological profile constituting a higher α_2 vs. D_2 receptor binding ratio (139), and specifically a higher α_{2C} vs. D₂ receptor selectivity ratio (3, 4), has been suggested

to mediate the improved efficacy of drugs like clozapine that exhibit lower D_2 -receptor occupancy. The α_2 over D_2 receptor subtype selectivity ratios for various antipsychotics as well as the α_{2C} -AR selective antagonist, ORM-10921 (which as described below has shown antipsychotic-like activity in animal models), are depicted in Figures 4A,B. Thus, reduced D₂-receptor occupancy might be possible in therapy because of the beneficial effects of additional α_2 -AR antagonism on dysregulated dopaminergic activity, allowing for improved efficacy with less motor side effects. Support for this hypothesis has been demonstrated in studies employing non-selective α_2 -AR antagonists (e.g., idazoxan) as augmentation to D₂-receptor antagonist antipsychotic treatment (7, 84, 140). While this combination of α_2 -AR and D₂ receptor antagonism presents with improved antipsychotic-like effects in mouse models of schizophrenia, it also resulted in enhanced cortical glutamatergic transmission and increased dopaminergic output in the PFC, with subsequent improvement in cognitive parameters in rats (84). The effects of this augmentation strategy were comparable to that of clozapine. While clozapine requires approximately 45% D₂ receptor occupancy compared to >70% required by other D₂ receptor antagonists for antipsychotic efficacy (141, 142), the combination of idazoxan with a D_2 receptor antagonist exhibited potent antipsychotic effects similar to that of clozapine at similar low D₂ receptor occupancy rates (84).

Sensorimotor gating refers to the ability to integrate and process sensorimotor information, deficits of which are suggested to underlie the fragmentation of reality evident in schizophrenia (143). The prepulse inhibition (PPI) of startle test refers to the attenuation of a startle response produced by the presentation of a smaller prepulse, and is used to study the gating of sensorimotor information by the brain (143, 144). A typical example of the PPI test in humans employs the somatosensory eye blink reflex in response to acoustic, tactile (e.g., air puffs) or light stimuli (143, 145, 146). A PPI deficit can be induced in humans and animals by various psychotomimetic drugs, including dopaminergic and antiglutamatergic drugs. Animal models of schizophrenia, such as SIR (147–149) and various transgenic models including mice with altered DA, 5-HT, and glutamate receptor expression (150),

FIGURE 4 | Human α_2 -AR subtype/D₂ selectivity ratios of various antipsychotics, adapted from Ref. (4). (A) Left panel, comparative overview of the subtype selectivities of various antipsychotics. The α_{20}/D_2 receptor selectivity ratios are as follows: clozapine, 85; quetiapine, 11; risperidone, 3.4; asenapine, 1; olanzapine, 0.53; ziprasidone, 0.02; haloperidol, 0.011. (B) Right panel, comparison between the subtype-selective ratios of clozapine and the α_{2c} -AR antagonist ORM-10921, which has shown antipsychotic-like effects in preclinical studies (18, 20). The α_{2c}/D_2 receptor selectivity ratio for ORM-10921 is 1,600. Selectivity ratios were determined by dividing the D₂ K value by the applicable α_2 receptor K value.

present with deficits in PPI. Importantly, antipsychotic drugs normalize disrupted PPI in animals and humans (151–155). While the contribution of non-selective α_2 -blockade to modulation of PPI has been proposed, the literature is somewhat inconclusive in this regard. In fact, some papers have suggested that antagonism of the α_{2A} -AR does not contribute to enhancement of the PPI (44, 156–158).

Considering the important role for α_2 -AR antagonism in managing schizophrenia (139), earlier studies in transgenic mouse models have demonstrated that antipsychotic-like effects are subtype dependent. In this regard, α_{2C} -KO mice demonstrated clear PPI deficits compared to wild-type controls, while α_{2C} -OE mice had markedly higher PPI scores than their wild-type controls (43), suggesting that α_{2C} -receptor agonism may induce antipsychotic-like effects. However, this extrapolation from transgenic mouse studies has since been disproven following experiments with selective α_{2C} -AR antagonists. JP-1302, ORM-10921, and ORM-12741 that consistently show improved PPI in Sprague Dawley and Wistar rats in NMDA-antagonist-induced models of schizophrenia (17-19). More recent findings in SIR rats, a putative neurodevelopmental model of schizophrenia (159, 160), corroborate these earlier findings, with ORM-10921 found to significantly improve SIR-associated PPI deficits in a manner comparable to clozapine (20) (Figure 3C). Moreover, ORM-10921 also enhanced the effects of haloperidol on the above-mentioned deficits in PPI (20). Earlier, in Section "Distinct Roles for α2-AR Subtypes,", we highlighted this discrepancy, emphasizing the need to corroborate findings from transgenic mouse models with studies employing subtype-selective ligands in suitable animal models.

Cognitive deficits in schizophrenia make up some of the core elements of the disorder (161) and are often refractory to treatment (162). These impairments include deficits in working, recognition and spatial memory, cognitive flexibility, learning, and attention (163-165). However, antipsychotic treatments are not always reproducibly effective in reversing these cognitive deficits in animal models (166-170), which in fact reflects the relative lack of efficacy displayed by antipsychotics in treating cognitive impairment in the clinic (164, 165). Recently, the highly selective α_{2C} -AR antagonist ORM-12741 showed improved effects on NMDA-antagonist-induced disruptions in working memory and spatial learning, navigation and memory in rodents (19). NMDA-antagonist models include the administration of the glutamate NMDA-receptor antagonists dizolcilpine (MK-801) or PCP which are known to induce behavioral, cognitive, and neurochemical disruptions in behavior akin to those seen in schizophrenia (171). ORM-12741 attenuates the disruption of learning in the Morris Water Maze (MWM) induced by MK-801, while also improving PCP-induced memory deficits in the 8-arm radial maze (19). Similar findings were reported for the selective α_{2C} -AR antagonist ORM-10921 which attenuates MK-801-induced spatial navigation in the MWM (18), a finding consistent with effects described for atypical (167, 172) but not typical antipsychotics such as haloperidol (173). Additionally, ORM-10921 significantly improved object recognition memory in SIR rats, comparable to the atypical antipsychotic clozapine, while also significantly improving the efficacy of haloperidol in

this regard (20) (**Figure 3C**). Evidence of improved cognition in NMDA-antagonist and neurodevelopmental models of schizophrenia with novel highly selective α_{2C} -AR antagonists, therefore, demonstrates the therapeutic potential of targeting the α_{2C} -AR in treating cognitive deficits associated with schizophrenia.

Another interesting observation concerns the neurotrophic hypothesis of schizophrenia, where reduced brain-derived neurotrophic factor (BDNF) is widely evident in the illness (174, 175), as well as being associated with the above-mentioned cognitive deficits (68). Although chronic treatment with the α_{2C} -AR antagonist, ORM-10921, alone did not significantly reverse lowered BDNF levels in SIR rats on its own, combining haloperidol with ORM-10921 showed a significant increase in BDNF levels that exceeded that of either drug alone (20) (**Figure 3C**). These preliminary results further support a therapeutic role for α_{2C} -AR antagonism in improving cognitive symptoms in schizophrenia.

Social isolation, decreased social cognition, and impaired social skills form part of the negative symptoms of schizophrenia and are refractory to most antipsychotic treatments (176). The social interaction test measures deficits in social motivation and self-directed behavior in rats and is used to measure predictive validity of antipsychotics in rodent models of schizophrenia (177). Although there are mixed results, generally atypical antipsychotics are more effective than typical antipsychotics at attenuating social deficits in these models (177, 178). In this regard, the α_{2C} -AR antagonists ORM-10921 and ORM-12741 significantly attenuate PCP-induced deficits in social interaction in short-term single-housed and pair-housed rats (18, 19).

Since especially atypical antipsychotics have activity at the α_{2C} -AR, it is important to consider data from functional assays on these compounds using cloned receptors in Chinese hamster ovary cell lines. Kalkman and Loetscher (3) found α_{2C} over α_{2A} receptor selectivity ratios for clozapine, chlorpromazine, risperidone, quetiapine, and iloperidone to be between 3 and 12, indicating that most atypical antipsychotics present with higher α_{2C} -AR antagonist activity than α_{2A} -AR antagonist activity. Additionally, the novel antipsychotics asenapine and lurasidone both present with potent α_{2C} -AR binding affinity (4, 179). α_{2C} over D₂ selectivity ratio has, therefore, been suggested to be an important factor in antipsychotic efficacy (3). Clozapine, arguably the most efficacious antipsychotic in treatment refractory schizophrenia (180), presents with an α_{2C} over D_2 selectivity ratio of 85 compared to ratios of 0.01-11 for other tested antipsychotics (4) (see Figure 4A). Haloperidol, on the other hand, has the lowest potency at the α_{2C} -AR as well as the lowest α_{2C} over D_2 ratio of tested compounds (3, 4), and is not regarded as an atypical antipsychotic. However, bolstering its antipsychotic-like and procognitive effects with a selective α_{2C} -AR-antagonist (20) supports the notion that an increased $\alpha_{\rm 2C}$ over D_2 ratio will translate to superior antipsychotic effects. Taken together, α_{2C} -AR antagonism is involved in the mechanism of improved sensorimotor gating, cognitive, and social functioning in pharmacological and neurodevelopmental models of schizophrenia. These data are indicative of a therapeutic role for α_{2C} -AR antagonism in the treatment of schizophrenia, and further study with more subtype-selective ligands is encouraged.

Cognitive Deficits Associated With MDD and Schizophrenia

Many neuropsychiatric illnesses, including MDD and schizophrenia, present with cognitive deficits and memory impairments (122, 162, 163, 165). The α_{2C} -AR has been shown to be involved in cognitive deficits evident in both non-pathological (34-37) and pathological (20, 21) animal models, with findings implicating a significant role in the treatment of cognitive deficits associated with these disorders. Although α_2 -AR agonists are associated with improved cognitive processing in humans and animals (38, 181-184) and in the treatment of cognitive decline associated with aging (185), these effects have been shown to be mediated via activation of the α_{2A} -AR (37–39), which is also responsible for sedative and hypotensive effects (51, 186). In contrast, genetic deletion of the α_{2C} -AR subtype, or by extrapolation selective α_{2C} -AR antagonism, has been demonstrated to improve memory and cognition in the MWM, the 8-arm radial maze and the NORT, as discussed below. Furthermore, α_{2C} -AR antagonism has been found to benefit neurotrophins and other biomarkers of neuronal resilience associated with cognition (20).

The MWM is a spatial water navigation task requiring the rodent to learn and remember the location of an escape platform in a water arena in order to locate a hidden (submerged) platform in subsequent trials by using various spatial cues. The escape latency is a measure of spatial working memory. The test is a reliable tool correlating with hippocampal synaptic plasticity as well as intact glutamate NMDA-receptor function (187). In early transgenic mouse studies, α_{2C} -OE mice showed impaired spatial and non-spatial escape strategies and search patterns in the MWM. Administration of an α_2 -AR antagonist could reverse these impairments to a greater extent in α_{2C} -OE than in wild-type mice, suggesting that α_{2C} -AR antagonism might play a more prominent role than α_{2A} -AR antagonism in brain areas involved in spatial navigation (34-36). Considering the dense expression of the α_{2C} -AR in the hippocampus and striatum and that hippocampal (188) and striatal lesions (189) impair aspects of MWM navigation, α_{2C} -AR selective antagonism may mediate information processing and behavioral adaptation to environmental change. α_{2C} -OE mice display normal passive avoidance learning, suggesting that impaired water maze navigation in α_{2C} -OE mice does not reflect defective stimulus-response learning and that α_{2C} -AR deactivation is, therefore, associated with the processes underlying complex organization of escape behavior (34). This effect of α_{2C} -AR antagonism might partially explain previous findings for pro-cognitive effects of the nonselective α_2 -AR antagonist, idazoxan, on planning, attention, episodic memory and verbal fluency in patients with frontal lobe dysfunction (11).

The radial-arm maze is a test used to measure reference and working memory in rodents and relies on intact functioning of the prefrontal cortical, hippocampal and striatal interconnections to locate food rewards hidden in various radial-arm target sites (190). Björklund and co-workers (37) demonstrated that the non-selective α_2 -AR agonist dexmedetomidine improves working memory in the radial-arm maze, and that this improvement is greater in α_{2C} -KO mice, suggesting that the absence of α_{2C} -AR

agonism (or simultaneous α_{2C} -AR antagonism) might result in enhanced performance with respect to working memory.

The NORT is a two-trial behavioral measure that relies on the rodent's innate preference to explore novel objects over familiar objects, thereby enabling measurement of recognition memory (191, 192). The declarative memory processes underlying the NORT relies on the perirhinal cortex and the hippocampal complex (193–195). Uys and colleagues have demonstrated that selective α_{2C} -AR antagonism with ORM-10921 markedly improves recognition memory in pathological animal models of schizophrenia (20) and MDD (21).

The above-mentioned benefits of selective α_{2C} -AR antagonism on cognitive parameters have been corroborated with studies employing highly selective α_{2C} -AR antagonists in animal models of schizophrenia, MDD, and age-related cognitive impairment (18–21), as described in Sections "Behavioural Deficits Associated With MDD" and "Behavioural Deficits Associated With Schizophrenia," as well as in clinical trials investigating novel therapy for Alzheimer's disease (25) (see Evidence for Targeting the α 2C-AR in Other Neuropsychiatric Disorders).

Brain-derived neurotrophic factor is the most prevalent neurotrophic growth factor in the CNS where it is especially important in regulating synaptic plasticity and various aspects underlying cognitive performance, memory, and mood (196, 197). Acute and chronic stress purportedly have detrimental effects on rodent BDNF expression in the hippocampus, while altered BDNF levels are evident in depressive disorders (68, 198) and in schizophrenia (174, 175). While both antipsychotics and antidepressants alter BDNF levels to varying degrees (199-203), non-selective α_2 -AR antagonism has also been associated with neurogenesis and increased BDNF levels in the hippocampus (204, 205). Noradrenergic (202, 206), dopaminergic (207), serotonergic (208), and GABA-glutamate (209) interactions are involved in the expression of BDNF. With the α_{2C} -AR acting as a heteroreceptor to modulate the release of many of the aforementioned neurotransmitters, this receptor might play an indirect role in regulating the expression of BDNF. Evidence for the involvement of the $\alpha_{\text{2C}}\text{-}AR$ in the expression of BDNF has been demonstrated in the SIR animal model of schizophrenia, where SIR rats present with reduced striatal BDNF levels (20). While conventional antidopaminergic antipsychotics are not associated with correction of said reduced BDNF levels (201), a recent study reported that combining haloperidol with the selective α_{2C} -AR antagonist ORM-10921 (but not α_{2C} -AR antagonism per se) increases striatal BDNF levels in these animals, while at the same time improving deficits in cognition and sensorimotor gating (20). This study indicated that not only is augmentation with a α_{2C} -AR antagonist associated with improved BDNF expression but also that this improvement is correlated with improved cognitive performance, thus supporting a role for α_{2C} -AR antagonism in disorders associated with reduced cognitive flexibility and deficits in neurotrophin support.

Brain-derived neurotrophic factor is also important in regulating C-fos and JunB expression, biomarkers of neuronal activity that play an important role in synaptic function (210, 211). Upregulation of c-fos mRNA is induced by noxious stimuli, neurotransmitters, neurotrophins and other growth factors as well as learning and memory processes (212). Jun-B is also involved in the regulation of emotional memory (213). BDNF restores the expression of these transcription factors after neuronal insult (214), reinforcing BDNF's role in neuroplasticity at genetranscription level. Interestingly, cortical and hippocampal levels of c-fos and JunB mRNA are increased in α_{2C} -KO mice compared to wild-type controls (40), while this is not the case in α_{2C} -OE mice. Whether this increase is associated with altered BDNF levels in α_{2C} -KO mice has not been investigated. Nevertheless, the increase in neuronal activity in α_{2C} -KO mice is of interest considering the pro-cognitive behavioral characteristics of this transgenic strain and the above-mentioned beneficial effects of α_{2C} -AR antagonists on BDNF expression and cognitive performance.

Thus, antagonism of the α_{2C} -AR might benefit cognitive processes relevant to both MDD and schizophrenia. Since cognitive deficits are core symptoms of both disorders, the α_{2C} -AR related effects on cognition and neuronal markers of plasticity support the therapeutic potential of targeting the α_{2C} -AR in these disorders.

To summarize findings from transgenic mouse models and those gained from treatment with α_{2C} -subtype-selective ligands, **Table 2** presents neurochemical and behavioral findings reported in transgenic mice and in various rodent models predicting procognitive-like, antidepressant-like and antipsychotic-like effects as described in Sections "Behavioural Deficits Associated With MDD," "Behavioural Deficits Associated With Schizophrenia," and "Cognitive Deficits Associated With MDD and Schizophrenia". As a GPCR that functions within the PSD, the synaptic actions of the α_{2C} -AR and indeed drugs that target this receptor, might involve regulatory PSD proteins to mediate the aforementioned effects.

Putative Involvement of PSD Proteins

The PSD is a specialized matrix located at excitatory postsynaptic terminals, described as a macromolecular complex of several hundreds of proteins that act as a molecular switch for multiple interacting neurotransmitter signaling pathways (215). Such proteins include those containing the PSD-95/disc large/zonula occludens-1 (PDZ) domain, and the membrane-associated guanylyl kinase, all of which comprise three PDZ peptide-binding domains (215). These proteins in turn promote binding to a variety of molecules within the PSD necessary for signal transduction (45). We have earlier noted the importance of the PSD in postsynaptic GPCR signaling. There is significant interest in the role of the PSD network in psychopharmacology and psychotropic drug action, although much of the extant evidence in support of this relates to DA and glutamate-dependent synaptic plasticity (45, 215). Nevertheless, this review has highlighted the importance of heteroreceptor-directed modulation of DA and glutamate signaling by the α_{2C} -AR, while at least one prominent PDZ-domain binding protein, spinophilin, has been associated with the α_2 -AR (45). Spinophilin regulates α_2 -AR associated $G_{\alpha i}$ coupling, membrane localization, endocytosis, receptor desensitization and calcium signaling (216-218). Despite this evidence, however, spinophilin is not yet known to be involved in major neuropsychiatric disorders or to by modulated by main psychopharmacologic treatments (215). Nevertheless, it is perhaps worth discussing how and why a PSD protein such as spinophilin may mediate important pharmacological responses following ligand binding to the α_{2C} -AR.

Although the specific role for PSD proteins in psychiatric illness remains speculative, clinical and preclinical studies have provided evidence for their involvement in aberrant synaptic plasticity [see Ref. (215) for review]. These processes are invariably associated with high-order cognitive alterations, which are essentially the core pathophysiology in a number of psychiatric diseases, including depression and schizophrenia (219–221).

When considering a therapeutic strategy in psychiatric diseases, psychotropic-mediated modulation of PSD molecules may occur either directly or indirectly, the latter as a consequence of drug interaction with their target non-PSD receptors. Currently, there is no known agent that directly targets a PSD protein for therapeutic effect. Since PSD molecules are modulated by antipsychotics and antidepressants (221-226), as well as play a key role in behavioral response (227, 228), they represent putative targets for pharmacological action. Moreover, concurrent administration of antipsychotics and antidepressants may induce synergistic modulation of specific PSD molecules (229-231), which provides at least conceptual support for targeting the PSD to address treatment resistance in mood and psychotic disorders. This is particularly relevant when discussing the α_2 -AR, since a number of studies have described enhanced efficacy of typical and atypical antipsychotic drugs by adjunctive α_2 -AR blockade (20, 84, 232). Concerning the α_{2C} -AR, the α_{2C} -AR antagonist, ORM-10921 has been found to bolster the response to haloperidol in social isolation reared rats at both the level of synaptic plasticity (i.e., BDNF) and cognition (i.e., object recognition memory) (20). That the combined response was similar to clozapine emphasizes the benefit of adjunctive α_{2C} -AR antagonism with regard to treatment response. Such data holds promise for application in treatment resistance, and further studies in this regard, but combined with co-assessment of PSD proteins, are warranted.

This review has focused on the therapeutic potential of targeting the α_{2C} -AR subtype in MDD and schizophrenia. However, cognitive dysfunction is common in patients with Alzheimer's disease, MDD and schizophrenia, while symptoms of the latter two illnesses permeate through to patients suffering from Alzheimer's disease. Indeed, recent preclinical and preliminary clinical evidence has revealed the promising therapeutic role for the α_{2C} -AR in addressing cognitive decline in Alzheimer's disease. Co-presentation of cognitive decline in this and other disorders, and the role of the α_{2C} -AR, warrants brief discussion.

EVIDENCE FOR TARGETING THE $\alpha_{\text{2C}}\text{-}AR$ IN OTHER NEUROPSYCHIATRIC DISORDERS

ORM-12741 is a novel highly selective α_{2C} -AR antagonist with a 4000-fold selectivity for α_{2C} -AR vs. the $\alpha_{2A/B}$ -AR (19). Age-related memory and learning, as assessed in the rodent 8-arm radial maze

(measuring spatial working memory and reference memory), was attenuated by sub-chronic administration of ORM-12741 (19), and more recently confirmed in a phase IIa randomized, double-blind, placebo-controlled clinical study in patients with moderate Alzheimer's disease (25). Here, ORM-12741 was used as an add-on drug in patients already receiving donepezil, galantamine, rivastigmine or memantine. Significant improvements in episodic memory were observed, as well as a tendency to improve working memory. In addition, ORM-12741 produced significant improvement in perceived levels of distress with respect to symptoms of delusions, agitation and aggression, MDD, anxiety, disinhibition and other behavioral symptoms (25). These findings are not unlike the augmentation data described in preclinical studies with another α_{2C} -AR antagonist, ORM-10921 (18). Moreover, there was a positive trend to lower caretaker distress scores which would also reflect reduced symptom severity and frequency (25). Thus improvements in cognitive performance in Alzheimer's disease are supported by amelioration of co-presenting behavioral impairments, of which some are reminiscent of those presenting in MDD and schizophrenia.

Although the beneficial role of α_2 -AR agonism in strengthening prefrontal cortical function and enhancing working memory has been described in ADHD, these affects are associated with postsynaptic stimulation of the α_{2A} -AR subtype (47). Early evidence has, however, also suggested a potential therapeutic role for selective targeting of the α_{2C} -AR subtype in ADHD. A study in coloboma mice, a mouse model of ADHD (233), reported that the α_{2C} -subtype preferring α_2 -AR antagonist MK912 (~10-fold selectivity over α_{2A} -AR and α_{2B} -AR) ameliorated NA-dependent hyperactivity (234), while α_{2A} -AR and α_{2B} -AR subtype-preferring drugs were ineffective. Considering the pronounced expression of the α_{2C} -ARs in the basal ganglia, the authors suggest that α_{2C} -AR antagonism might be a useful treatment for locomotor-related and hyperactivity functions in coloboma mice and by implication a potential therapeutic target for ADHD. It is conceivable that part of the mode of action of a selective α_{2C} -AR antagonist may involve indirectly facilitating activation of postsynaptic α -AR including α_{2A} -AR as a consequence of increase in synaptic NA. These effects need to be corroborated using subtype-selective ligands with higher selectivity ratios, and subsequent testing on cognition in models of ADHD.

A comment on the role of the α_{2C} -AR in bipolar disorder is also warranted. Bipolar disorder is a mood disorder characterized by mixed symptoms of MDD and mania, with both antidepressants (235) and antipsychotics (236) in combination with mood stabilizers advocated as standard first-line treatment. Quetiapine is an atypical antipsychotic with a favorable α_{2C}/α_{2A} and a fairly high α_{2C}/D_2 ratio (3, 4) (see **Figure 4A**) that has shown marked clinical efficacy in treating mania and MDD in bipolar disorder (236, 237). In the light of evidence provided in the afore going sections, future studies investigating the therapeutic potential of targeting the α_{2C} -AR in bipolar disorder using α_{2C} -AR selective ligands could provide valuable insights.

Finally, given the prominent role of NA in the neurobiology and treatment of anxiety and fear-related manifestations (238), exploratory studies into the use of α_{2C} -AR antagonists in anxiety disorders are also encouraged.

FUTURE PERSPECTIVE: WHAT DO WE HAVE AND WHAT DO WE NEED?

Recent developments and the current state of knowledge support the therapeutic potential of selectively targeting the α_{2C} -AR in the treatment of MDD, schizophrenia and associated cognitive dysfunction. Antidepressant and antipsychotic treatment benefits are likely to include broader/enhanced efficacy (e.g., facilitation of postsynaptic cortical α_{2A} -AR activity) as well as reduced side effects (e.g., liability for cardiovascular effects). There is, however, limited clinical data in this respect and further patient trials are urgently needed. In addition, despite recent progress there are still significant gaps in the knowledge base relating to the function, physiology, and pharmacology of α_{2C} -ARs. Some areas requiring further research include:

- α_{2C} -AR signal transduction pathways and trafficking in brain tissue from normal and disease model animals.
- Assessing treatment response following combined α_{2C} -AR antagonism with a typical/atypical antipsychotic or antidepressant, using an animal model of treatment resistance, e.g., Ref. (239, 240), and combining with co-assessment of PSD proteins.
- Assess the effect of α_{2C} -AR, alone or in combination with an antipsychotic/antidepressant, on the expression of PSD proteins, such as spinophilin, PSD-95, etc.
- α_{2C} -AR receptor regulation; differences in human disease tissue or animal models, and whether existing treatments, e.g., for schizophrenia and MDD, alter α_{2C} -AR density.
- Distribution and cellular localization of $\alpha_{\rm 2C}\text{-}ARs$ at norad-renergic and non-adrenergic synapses and whether these receptors play an extra-synaptic role.
- Heteroreceptor function and mode of modulation of nonadrenergic neurotransmitter release, particularly in the hippocampus and frontal cortex.
- Insight on putative receptors (e.g., 5-HT_{1A}, D₁, AMPA receptors) that may be involved in mediating the *in vivo* central effects of selective α_{2C} -AR receptor antagonism.
- Contribution toward modulation of stress and inflammationlinked pathways.
- Evaluation in animal models with strong disease construct (e.g., genetic, age, stress) and applying more translationally relevant approaches (e.g., chronic treatment, gender differences, altered circadian rhythms, augmentation strategies).
- Further experimental studies with new imaging tools [e.g., positron emission tomography (PET) ligand ORM-13070] to establish the role of the $\alpha_{\rm 2C}$ -AR in the brain of healthy subjects and patients.
- Considering the high comorbidity of anxiety in these illnesses, and that it can significantly affect prognosis and treatment response (241, 242), to study the anxiolytic capabilities of α_{2C} -AR modulators in appropriate models.

An array of tools is now available to facilitate further research. Highly selective α_{2C} -AR subtype ligands, and specifically α_{2C} -AR selective antagonists, have been developed over the past decade. Before that, drugs with marginal selectivity were used to delineate pharmacological effects of the α_2 -AR subtypes. For example,

although BMY7378 is mainly an α_{1D} -AR antagonist, it also presents with a 10-fold selectivity for α_{2C} -ARs vs. α_{2A} -ARs (243). Another example of an antagonist drug with marginal α_{2C} -AR selectivity is MK912, which also displays approximate 10-fold greater selectivity for α_{2C} -ARs vs. α_{2A} -AR and α_{2B} -ARs (57, 58) and has been used to delineate the role of the α_{2C} -AR on hyperactive behavior in a mouse model of ADHD (234).

In 2008, *N*-{2-[4-(2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-[1,4]diazepan-1-yl]-ethyl}-2-phenoxy-nicotinamide was synthesized, and found to display >100-fold selectivity for α_{2C} -AR vs. α_{2A} -AR, with excellent binding affinity and functional activity at the α_{2C} -AR in rats. Although low selectivity vs. α_{2B} -ARs was shown, the α_{2B} -ARs have negligible distribution in the CNS. This compound displayed excellent binding affinity and functional activity for α_{2C} -ARs in rats, with adequate CNS penetration (244). Further animal studies with this promising compound are eagerly awaited.

In 2007, Orion Pharma reported that their novel selective α_{2C} -AR antagonist, JP-1302, presented with a minimum 50-fold selectivity for the α_{2C} -AR with an $\alpha_{2C/2A}$ ratio of 93 (17). However, this compound does not optimally enter the CNS. In 2013 another Orion Pharma compound with improved CNS penetration, ORM-10921, was characterized with an $\alpha_{2C/2A}$ ratio of ~100 in rodents, although this ratio was found to be lower in human cells (~29) (18). Both JP-1302 and ORM-10921 have since been used safely in preclinical studies in rodent models of neuropsychiatric illness and highlighted in this review. On the other hand, the novel α_{2C} -AR antagonist, ORM-12741, has been tested for safety and efficacy in both rodents and humans (19, 25) and presents with a 4000-fold selectivity for the α_{2C} -AR vs. α_{2A} -AR and α_{2B} -AR. This highly selective α_{2C} -AR antagonist is currently in clinical trials for the treatment of symptoms associated with Alzheimer's disease (25).

An important recent development has been the development of ORM-13070, a selective α_{2C} -AR which is amenable to labeling with ¹¹C and has been successfully used as a _{α2C}-AR PET tracer that readily enters the CNS (245). This compound has a binding affinity selectivity of over 200-fold vs. the $\alpha_{\scriptscriptstyle 2A}\text{-}AR$, with weak or no activity at more than 100 other potential target sites and receptors, and will be highly valuable for facilitating forward and reverse translation between animal and human studies. An obvious application is determination of target engagement, through conducting receptor occupancy studies for novel drug candidate molecules for preclinical and clinical studies (62, 245, 246). However, it could also be used to gain more precise insight on the relative a2C-AR occupancy for antipsychotic (e.g., clozapine) and antidepressant (e.g., mirtazapine) agents at clinical doses thus enabling a better understanding on the mode of action of these drugs. The tracer could also be of potential value to investigate disease-related changes in receptor density and effects on neurotransmitter activity. The latter aspect has been investigated and in line with evidence that the $_{\alpha 2C}$ -AR is sensitive to low synaptic concentrations of NA, [11C]ORM-13070 shows increased CNS binding in response to decreased synaptic NA (132).

On the other side of the spectrum, novel α_{2C} -AR agonist shave also been characterized recently. [*N*-[3,4-dihydro-4-(1H-imidazol-4-ylmethyl)-2H-1,4-benzox azin-6-yl]-*N*-ethyl-*N*'-methylurea] or

"Compound A" and a chemically similar "Compound B" were found to be highly selective for the α_{2C} -AR, albeit with poor brain penetration. These compounds are being investigated for effects on peripheral vasoconstriction (245, 247).

With the aim to stimulate further investigation into the value of the α_{2C} -AR in neuropsychiatric disorders, genetic and molecular biology driven approaches will also be critical. Mice overexpressing or lacking the α_{2C} -AR have been generated but have been phenotyped to a limited extent. Further behavioral and biological characterization, for example using -omics type molecular profiling, as well as regionally restricted genetic manipulation using genetic deletion technology in rats, would yield valuable data. The zebrafish is another platform of discovery that may provide a powerful model in which to study developmental and genetic factors that underlie human disease (248). Work in zebrafish has shown that the zebrafish α_2 -AR subtypes are markedly conserved compared to mammalian a2-AR subtypes with similar pharmacological profiles and functional effects compared to human α_2 -AR subtypes (249, 250). This model might also be beneficial in future studies when characterizing novel subtype-selective α_2 -AR ligands.

CONCLUSION

This review has provided an overview of recent developments and future direction in research investigating the role of the α_{2C} -AR in neuropsychiatric illness and therapy, with specific focus on the effects of α_{2C} -AR antagonism in cognition, MDD, and schizophrenia. Targeting this receptor could present with beneficial therapeutic effects and decreased noradrenergic side effects when used alone or as augmentation strategy in the treatment of these diseases, as well as disorders presenting more specifically with cognitive decline, such as Alzheimer's disease. The recent advent of clinical grade subtype-selective α_{2C} -AR antagonists has contributed toward delineating the neuropsychopharmacology of this receptor. Studies employing these novel highly selective α_{2C} -AR ligands in putative translationally relevant animal models of psychiatric illness, to inform further experimental medicine evaluation in humans, will be vital in strengthening our understanding of the α_{2C} -AR as a therapeutic target.

AUTHOR CONTRIBUTIONS

MU prepared the first draft of the manuscript, prepared all the figures and tables, as well as managed all subsequent changes and formatting. MS reviewed the manuscript and provided input on the manuscript design and content, as well as on the figures and tables. BH was the study leader and student supervisor to MU, developed the article concept and design, and finalized the manuscript for submission.

FUNDING

The authors declare that projects leading up to this work has been funded by the South African Medical Research Council (BH) and the National Research Foundation (BH; grant number 77323). The grant-holder acknowledges that opinions, findings, and conclusions or recommendations expressed in any publication generated by NRF supported research are those of the authors, and that the NRF accepts no liability whatsoever in this regard.

REFERENCES

- Langer SZ. α2-Adrenoceptors in the treatment of major neuropsychiatric disorders. *Trends Pharmacol Sci* (2015) 36:196–202. doi:10.1016/j.tips.2015. 02.006
- 2. Berridge CW, Spencer RC. Differential cognitive actions of norepinephrine α_2 and α_1 receptor signaling in the prefrontal cortex. *Brain Res* (2016) 1641:189–96. doi:10.1016/j.brainres.2015.11.024
- Kalkman HO, Loetscher E. α2C-Adrenoceptor blockade by clozapine and other antipsychotic drugs. Eur J Pharmacol (2003) 462:33–40. doi:10.1016/ S0014-2999(03)01308-6
- Shahid M, Walker GB, Zorn SH, Wong EHF. Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. *J Psychopharmacol* (2009) 23:65–73. doi:10.1177/0269881107082944
- 5. Litman RE, Hong WW, Weissman EM, Su TP, Potter WZ, Pickar D. Idazoxan, an α 2 antagonist, augments fluphenazine in schizophrenic patients: a pilot study. *J Clin Psychopharmacol* (1993) 13:264–7. doi:10.1097/00004714-199308000-00006
- Litman RE, Su TP, Potter WZ, Hong WW, Pickar D. Idazoxan and response to typical neuroleptics in treatment-resistant schizophrenia: comparison with the atypical neuroleptic, clozapine. *Br J Psychiatry* (1996) 168:571–9. doi:10.1192/bjp.168.5.571
- Marcus MM, Wiker C, Franberg O, Konradsson-Geuken A, Langlois X, Jardemark K, et al. Adjunctive alpha2-adrenoceptor blockade enhances the antipsychotic-like effect of risperidone and facilitates cortical dopaminergic and glutamatergic, NMDA receptor-mediated transmission. *Int J Neuropsychopharmacol* (2010) 13:891–903. doi:10.1017/S1461145709990794
- Grossman F, Potter WZ, Brown EA, Maislin G. A double-blind study comparing idazoxan and bupropion in bipolar depressed patients. J Affect Disord (1999) 56:237–43. doi:10.1016/S0165-0327(99)00041-5
- Dhir A, Kulkarni SK. Effect of addition of yohimbine (alpha-2-receptor antagonist) to the antidepressant activity of fluoxetine or venlafaxine in the mouse forced swim test. *Pharmacology* (2007) 80:239–43. doi:10.1159/ 000104877
- Rénéric JP, Bouvard M, Stinus L. Idazoxan and 8-OH-DPAT modify the behavioral effects induced by either NA, or 5-HT, or dual NA/5-HT reuptake inhibition in the rat forced swimming test. *Neuropsychopharmacology* (2001) 24:379–90. doi:10.1016/S0893-133X(00)00214-1
- 11. Coull JT, Sahakian BJ, Hodges JR. The α 2 antagonist idazoxan remediates certain attentional and executive dysfunction in patients with dementia of frontal type. *Psychopharmacology* (1996) 123:239–49. doi:10.1007/BF02246578
- Arnsten AFT. Catecholamine influences on dorsolateral prefrontal cortical networks. *Biol Psychiatry* (2011) 69:e89–99. doi:10.1016/j.biopsych.2011. 01.027
- Sallee F, Connor DF, Newcorn JH. A review of the rationale and clinical utilization of alpha2-adrenoceptor agonists for the treatment of attention-deficit/ hyperactivity and related disorders. J Child Adolesc Psychopharmacol (2013) 23:308–19. doi:10.1089/cap.2013.0028
- Hein L, Altman JD, Kobilka BK. Two functionally distinct α2-adrenergic receptors regulate sympathetic neurotransmission. *Nature* (1999) 402:181–4. doi:10.1038/46040
- Philipp M, Brede M, Hein L. Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. *Am J Physiol Regul Integr Comp Physiol* (2002) 283:R287–95. doi:10.1152/ajpregu. 00123.2002
- 16. Scheinin M, Sallinen J, Haapalinna A. Evaluation of the α 2C-adrenoceptor as a neuropsychiatric drug target: studies in transgenic mouse models. *Life Sci* (2001) 68:2277–85. doi:10.1016/S0024-3205(01)01016-5
- 17. Sallinen J, Höglund I, Engström M, Lehtimäki J, Virtanen R, Sirviö J, et al. Pharmacological characterization and CNS effects of a novel highly selective α_{2C} -adrenoceptor antagonist JP-1302. *Br J Pharmacol* (2007) 150:391–402. doi:10.1038/sj.bjp.0707005

These funders have no other role in this study. ORM-10921 was sponsored by Orion Pharma in two studies cited in this manuscript and authored by MU, MS, and BH (20, 21).

- Sallinen J, Holappa J, Koivisto A, Kuokkanen K, Chapman H, Lehtimäki J, et al. Pharmacological characterisation of a structurally novel α2C-adrenoceptor antagonist ORM-10921 and its effects in neuropsychiatric models. *Basic Clin Pharmacol Toxicol* (2013) 113:239–49. doi:10.1111/bcpt. 12090
- Sallinen J, Rouru J, Lehtimäki J, Marjamaeki P, Haaparanta-Solin M, Arponen E, et al. ORM-12741: receptor pharmacology of a novel alpha2cadrenergic receptor subtype selective antagonist with multi-therapeutic potential. *Neuropsychopharmacology* (2013) 38:S558–558.
- Uys M, Shahid M, Sallinen J, Dreyer W, Cockeran M, Harvey BH. The alpha2C-adrenoceptor antagonist, ORM-10921, has antipsychotic-like effects in social isolation reared rats and bolsters the response to haloperidol. *Prog Neuropsychopharmacol Biol Psychiatry* (2016) 71:108–16. doi:10.1016/j. pnpbp.2016.07.002
- Uys MM, Shahid M, Sallinen J, Harvey BH. The alpha2C-adrenoceptor antagonist, ORM-10921, exerts antidepressant-like effects in the Flinders sensitive line rat. *Behav Pharmacol* (2017) 28:9–18. doi:10.1097/FBP. 000000000000261
- 22. Neumeister A, Drevets WC, Belfer I, Luckenbaugh DA, Henry S, Bonne O, et al. Effects of a α 2C-adrenoreceptor gene polymorphism on neural responses to facial expressions in depression. *Neuropsychopharmacology* (2006) 31:1750–6. doi:10.1038/sj.npp.1301010
- Cho S-C, Kim J-W, Kim B-N, Hwang J-W, Shin M-S, Park M, et al. Association between the alpha-2C-adrenergic receptor gene and attention deficit hyperactivity disorder in a Korean sample. *Neurosci Lett* (2008) 446:108–11. doi:10.1016/j.neulet.2008.09.058
- Rivero G, Martin-Guerrero I, de Prado E, Gabilondo AM, Callado LF, Garcia-Sevilla JA, et al. Alpha2C-adrenoceptor Del322-325 polymorphism and risk of psychiatric disorders: significant association with opiate abuse and dependence. *World J Biol Psychiatry* (2016) 17:308–15. doi:10.3109/1562297 5.2016.1142608
- Rinne JO, Wesnes K, Cummings JL, Hakulinen P, Hallikainen M, Hänninen J, et al. Tolerability of ORM-12741 and effects on episodic memory in patients with Alzheimer's disease. *Alzheimers Dement (N Y)* (2017) 3:1–9. doi:10.1016/j.trci.2016.11.004
- 26. Bücheler MM, Hadamek K, Hein L. Two α 2-adrenergic receptor subtypes, α 2A and α 2C, inhibit transmitter release in the brain of gene-targeted mice. *Neuroscience* (2002) 109:819–26. doi:10.1016/S0306-4522(01)00531-0
- Scheinin M, Lomasney JW, Hayden-Hixson DM, Schambra UB, Caron MG, Lefkowitz RJ, et al. Distribution of α2-adrenergic receptor subtype gene expression in rat brain. *Mol Brain Res* (1994) 21:133–49. doi:10.1016/0169-328X(94)90386-7
- 28. Rosin DL, Talley EM, Lee A, Stornetta RL, Gaylinn BD, Guyenet PG, et al. Distribution of $\alpha(2C)$ -adrenergic receptor-like immunoreactivity in the rat central nervous system. *JComp Neurol* (1996) 372:135–65. doi:10.1002/(SICI)1096-9861(19960812)372:1<135::AID-CNE9>3.3.CO;2-B
- Bunemann M, Bucheler MM, Philipp M, Lohse MJ, Hein L. Activation and deactivation kinetics of alpha 2A- and alpha 2C-adrenergic receptor-activated G protein-activated inwardly rectifying K+ channel currents. *J Biol Chem* (2001) 276:47512–7. doi:10.1074/jbc.M108652200
- Ordway GA. Effect of noradrenergic lesions on subtypes of α2-adrenoceptors in rat brain. J Neurochem (1995) 64:1118–26. doi:10.1046/ j.1471-4159.1995.64031118.x
- Esteban S, Lladó J, García-Sevilla JA. α2-Autoreceptors and α2heteroreceptors modulating tyrosine and tryptophan hydroxylase activity in the rat brain in vivo: an investigation into the α2-adrenoceptor subtypes. *Naunyn Schmiedebergs Arch Pharmacol* (1996) 353:391–9.
- Meana JJ, Callado LF, Pazos A, Grijalba B, Garcia-Sevilla JA. The subtype-selective alpha 2-adrenoceptor antagonists BRL 44408 and ARC 239 also recognize 5-HT1A receptors in the rat brain. *Eur J Pharmacol* (1996) 312:385–8. doi:10.1016/0014-2999(96)00598-5
- 33. Scheibner J, Trendelenburg AU, Hein L, Starke K. α 2-Adrenoceptors modulating neuronal serotonin release: a study in α_2 -adrenoceptor

subtype-deficient mice. *Br J Pharmacol* (2001) 132:925–33. doi:10.1038/sj.bjp. 0703882

- Björklund M, Sirviö J, Puoliväli J, Sallinen J, Jäkälä P, Scheinin M, et al. α(2C)-Adrenoceptor-overexpressing mice are impaired in executing nonspatial and spatial escape strategies. *Mol Pharmacol* (1998) 54:569–76.
- Björklund M, Sirviö J, Riekkinen M, Sallinen J, Scheinin M, Riekkinen P Jr. Overexpression of alpha2c-adrenoceptors impairs water maze navigation. *Neuroscience* (1999) 95:481–7. doi:10.1016/S0306-4522(99)00428-5
- Björklund M, Sirviö J, Sallinen J, Scheinin M, Kobilka BK, Riekkinen P Jr. Alpha2C-adrenoceptor overexpression disrupts execution of spatial and non-spatial search patterns. *Neuroscience* (1999) 88:1187–98. doi:10.1016/ S0306-4522(98)00306-6
- Björklund M, Siverina I, Heikkinen T, Tanila H, Sallinen J, Scheinin M, et al. Spatial working memory improvement by an α2-adrenoceptor agonist dexmedetomidine is not mediated through α2C-adrenoceptor. Prog Neuropsychopharmacology Biol Psychiatry (2001) 25:1539–54. doi:10.1016/ S0278-5846(01)00209-3
- Ramos BP, Arnsten AF. Adrenergic pharmacology and cognition: focus on the prefrontal cortex. *Pharmacol Ther* (2007) 113:523–36. doi:10.1016/j. pharmthera.2006.11.006
- Franowicz JS, Kessler LE, Borja CM, Kobilka BK, Limbird LE, Arnsten AFT. Mutation of the α2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine. *J Neurosci* (2002) 22:8771–7.
- 40. Sallinen J, Haapalinna A, MacDonald E, Viitamaa T, Lähdesmäki J, Rybnikova E, et al. Genetic alteration of the α2-adrenoceptor subtype c in mice affects the development of behavioral despair and stress-induced increases in plasma corticosterone levels. *Mol Psychiatry* (1999) 4:443–52. doi:10.1038/ sj.mp.4000543
- Schramm NL, McDonald MP, Limbird LE. The α2A-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. *J Neurosci* (2001) 21:4875–82.
- Zhang HT, Whisler LR, Huang Y, Xiang Y, O'Donnell JM. Postsynaptic α-2 adrenergic receptors are critical for the antidepressant-like effects of desipramine on behavior. *Neuropsychopharmacology* (2009) 34:1067–77. doi:10.1038/ npp.2008.184
- 43. Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M. Adrenergic $\alpha(2C)$ -receptors modulate the acoustic startle reflex, prepulse inhibition, and aggression in mice. *J Neurosci* (1998) 18:3035–42.
- Lähdesmäki J, Sallinen J, MacDonald E, Scheinin M. Alpha2A-adrenoceptors are important modulators of the effects of D-amphetamine on startle reactivity and brain monoamines. *Neuropsychopharmacology* (2004) 29:1282–93. doi:10.1038/sj.npp.1300428
- Dunn HA, Ferguson SS. PDZ protein regulation of G protein-coupled receptor trafficking and signaling pathways. *Mol Pharmacol* (2015) 88:624–39. doi:10.1124/mol.115.098509
- 46. Cottingham C, Wang Q. α2 Adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy. *Neurosci Biobehav Rev* (2012) 36:2214–25. doi:10.1016/j. neubiorev.2012.07.011
- Arnsten AFT. The use of α-2A adrenergic agonists for the treatment of attention-deficit/hyperactivity disorder. *Expert Rev Neurother* (2010) 10:1595–605. doi:10.1586/ern.10.133
- Dinan TG, Cryan JF. The impact of gut microbiota on brain and behaviour: implications for psychiatry. *Curr Opin Clin Nutr Metab Care* (2015) 18:552–8. doi:10.1097/MCO.00000000000221
- Katzung BG. Introduction to autonomic pharmacology. In: Katzung BG, Trevor AJ, editors. *Basic and Clinical Pharmacology*. New York: McGraw-Hill Education (2015). p. 87–194.
- Starke K. Presynaptic autoreceptors in the third decade: focus on α2-adrenoceptors. J Neurochem (2001) 78:685–93. doi:10.1046/j.1471-4159.2001.00484.x
- MacDonald E, Kobilka BK, Scheinin M. Gene targeting homing in on α2-adrenoceptor-subtype function. *Trends Pharmacol Sci* (1997) 18:211–9. doi:10.1016/S0165-6147(97)90625-8
- Gilsbach R, Hein L. Are the pharmacology and physiology of α2adrenoceptors determined by α2-heteroreceptors and autoreceptors respectively? Br J Pharmacol (2012) 165:90–102. doi:10.1111/j.1476-5381.2011.01533.x
- 53. Trendelenburg AU, Klebroff W, Hein L, Starke K. A study of presynaptic α 2-autoreceptors in α 2A/D-, α 2B- and α 2C-adrenoceptor-deficient mice.

Naunyn Schmiedebergs Arch Pharmacol (2001) 364:117-30. doi:10.1007/s002100100423

- Scheibner J, Trendelenburg AU, Hein L, Starke K. Stimulation frequencynoradrenaline release relationships examined in α2A-,α2B- and α2Cadrenoceptor-deficient mice. *Naunyn Schmiedebergs Arch Pharmacol* (2001) 364:321–8. doi:10.1007/s002100100432
- Fagerholm V, Rokka J, Nyman L, Sallinen J, Tüihonen J, Tupala E, et al. Autoradiographic characterization of α2C-adrenoceptors in the human striatum. Synapse (2008) 62:508–15. doi:10.1002/syn.20520
- Finnema SJ, Hughes ZA, Haaparanta-Solin M, Stepanov V, Nakao R, Varnäs K, et al. Amphetamine decreases α(2C)-adrenoceptor binding of [(11)C]ORM-13070: a PET study in the primate brain. *Int J Neuropsychopharmacol* (2015) 18:yu081. doi:10.1093/ijnp/pyu081
- 57. Uhlen S, Muceniece R, Rangel N, Tiger G, Wikberg JE. Comparison of the binding activities of some drugs on alpha 2A, alpha 2B and alpha 2C-adrenoceptors and non-adrenergic imidazoline sites in the guinea pig. *Pharmacol Toxicol* (1995) 76:353–64. doi:10.1111/j.1600-0773.1995.tb00161.x
- Uhlen S, Porter AC, Neubig RR. The novel alpha-2 adrenergic radioligand [3H]-MK912 is alpha-2C selective among human alpha-2A, alpha-2B and alpha-2C adrenoceptors. *J Pharmacol Exp Ther* (1994) 271:1558–65.
- 59. Holmberg M, Fagerholm V, Scheinin M. Regional distribution of α 2Cadrenoceptors in brain and spinal cord of control mice and transgenic mice overexpressing the α 2C-subtype: an autoradiographic study with [3H]RX821002 and [3H]rauwolscine. *Neuroscience* (2003) 117:875–98. doi:10.1016/S0306-4522(02)00966-1
- Holmberg M, Scheinin M, Kurose H, Miettinen R. Adrenergic α(2C)-receptors reside in rat striatal GABAergic projection neurons: comparison of radioligand binding and immunohistochemistry. *Neuroscience* (1999) 93:1323–33. doi:10.1016/S0306-4522(99)00260-2
- 61. Winzer-Serhan UH, Raymon HK, Broide RS, Chen Y, Leslie FM. Expression of $\alpha 2$ adrenoceptors during rat brain development II. $\alpha(2C)$ messenger RNA expression and [3H]rauwolscine binding. *Neuroscience* (1997) 76:261–72. doi:10.1016/S0306-4522(96)00369-7
- Lehto J, Hirvonen MM, Johansson J, Kemppainen J, Luoto P, Naukkarinen T, et al. Validation of [11C]ORM-13070 as a PET tracer for alpha2c-adrenoceptors in the human brain. *Synapse* (2015) 69:172–81. doi:10.1002/syn.21798
- 63. Crassous PA, Cardinaletti C, Carrieri A, Bruni B, Di Vaira M, Gentili F, et al. α 2-Adrenoreceptors profile modulation. 3.1 (R)-(+)-m-nitrobiphenyline, a new efficient and α 2c-subtype selective agonist. *J Med Chem* (2007) 50:3964–8. doi:10.1021/jm061487a
- Zhang W, Klimek V, Farley JT, Zhu MY, Ordway GA. α(2C) adrenoceptors inhibit adenylyl cyclase in mouse striatum: potential activation by dopamine. *J Pharmacol Exp Ther* (1999) 289:1286–92.
- Zhang W, Ordway GA. The α2C-adrenoceptor modulates GABA release in mouse striatum. *Mol Brain Res* (2003) 112:24–32. doi:10.1016/ S0169-328X(03)00026-3
- 66. Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M. D-Amphetamine and L-5-hydroxytryptophan-induced behaviours in mice with genetically-altered expression of the $\alpha(2C)$ -adrenergic receptor subtype. *Neuroscience* (1998) 86:959–65. doi:10.1016/S0306-4522(98)00100-6
- 67. Sallinen J, Link RE, Haapalinna A, Viitamaa T, Kulatunga M, Sjöholm B, et al. Genetic alteration of α (2C)-adrenoceptor expression in mice: influence on locomotor, hypothermic, and neurochemical effects of dexmedetomidine, a subtype-nonselective α 2-adrenoceptor agonist. *Mol Pharmacol* (1997) 51:36–46.
- Brand SJ, Moller M, Harvey BH. A review of biomarkers in mood and psychotic disorders: a dissection of clinical vs. preclinical correlates. *Curr Neuropharmacol* (2015) 13:324–68. doi:10.2174/1570159X13666150307004545
- 69. Link R, Daunt D, Barsh G, Chruscinski A, Kobilka B. Cloning of two mouse genes encoding α2-adrenergic receptor subtypes and identification of a single amino acid in the mouse α2-C10 homolog responsible for an interspecies variation in antagonist binding. *Mol Pharmacol* (1992) 42:16–27.
- Zetterstrom T, Sharp T, Marsden CA, Ungerstedt U. In vivo measurement of dopamine and its metabolites by intracerebral dialysis: changes after D-amphetamine. *J Neurochem* (1983) 41:1769–73. doi:10.1111/j.1471-4159. 1983.tb00893.x
- Kuczenski R, Segal D. Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis. *J Neurosci* (1989) 9:2051–65.

- Kuczenski R, Segal DS. Regional norepinephrine response to amphetamine using dialysis: comparison with caudate dopamine. *Synapse* (1992) 11:164–9. doi:10.1002/syn.890110210
- Ihalainen JA, Tanila H, Scheinin M, Riekkinen P Jr. α2C-Adrenoceptors modulate the effect of methylphenidate on response rate and discrimination accuracy in an operant test. *Brain Res Bull* (2001) 54:553–7. doi:10.1016/ S0361-9230(01)00449-X
- Kawaguchi Y, Wilson CJ, Emson PC. Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. *J Neurosci* (1990) 10:3421–38.
- Monti B, Polazzi E, Contestabile A. Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. *Curr Mol Pharmacol* (2009) 2:95–109. doi:10.2174/1874467210902010095
- Reynolds GP. The neurochemistry of schizophrenia. *Psychiatry* (2008) 7:425–9. doi:10.1016/j.mppsy.2008.07.014
- Millan MJ. The neurobiology and control of anxious states. Prog Neurobiol (2003) 70:83–244. doi:10.1016/S0301-0082(03)00087-X
- Harvey BH, Slabbert FN. New insights on the antidepressant discontinuation syndrome. *Hum Psychopharmacol* (2014) 29:503–16. doi:10.1002/ hup.2429
- Timofeeva OA, Levin ED. Idazoxan blocks the nicotine-induced reversal of the memory impairment caused by the NMDA glutamate receptor antagonist dizocilpine. *Pharmacol Biochem Behav* (2008) 90:372–81. doi:10.1016/j. pbb.2008.03.011
- Bardgett ME, Points M, Ramsey-Faulkner C, Topmiller J, Roflow J, McDaniel T, et al. The effects of clonidine on discrete-trial delayed spatial alternation in two rat models of memory loss. *Neuropsychopharmacology* (2007) 33:1980–91. doi:10.1038/sj.npp.1301580
- Jentsch JD, Anzivino LA. A low dose of the alpha2 agonist clonidine ameliorates the visual attention and spatial working memory deficits produced by phencyclidine administration to rats. *Psychopharmacology* (2004) 175:76–83. doi:10.1007/s00213-004-1772-3
- Marrs W, Kuperman J, Avedian T, Roth RH, Jentsch JD. Alpha-2 adrenoceptor activation inhibits phencyclidine-induced deficits of spatial working memory in rats. *Neuropsychopharmacology* (2005) 30:1500–10. doi:10.1038/ sj.npp.1300700
- Jimenez-Rivera CA, Figueroa J, Vazquez-Torres R, Velez-Hernandez ME, Schwarz D, Velasquez-Martinez MC, et al. Presynaptic inhibition of glutamate transmission by alpha2 receptors in the VTA. *Eur J Neurosci* (2012) 35:1406–15. doi:10.1111/j.1460-9568.2012.08029.x
- Marcus MM, Jardemark KE, Wadenberg ML, Langlois X, Hertel P, Svensson TH. Combined α2 and D2/3 receptor blockade enhances cortical glutamatergic transmission and reverses cognitive impairment in the rat. Int J Neuropsychopharmacol (2005) 8:315–27. doi:10.1017/S1461145705005328
- Jardemark K, Marcus MM, Shahid M, Svensson TH. Effects of asenapine on prefrontal N-methyl-D-aspartate receptor-mediated transmission: involvement of dopamine D1 receptors. *Synapse* (2010) 64:870–4. doi:10.1002/ syn.20803
- Schwartz TL, Sachdeva S, Stahl SM. Glutamate neurocircuitry: theoretical underpinnings in schizophrenia. *Front Pharmacol* (2012) 3:195. doi:10.3389/ fphar.2012.00195
- Scarr E, Gibbons AS, Neo J, Udawela M, Dean B. Cholinergic connectivity: it's implications for psychiatric disorders. *Front Cell Neurosci* (2013) 7:55. doi:10.3389/fncel.2013.00055
- Friedman JI. Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. *Psychopharmacology* (Berl) (2004) 174:45–53. doi:10.1007/s00213-004-1794-x
- Furey ML, Drevets WC. Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry (2006) 63:1121–9. doi:10.1001/archpsyc.63.10.1121
- Scarr E, Sundram S, Keriakous D, Dean B. Altered hippocampal muscarinic M4, but not M1, receptor expression from subjects with schizophrenia. *Biol Psychiatry* (2007) 61:1161–70. doi:10.1016/j.biopsych.2006.08.050
- Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzheimer's disease: therapeutic implications. *Expert Rev Neurother* (2008) 8:1703–18. doi:10.1586/14737175.8.11.1703
- 92. Raiteri M, Marchi M, Paudice P, Pittaluga A. Muscarinic receptors mediating inhibition of gamma-aminobutyric acid release in rat corpus striatum

and their pharmacological characterization. J Pharmacol Exp Ther (1990) 254:496–501.

- Sapolsky RM. Depression, antidepressants, and the shrinking hippocampus. Proc Natl Acad Sci U S A (2001) 98:12320–2. doi:10.1073/pnas.231475998
- Kharade SM, Gumate DS, Naikwade NS. A review: hypothesis of depression and role of antidepressant drugs. *Int J Pharm Pharm Sci* (2010) 2:3–6.
- Duman RS. Neurobiology of stress, depression, and rapid acting antidepressants: remodeling synaptic connections. *Depress Anxiety* (2014) 31:291–6. doi:10.1002/da.22227
- Duman RS. Pathophysiology of depression: the concept of synaptic plasticity. Eur Psychiatry (2002) 17:306–10. doi:10.1016/S0924-9338(02)00654-5
- Krishnan V, Nestler EJ. The molecular neurobiology of depression. *Nature* (2008) 455:894–902. doi:10.1038/nature07455
- Thase ME, Entsuah AR, Rudolph RL. Remission rates during treatment with venlafaxine or selective serotonin reuptake inhibitors. *Br J Psychiatry* (2001) 178:234–41. doi:10.1192/bjp.178.3.234
- Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR* D report. *Am J Psychiatry* (2006) 163:1905–17. doi:10.1176/ajp.2006.163.11.1905
- 100. De Paermentier F, Mauger JM, Lowther S, Crompton MR, Katona CLE, Horton RW. Brain α-adrenoceptors in depressed suicides. *Brain Res* (1997) 757:60–8. doi:10.1016/S0006-8993(97)00138-8
- 101. Ordway GA, Schenk J, Stockmeier CA, May W, Klimek V. Elevated agonist binding to α2-adrenoceptors in the locus coeruleus in major depression. *Biol Psychiatry* (2003) 53:315–23. doi:10.1016/S0006-3223(02)01728-6
- 102. Ordway GA, Widdowson PS, Smith KS, Halaris A. Agonist binding to α2-adrenoceptors is elevated in the locus coeruleus from victims of suicide. *J Neurochem* (1994) 63:617–24. doi:10.1046/j.1471-4159.1994.63020617.x
- 103. González AM, Pascual J, Meana JJ, Barturen F, Del Arco C, Pazos A, et al. Autoradiographic demonstration of increased α2-adrenoceptor agonist binding sites in the hippocampus and frontal cortex of depressed suicide victims. *J Neurochem* (1994) 63:256–65. doi:10.1046/j.1471-4159.1994.63010256.x
- 104. Callado LF, Meana JJ, Grijalba B, Pazos A, Sastre M, García-Sevilla JA. Selective increase of α (2A)-adrenoceptor agonist binding sites in brains of depressed suicide victims. *J Neurochem* (1998) 70:1114–23. doi:10.1046/j. 1471-4159.1998.70031114.x
- 105. Javier Meana J, Barturen F, Garcia-Sevilla JA. α 2-Adrenoceptors in the brain of suicide victims: increased receptor density associated with major depression. *Biol Psychiatry* (1992) 31:471–90. doi:10.1016/0006-3223(92)90259-3
- 106. Meana JJ, García-Sevilla JA. Increased α2;-adrenoceptor density in the frontal cortex of depressed suicide victims. J Neural Transm (1987) 70:377–81. doi:10.1007/BF01253612
- Blier P. The pharmacology of putative early-onset antidepressant strategies. Eur Neuropsychopharmacol (2003) 13:57–66. doi:10.1016/S0924-977X(02)00173-6
- Marshall RJ. The pharmacology of mianserin—an update. Br J Clin Pharmacol (1983) 15:263S–8S. doi:10.1111/j.1365-2125.1983.tb05874.x
- Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. *Psychopharmacology* (2005) 177:245–55. doi:10.1007/s00213-004-2048-7
- 110. Castagné V, Moser P, Roux S, Porsolt RD. Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. *Curr Protoc Neurosci* (2011) 55:1–14. doi:10.1002/0471142301. ns0810as55
- Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. *Mol Psychiatry* (2004) 9:326–57. doi:10.1038/sj.mp.4001457
- Holmes PV. Rodent models of depression: reexamining validity without anthropomorphic inference. *Crit Rev Neurobiol* (2003) 15:143–74. doi:10.1615/CritRevNeurobiol.v15.i2.30
- Cottingham C, Li X, Wang Q. Noradrenergic antidepressant responses to desipramine in vivo are reciprocally regulated by arrestin3 and spinophilin. *Neuropharmacology* (2012) 62:2354–62. doi:10.1016/j.neuropharm. 2012.02.011
- Cervo L, Samanin R. Clonidine causes antidepressant-like effects in rats by activating α2-adrenoceptors outside the locus coeruleus. *Eur J Pharmacol* (1991) 193:309–13. doi:10.1016/0014-2999(91)90144-F

- 115. Stone EA, Lin Y, Sarfraz Y, Quartermain D. Antidepressant-like action of intracerebral 6-fluoronorepinephrine, a selective full α-adrenoceptor agonist. *Int J Neuropsychopharmacol* (2011) 14:319–31. doi:10.1017/ S1461145710000507
- 116. Sanacora G, Berman RM, Cappiello A, Oren DA, Kugaya A, Liu N, et al. Addition of the α2-antagonist yohimbine to fluoxetine: effects on rate of antidepressant response. *Neuropsychopharmacology* (2004) 29:1166–71. doi:10.1038/sj.npp.1300418
- 117. Davis R, Wilde MI. Mirtazapine: a review of its pharmacology and therapeutic potential in the management of major depression. CNS Drugs (1996) 5:389–402. doi:10.2165/00023210-199605050-00007
- 118. Blier P, Gobbi G, Turcotte JE, de Montigny C, Boucher N, Hébert C, et al. Mirtazapine and paroxetine in major depression: a comparison of monotherapy versus their combination from treatment initiation. *Eur Neuropsychopharmacol* (2009) 19:457–65. doi:10.1016/j.euroneuro.2009. 01.015
- 119. Blier P, Ward HE, Tremblay P, Laberge L, Hébert C, Bergeron R. Combination of antidepressant medications from treatment initiation for major depressive disorder: a double-blind randomized study. *Am J Psychiatry* (2010) 167:281–8. doi:10.1176/appi.ajp.2009.09020186
- Gotlib IH, Joormann J. Cognition and depression: current status and future directions. Annu Rev Clin Psychol (2010) 6:285–312. doi:10.1146/annurev. clinpsy.121208.131305
- 121. Hammar Å, Årdal G. Cognitive functioning in major depression a summary. *Front Hum Neurosci* (2009) 3:26. doi:10.3389/neuro.09.026.2009
- 122. Campbell S, MacQueen G. The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci (2004) 29:417–26.
- Flugge G. Effects of cortisol on brain alpha2-adrenoceptors: potential role in stress. *Neurosci Biobehav Rev* (1999) 23:949-56. doi:10.1016/ S0149-7634(99)00028-7
- 124. Schule C, Baghai T, Zwanzger P, Rupprecht R. Attenuation of HPA axis hyperactivity and simultaneous clinical deterioration in a depressed patient treated with mirtazapine. *World J Biol Psychiatry* (2001) 2:103–5. doi:10.3109/15622970109027501
- 125. Schüle C, Baghai T, Zwanzger P, Ella R, Eser D, Padberg F, et al. Attenuation of hypothalamic-pituitary-adrenocortical hyperactivity in depressed patients by mirtazapine. *Psychopharmacology* (2003) 166:271–5. doi:10.1007/ s00213-002-1356-z
- Weber C-C, Eckert GP, Muller WE. Effects of antidepressants on the brain// plasma distribution of corticosterone. *Neuropsychopharmacology* (2006) 31:2443–8. doi:10.1038/sj.npp.1301076
- 127. Glue P, Wilson S, Campling GM, Knightly M, Franklin M, Cowen PJ, et al. Alpha-2-adrenoceptor control of cortisol and ACTH in normal volunteers: preliminary open trial of the effects of acute and chronic idazoxan. *Psychoneuroendocrinology* (1992) 17:261–6. doi:10.1016/0306-4530(92)90066-G
- Price LH, Charney DS, Rubin AL, Heninger GR. Alpha 2-adrenergic receptor function in depression. The cortisol response to yohimbine. *Arch Gen Psychiatry* (1986) 43:849–58. doi:10.1001/archpsyc.1986. 01800090035006
- 129. Finn DP, Hudson AL, Kinoshita H, Coventry TL, Jessop DS, Nutt DJ, et al. Imidazoline2 (I2) receptor- and alpha2-adrenoceptor-mediated modulation of hypothalamic-pituitary-adrenal axis activity in control and acute restraint stressed rats. *J Psychopharmacol* (2004) 18:47–53. doi:10.1177/0269881104040231
- Báez M, Volosin M. Corticosterone influences forced swim-induced immobility. *Pharmacol Biochem Behav* (1994) 49:729–36. doi:10.1016/0091-3057(94)90093-0
- 131. Korte SM, De Kloet ER, Buwalda B, Bouman SD, Bohus B. Antisense to the glucocorticoid receptor in hippocampal dentate gyrus reduces immobility in forced swim test. *Eur J Pharmacol* (1996) 301:19–25. doi:10.1016/0014-2999(96)00064-7
- 132. Lehto J, Scheinin A, Johansson J, Marjamäki P, Arponen E, Scheinin H, et al. Detecting a dexmedetomidine-evoked reduction of noradrenaline release in the human brain with the alpha2C-adrenoceptor PET ligand [11C]ORM-13070. Synapse (2016) 70:57–65. doi:10.1002/syn.21872
- Lu L, Ordway GA. Alpha2C-adrenoceptors mediate inhibition of forskolinstimulated cAMP production in rat striatum. *Brain Res Mol Brain Res* (1997) 52:228–34. doi:10.1016/S0169-328X(97)00257-X

- Simpson EH, Kellendonk C, Kandel E. A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. *Neuron* (2010) 65:585–96. doi:10.1016/j.neuron.2010.02.014
- Yamamoto K, Hornykiewicz O. Proposal for a noradrenaline hypothesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry (2004) 28:913–22. doi:10.1016/j.pnpbp.2004.05.033
- 136. Moller M, Swanepoel T, Harvey BH. Neurodevelopmental animal models reveal the convergent role of neurotransmitter systems, inflammation, and oxidative stress as biomarkers of schizophrenia: implications for novel drug development. ACS Chem Neurosci (2015) 6:987–1016. doi:10.1021/ cn5003368
- Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III – the final common pathway. *Schizophr Bull* (2009) 35:549–62. doi:10.1093/schbul/sbp006
- Grunder G, Hippius H, Carlsson A. The 'atypicality' of antipsychotics: a concept re-examined and re-defined. *Nat Rev Drug Discov* (2009) 8:197–202. doi:10.1038/nrd2806
- Svensson TH. α-Adrenoceptor modulation hypothesis of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry (2003) 27:1145–58. doi:10.1016/j.pnpbp.2003.09.009
- Hertel P, Fagerquist MV, Svensson TH. Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by α2 adrenoceptor blockade. *Science* (1999) 286:105–7. doi:10.1126/science.286.5437.105
- 141. Farde L, Wiesel FA, Nordström AL, Sedvall G. D1- and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. *Psychopharmacology* (1989) 99:S28–31. doi:10.1007/BF00442555
- Farde L, Nordström AL. PET analysis indicates atypical central dopamine receptor occupancy in clozapine-treated patients. *Br J Psychiatry Suppl* (1992) 17:30–3.
- Braff DL, Geyer MA. Sensorimotor gating and schizophrenia human and animal model studies. Arch Gen Psychiatry (1990) 47:181–8. doi:10.1001/ archpsyc.1990.01810140081011
- 144. Geyer MA, Braff DL. Startle habituation and sensorimotor gating in schizophrenia and related animal models. *Schizophr Bull* (1987) 13:643–68. doi:10.1093/schbul/13.4.643
- 145. Flaten MA. Test-retest reliability of the somatosensory blink reflex and its inhibition. *Int J Psychophysiol* (2002) 45:261–5. doi:10.1016/ S0167-8760(02)00034-X
- 146. Geyer MA, Swerdlow NR, Mansbach RS, Braff DL. Startle response models of sensorimotor gating and habituation deficits in schizophrenia. *Brain Res Bull* (1990) 25:485–98. doi:10.1016/0361-9230(90)90241-Q
- 147. Geyer MA, Wilkinson LS, Humby T, Robbins TW. Isolation rearing of rats produces a deficit in prepulse inhibition of acoustic startle similar to that in schizophrenia. *Biol Psychiatry* (1993) 34:361–72. doi:10.1016/0006-3223(93)90180-L
- Bakshi VP, Swerdlow NR, Geyer MA. Clozapine antagonizes phencyclidineinduced deficits in sensorimotor gating of the startle response. *J Pharmacol Exp Ther* (1994) 271:787–94.
- 149. Varty GB, Higgins GA, Higgins GA. Examination of drug-induced and isolation-induced disruptions of prepulse inhibition as models to screen antipsychotic drugs. *Psychopharmacology* (1995) 122:15–26. doi:10.1007/ BF02246437
- Geyer MA, McIlwain KL, Paylor R. Mouse genetic models for prepulse inhibition: an early review. *Mol Psychiatry* (2002) 7:1039–53. doi:10.1038/ sj.mp.4001159
- 151. Depoortere R, Perrault G, Sanger DJ. Potentiation of prepulse inhibition of the startle reflex in rats: pharmacological evaluation of the procedure as a model for detecting antipsychotic activity. *Psychopharmacology* (1997) 132:366–74. doi:10.1007/s002130050357
- 152. Swerdlow NR, Talledo J, Sutherland AN, Nagy D, Shoemaker JM. Antipsychotic effects on prepulse inhibition in normal 'low gating' humans and rats. *Neuropsychopharmacology* (2006) 31:2011–21. doi:10.1038/ sj.npp.1301043
- 153. During S, Glenthoj BY, Andersen GS, Oranje B. Effects of dopamine D2/ D3 blockade on human sensory and sensorimotor gating in initially antipsychotic-naive, first-episode schizophrenia patients. *Neuropsychopharmacology* (2014) 39:3000–8. doi:10.1038/npp.2014.152
- 154. Vollenweider FX, Barro M, Csomor PA, Feldon J. Clozapine enhances prepulse inhibition in healthy humans with low but not with high prepulse

inhibition levels. Biol Psychiatry (2006) 60:597-603. doi:10.1016/j.biopsych. 2006.03.058

- 155. Csomor PA, Preller KH, Geyer MA, Studerus E, Huber T, Vollenweider FX. Influence of aripiprazole, risperidone, and amisulpride on sensory and sensorimotor gating in healthy 'low and high gating' humans and relation to psychometry. *Neuropsychopharmacology* (2014) 39:2485–96. doi:10.1038/ npp.2014.102
- 156. Larrauri JA, Levin ED. The alpha(2)-adrenergic antagonist idazoxan counteracts prepulse inhibition deficits caused by amphetamine or dizocilpine in rats. *Psychopharmacology (Berl)* (2012) 219:99–108. doi:10.1007/ s00213-011-2377-2
- Ozcetin A, Cevreli B, Uzbay T. Investigation of the role of alpha-2 adrenergic receptors on prepulse inhibition of acoustic startle reflex in rats. *Synapse* (2016) 70(12):501–7. doi:10.1002/syn.21923
- Powell SB, Palomo J, Carasso BS, Bakshi VP, Geyer MA. Yohimbine disrupts prepulse inhibition in rats via action at 5-HT1A receptors, not alpha2adrenoceptors. *Psychopharmacology (Berl)* (2005) 180:491–500. doi:10.1007/ s00213-005-2193-7
- Jones C, Watson D, Fone K. Animal models of schizophrenia. Br J Pharmacol (2011) 164:1162–94. doi:10.1111/j.1476-5381.2011.01386.x
- 160. Fone KC, Porkess MV. Behavioural and neurochemical effects of postweaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. *Neurosci Biobehav Rev* (2008) 32:1087–102. doi:10.1016/j. neubiorev.2008.03.003
- 161. Elvevag B, Goldberg TE. Cognitive impairment in schizophrenia is the core of the disorder. *Crit Rev Neurobiol* (2000) 14:1–21. doi:10.1615/ CritRevNeurobiol.v14.i1.10
- Trivedi JK. Cognitive deficits in psychiatric disorders: current status. Indian J Psychiatry (2006) 48:10–20. doi:10.4103/0019-5545.31613
- Bowie CR, Harvey PD. Cognitive deficits and functional outcome in schizophrenia. *Neuropsychiatr Dis Treat* (2006) 2:531–6. doi:10.2147/ nedt.2006.2.4.531
- Keefe RS, Harvey PD. Cognitive impairment in schizophrenia. Handb Exp Pharmacol (2012) 213:11–37. doi:10.1007/978-3-642-25758-2_2
- 165. Kahn RS, Keefe RSE. Schizophrenia is a cognitive illness: time for a change in focus. JAMA Psychiatry (2013) 70:1107–12. doi:10.1001/ jamapsychiatry.2013.155
- 166. Skarsfeldt T. Differential effect of antipsychotics on place navigation of rats in the Morris water maze. A comparative study between novel and reference antipsychotics. *Psychopharmacology (Berl)* (1996) 124:126–33. doi:10.1007/ BF02245612
- 167. Didriksen M, Skarsfeldt T, Arnt J. Reversal of PCP-induced learning and memory deficits in the Morris' water maze by sertindole and other antipsychotics. *Psychopharmacology (Berl)* (2007) 193:225–33. doi:10.1007/ s00213-007-0774-3
- Grayson B, Idris NF, Neill JC. Atypical antipsychotics attenuate a sub-chronic PCP-induced cognitive deficit in the novel object recognition task in the rat. *Behav Brain Res* (2007) 184:31–8. doi:10.1016/j.bbr.2007.06.012
- 169. Wolff MC, Leander JD. Comparison of the effects of antipsychotics on a delayed radial maze task in the rat. *Psychopharmacology (Berl)* (2003) 168:410–6. doi:10.1007/s00213-003-1449-3
- 170. Amitai N, Markou A. Disruption of performance in the 5-choice serial reaction time task induced by administration of NMDA receptor antagonists: relevance to cognitive dysfunction in schizophrenia. *Biol Psychiatry* (2010) 68:5–16. doi:10.1016/j.biopsych.2010.03.004
- 171. Bubenikova-Valesova V, Horacek J, Vrajova M, Hoschl C. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. *Neurosci Biobehav Rev* (2008) 32:1014–23. doi:10.1016/j.neubiorev.2008.03.012
- 172. Enomoto T, Ishibashi T, Tokuda K, Ishiyama T, Toma S, Ito A. Lurasidone reverses MK-801-induced impairment of learning and memory in the Morris water maze and radial-arm maze tests in rats. *Behav Brain Res* (2008) 186:197–207. doi:10.1016/j.bbr.2007.08.012
- 173. Terry AV, Hill WD, Parikh V, Waller JL, Evans DR, Mahadik SP. Differential effects of haloperidol, risperidone, and clozapine exposure on cholinergic markers and spatial learning performance in rats. *Neuropsychopharmacology* (2003) 28:300–9. doi:10.1038/sj.npp.1300039
- 174. Favalli G, Li J, Belmonte-de-Abreu P, Wong AHC, Daskalakis ZJ. The role of BDNF in the pathophysiology and treatment of schizophrenia. J Psychiatr Res (2012) 46:1–11. doi:10.1016/j.jpsychires.2011.09.022

- Nieto R, Kukuljan M, Silva H. BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. *Front Psychiatry* (2013) 4:45. doi:10.3389/fpsyt.2013.00045
- Couture SM, Penn DL, Roberts DL. The functional significance of social cognition in schizophrenia: a review. *Schizophr Bull* (2006) 32:S44–63. doi:10.1093/schbul/sbl029
- 177. Wilson CA, Koenig JI. Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. *Eur Neuropsychopharmacol* (2014) 24:759–73. doi:10.1016/j. euroneuro.2013.11.008
- 178. Möller M, Du Preez JL, Emsley R, Harvey BH. Isolation rearing-induced deficits in sensorimotor gating and social interaction in rats are related to cortico-striatal oxidative stress, and reversed by sub-chronic clozapine administration. *Eur Neuropsychopharmacol* (2011) 21:471–83. doi:10.1016/j. euroneuro.2010.09.006
- 179. Ishibashi T, Horisawa T, Tokuda K, Ishiyama T, Ogasa M, Tagashira R, et al. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. *J Pharmacol Exp Ther* (2010) 334:171–81. doi:10.1124/jpet.110. 167346
- 180. Swartz MS, Wagner HR, Swanson JW, Stroup TS, McEvoy JP, Reimherr F, et al. The effectiveness of antipsychotic medications in patients who use or avoid illicit substances: results from the CATIE study. *Schizophr Res* (2008) 100:39–52. doi:10.1016/j.schres.2007.11.034
- 181. Arnsten A, Cai JX, Goldman-Rakic PS. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. *J Neurosci* (1988) 8:4287–98.
- 182. Franowicz JS, Arnsten AF. Treatment with the noradrenergic alpha-2 agonist clonidine, but not diazepam, improves spatial working memory in normal young rhesus monkeys. *Neuropsychopharmacology* (1999) 21:611–21. doi:10.1016/S0893-133X(99)00060-3
- 183. Cai JX, Ma YY, Xu L, Hu XT. Reserpine impairs spatial working memory performance in monkeys: reversal by the alpha 2-adrenergic agonist clonidine. *Brain Res* (1993) 614:191–6. doi:10.1016/0006-8993(93)91034-P
- 184. Jäkälä P, Riekkinen M, Sirviö J, Koivisto E, Kejonen K, Vanhanen M, et al. Guanfacine, but not clonidine, improves planning and working memory performance in humans. *Neuropsychopharmacology* (1999) 20:460–70. doi:10.1016/S0893-133X(98)00127-4
- Arnsten A, Goldman-Rakic PS. Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. *Science* (1985) 230:1273–6. doi:10.1126/science.2999977
- 186. Lakhlani PP, MacMillan LB, Guo TZ, McCool BA, Lovinger DM, Maze M, et al. Substitution of a mutant alpha2a-adrenergic receptor via "hit and run" gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. *Proc Natl Acad Sci U S A* (1997) 94:9950–5. doi:10.1073/pnas.94.18.9950
- Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. *Nat Protoc* (2006) 1:848–58. doi:10.1038/nprot.2006.116
- Marston H, Everitt B, Robbins T. Comparative effects of excitotoxic lesions of the hippocampus and septum/diagonal band on conditional visual discrimination and spatial learning. *Neuropsychologia* (1993) 31:1099–118. doi:10.1016/0028-3932(93)90035-X
- Annett L, McGregor A, Robbins T. The effects of ibotenic acid lesions of the nucleus accumbens on spatial learning and extinction in the rat. *Behav Brain Res* (1989) 31:231–42. doi:10.1016/0166-4328(89)90005-3
- 190. Floresco SB, Seamans JK, Phillips AG. Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J Neurosci (1997) 17:1880–90.
- 191. Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. *Behav Brain Res* (1988) 31:47–59. doi:10.1016/0166-4328(88)90157-X
- 192. Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. *Cogn Process* (2012) 13:93–110. doi:10.1007/s10339-011-0430-z
- 193. Broadbent NJ, Gaskin S, Squire LR, Clark RE. Object recognition memory and the rodent hippocampus. *Learn Mem* (2010) 17:794–800. doi:10.1101/ lm.1650110

- Cohen SJ, Stackman RW Jr. Assessing rodent hippocampal involvement in the novel object recognition task. a review. *Behav Brain Res* (2015) 285:105–17. doi:10.1016/j.bbr.2014.08.002
- Reger ML, Hovda DA, Giza CC. Ontogeny of rat recognition memory measured by the novel object recognition task. *Dev Psychobiol* (2009) 51:672–8. doi:10.1002/dev.20402
- 196. Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. *Handb Exp Pharmacol* (2014) 220:223–50. doi:10.1007/978-3-642-45106-5_9
- 197. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. *Pharmacol Rev* (2012) 64:238–58. doi:10.1124/pr.111.005108
- 198. Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. *Curr Neuropharmacol* (2011) 9:530–52. doi:10.2174/ 157015911798376262
- 199. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. *J Neurosci* (1995) 15:7539–47.
- 200. Fumagalli F, Molteni R, Roceri M, Bedogni F, Santero R, Fossati C, et al. Effect of antipsychotic drugs on brain-derived neurotrophic factor expression under reduced N-methyl-D-aspartate receptor activity. *J Neurosci Res* (2003) 72:622–8. doi:10.1002/jnr.10609
- Pillai A, Terry AV Jr, Mahadik SP. Differential effects of long-term treatment with typical and atypical antipsychotics on NGF and BDNF levels in rat striatum and hippocampus. *Schizophr Res* (2006) 82:95–106. doi:10.1016/j. schres.2005.11.021
- 202. Mannari C, Origlia N, Scatena A, Del Debbio A, Catena M, Dell'Agnello G, et al. BDNF level in the rat prefrontal cortex increases following chronic but not acute treatment with duloxetine, a dual acting inhibitor of noradrenaline and serotonin re-uptake. *Cell Mol Neurobiol* (2008) 28:457–68. doi:10.1007/s10571-007-9254-x
- Pedrini M, Chendo I, Grande I, Lobato MI, Belmonte-de-Abreu PS, Lersch C, et al. Serum brain-derived neurotrophic factor and clozapine daily dose in patients with schizophrenia: a positive correlation. *Neurosci Lett* (2011) 491:207–10. doi:10.1016/j.neulet.2011.01.039
- Rizk P, Salazar J, Raisman-Vozari R, Marien M, Ruberg M, Colpaert F, et al. The alpha2-adrenoceptor antagonist dexefaroxan enhances hippocampal neurogenesis by increasing the survival and differentiation of new granule cells. *Neuropsychopharmacology* (2005) 31:1146–57. doi:10.1038/ sj.npp.1300954
- 205. Yanpallewar S, Fernandes K, Marathe S, Vadodaria K, Jhaveri D, Rommelfanger K, et al. Alpha2-adrenoceptor blockade accelerates the neurogenic, neurotrophic, and behavioral effects of chronic antidepressant treatment. J Neurosci (2010) 30:1096–109. doi:10.1523/JNEUROSCI.2309-09.2010
- 206. Francis BM, Yang J, Hajderi E, Brown ME, Michalski B, McLaurin J, et al. Reduced tissue levels of noradrenaline are associated with behavioral phenotypes of the TgCRND8 mouse model of Alzheimer's disease. *Neuropsychopharmacology* (2012) 37:1934–44. doi:10.1038/npp.2012.40
- Kuppers E, Beyer C. Dopamine regulates brain-derived neurotrophic factor (BDNF) expression in cultured embryonic mouse striatal cells. *Neuroreport* (2001) 12:1175–9. doi:10.1097/00001756-200105080-00025
- Martinowich K, Lu B. Interaction between BDNF and serotonin: role in mood disorders. *Neuropsychopharmacology* (2007) 33:73–83. doi:10.1038/ sj.npp.1301571
- Marmigere F, Rage F, Tapia-Arancibia L. GABA-glutamate interaction in the control of BDNF expression in hypothalamic neurons. *Neurochem Int* (2003) 42:353–8. doi:10.1016/S0197-0186(02)00100-6
- West AE, Griffith EC, Greenberg ME. Regulation of transcription factors by neuronal activity. *Nat Rev Neurosci* (2002) 3:921–31. doi:10.1038/ nrn987
- Tuvikene J, Pruunsild P, Orav E, Esvald EE, Timmusk T. AP-1 transcription factors mediate BDNF-positive feedback loop in cortical neurons. *J Neurosci* (2016) 36:1290–305. doi:10.1523/JNEUROSCI.3360-15.2016
- Alberini CM. Transcription factors in long-term memory and synaptic plasticity. *Physiol Rev* (2009) 89:121–45. doi:10.1152/physrev.00017.2008

- Radwanska K, Schenatto-Pereira G, Ziółkowska M, Łukasiewicz K, Giese KP. Mapping fear memory consolidation and extinction-specific expression of JunB. *Neurobiol Learn Mem* (2015) 125:106–12. doi:10.1016/j.nlm. 2015.08.007
- 214. Hsieh TF, Simler S, Vergnes M, Gass P, Marescaux C, Wiegand SJ, et al. BDNF restores the expression of Jun and Fos inducible transcription factors in the rat brain following repetitive electroconvulsive seizures. *Exp Neurol* (1998) 149:161–74. doi:10.1006/exnr.1997.6686
- 215. Tomasetti C, Iasevoli F, Buonaguro EF, De Berardis D, Fornaro M, Fiengo ALC, et al. Treating the synapse in major psychiatric disorders: the role of post-synaptic density network in dopamine-glutamate interplay and psychopharmacologic drugs molecular actions. *Int J Mol Sci* (2017) 18:135. doi:10.3390/ijms18010135
- Brady AE, Wang Q, Colbran RJ, Allen PB, Greengard P, Limbird LE. Spinophilin stabilizes cell surface expression of alpha 2B-adrenergic receptors. J Biol Chem (2003) 278:32405–12. doi:10.1074/jbc.M304195200
- 217. Lu R, Chen Y, Cottingham C, Peng N, Jiao K, Limbird LE, et al. Enhanced hypotensive, bradycardic, and hypnotic responses to α (2)-adrenergic agonists in spinophilin-null mice are accompanied by increased G protein coupling to the α (2A)-adrenergic receptor. *Mol Pharmacol* (2010) 78:279–86. doi:10.1124/mol.110.065300
- 218. Wang X, Zeng W, Soyombo AA, Tang W, Ross EM, Barnes AP, et al. Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors. *Nat Cell Biol* (2005) 7:405–11. doi:10.1038/ncb1237
- 219. Grabrucker S, Proepper C, Mangus K, Eckert M, Chhabra R, Schmeisser MJ, et al. The PSD protein ProSAP2/Shank3 displays synapto-nuclear shuttling which is deregulated in a schizophrenia-associated mutation. *Exp Neurol* (2014) 253:126–37. doi:10.1016/j.expneurol.2013.12.015
- 220. Qiao H, Li MX, Xu C, Chen HB, An SC, Ma XM. Dendritic spines in depression: what we learned from animal models. *Neural Plast* (2016) 2016:8056370. doi:10.1155/2016/8056370
- 221. Dean B, Gibbons AS, Boer S, Uezato A, Meador-Woodruff J, Scarr E, et al. Changes in cortical N-methyl-D-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide. *Aust N Z J Psychiatry* (2016) 50:275–83. doi:10.1177/0004867415586601
- 222. de Bartolomeis A, Iasevoli F, Marmo F, Buonaguro EF, Eramo A, Rossi R, et al. Progressive recruitment of cortical and striatal regions by inducible postsynaptic density transcripts after increasing doses of antipsychotics with different receptor profiles: insights for psychosis treatment. *Eur Neuropsychopharmacol* (2015) 25:566–82. doi:10.1016/j.euroneuro.2015.01.003
- 223. de Bartolomeis A, Marmo F, Buonaguro EF, Latte G, Tomasetti C, Iasevoli F. Switching antipsychotics: imaging the differential effect on the topography of postsynaptic density transcripts in antipsychotic-naive vs. antipsychoticexposed rats. *Prog Neuropsychopharmacol Biol Psychiatry* (2016) 70:24–38. doi:10.1016/j.pnpbp.2016.04.015
- 224. Iasevoli F, Tomasetti C, Marmo F, Bravi D, Arnt J, de Bartolomeis A. Divergent acute and chronic modulation of glutamatergic postsynaptic density genes expression by the antipsychotics haloperidol and sertindole. *Psychopharmacology (Berl)* (2010) 212:329–44. doi:10.1007/s00213-010-1954-0
- 225. Luoni A, Macchi F, Papp M, Molteni R, Riva MA. Lurasidone exerts antidepressant properties in the chronic mild stress model through the regulation of synaptic and neuroplastic mechanisms in the rat prefrontal cortex. *Int J Neuropsychopharmacol* (2015) 18(4):pyu061. doi:10.1093/ijnp/pyu061
- 226. O'Leary OF, Wu X, Castren E. Chronic fluoxetine treatment increases expression of synaptic proteins in the hippocampus of the ovariectomized rat: role of BDNF signalling. *Psychoneuroendocrinology* (2009) 34:367–81. doi:10.1016/j.psyneuen.2008.09.015
- 227. Peykov S, Berkel S, Schoen M, Weiss K, Degenhardt F, Strohmaier J, et al. Identification and functional characterization of rare SHANK2 variants in schizophrenia. *Mol Psychiatry* (2015) 20:1489–98. doi:10.1038/mp. 2014.172
- Zhang W, Wu J, Ward MD, Yang S, Chuang YA, Xiao M, et al. Structural basis of arc binding to synaptic proteins: implications for cognitive disease. *Neuron* (2015) 86:490–500. doi:10.1016/j.neuron.2015.03.030
- 229. Stan TL, Sousa VC, Zhang X, Ono M, Svenningsson P. Lurasidone and fluoxetine reduce novelty-induced hypophagia and NMDA receptor subunit

and PSD-95 expression in mouse brain. *Eur Neuropsychopharmacol* (2015) 25:1714-22. doi:10.1016/j.euroneuro.2015.07.007

- Dell'aversano C, Tomasetti C, Iasevoli F, de Bartolomeis A. Antipsychotic and antidepressant co-treatment: effects on transcripts of inducible postsynaptic density genes possibly implicated in behavioural disorders. *Brain Res Bull* (2009) 79:123–9. doi:10.1016/j.brainresbull.2009.01.006
- 231. de Bartolomeis A, Avvisati L, Iasevoli F, Tomasetti C. Intracellular pathways of antipsychotic combined therapies: implication for psychiatric disorders treatment. *Eur J Pharmacol* (2013) 718:502–23. doi:10.1016/j. ejphar.2013.06.034
- 232. Wadenberg ML, Wiker C, Svensson TH. Enhanced efficacy of both typical and atypical antipsychotic drugs by adjunctive alpha2 adrenoceptor blockade: experimental evidence. *Int J Neuropsychopharmacol* (2007) 10:191–202. doi:10.1017/S1461145706006638
- Wilson MC. Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. *Neurosci Biobehav Rev* (2000) 24:51–7. doi:10.1016/S0149-7634(99)00064-0
- 234. Bruno KJ, Hess EJ. The α2C-adrenergic receptor mediates hyperactivity of coloboma mice, a model of attention deficit hyperactivity disorder. *Neurobiol Dis* (2006) 23:679–88. doi:10.1016/j.nbd.2006.05.007
- 235. Gijsman HJ, Geddes JR, Rendell JM, Nolen WA, Goodwin GM. Antidepressants for bipolar depression: a systematic review of randomized, controlled trials. *Am J Psychiatry* (2004) 161:1537–47. doi:10.1176/appi. ajp.161.9.1537
- Palazidou E. Quetiapine: a new option in bipolar depression. *Future Prescr* (2009) 10:9–14. doi:10.1002/fps.56
- 237. Sanford M, Keating GM. Quetiapine: a review of its use in the management of bipolar depression. *CNS Drugs* (2012) 26:435–60. doi:10.2165/11203840-00000000-00000
- Garner M, Mohler H, Stein DJ, Mueggler T, Baldwin DS. Research in anxiety disorders: from the bench to the bedside. *Eur Neuropsychopharmacol* (2009) 19:381–90. doi:10.1016/j.euroneuro.2009.01.011
- Brand SJ, Harvey BH. Exploring a post-traumatic stress disorder paradigm in Flinders sensitive line rats to model treatment-resistant depression I: bio-behavioural validation and response to imipramine. *Acta Neuropsychiatr* (2017) 29:193–206. doi:10.1017/neu.2016.44
- 240. Brand SJ, Harvey BH. Exploring a post-traumatic stress disorder paradigm in Flinders sensitive line rats to model treatment-resistant depression II: response to antidepressant augmentation strategies. Acta Neuropsychiatr (2017) 29:207–21. doi:10.1017/neu.2016.50
- El-Hage W, Leman S, Camus V, Belzung C. Mechanisms of antidepressant resistance. Front Pharmacol (2013) 4:146. doi:10.3389/fphar. 2013.00146
- 242. Millan MJ, Goodwin GM, Meyer-Lindenberg A, Ove Ogren S. Learning from the past and looking to the future: emerging perspectives for improving the treatment of psychiatric disorders. *Eur Neuropsychopharmacol* (2015) 25:599–656. doi:10.1016/j.euroneuro.2015.01.016
- 243. Cleary L, Murad K, Bexis S, Docherty JR. The α1D-adrenoceptor antagonist BMY 7378 is also an α2C-adrenoceptor antagonist. Auton Autacoid Pharmacol (2005) 25:135–41. doi:10.1111/j.1474-8673.2005. 00342.x

- 244. Patel SD, Habeski WM, Min H, Zhang J, Roof R, Snyder B, et al. Identification and SAR around N-{2-[4-(2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-[1,4] diazepan-1-yl]-ethyl}-2-phenoxy-nicotinamide, a selective α2C adrenergic receptor antagonist. *Bioorg Med Chem Lett* (2008) 18:5689–93. doi:10.1016/j. bmcl.2008.08.055
- 245. Corboz MR, Rivelli MA, McCormick KD, Wan Y, Shah H, Umland S, et al. Pharmacological characterization of a novel alpha2C-adrenoceptor agonist N-[3,4-dihydro-4-(1H-imidazol-4-ylmethyl)-2H-1, 4-benzoxazin-6-yl]-N-ethyl-N'-methylurea (compound A). *J Pharmacol Exp Ther* (2011) 337:256–66. doi:10.1124/jpet.110.175794
- 246. Luoto P, Suilamo S, Oikonen V, Arponen E, Helin S, Herttuainen J, et al. 11C-ORM-13070, a novel PET ligand for brain alpha2C-adrenoceptors: radiometabolism, plasma pharmacokinetics, whole-body distribution and radiation dosimetry in healthy men. *Eur J Nucl Med Mol Imaging* (2014) 41:1947–56. doi:10.1007/s00259-014-2782-y
- 247. Corboz MR, Rivelli MA, Shah H, Boyce CW, McCormick KD, Chapman RW, et al. Role of α 2-adrenoceptors in electrical field stimulation-induced contraction of pig nasal mucosa and pharmacologic characterization of a novel α 2C-adrenoceptor agonist. *Am J Rhinol Allergy* (2013) 27:84–90. doi:10.2500/ajra.2013.27.3842
- 248. Dooley K, Zon LI. Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev (2000) 10:252-6. doi:10.1016/S0959-437X(00)00074-5
- 249. Ruuskanen JO, Peitsaro N, Kaslin JV, Panula P, Scheinin M. Expression and function of alpha-adrenoceptors in zebrafish: drug effects, mRNA and receptor distributions. *J Neurochem* (2005) 94:1559–69. doi:10.1111/j.1471-4159.2005.03305.x
- 250. Ruuskanen JO, Laurila J, Xhaard H, Rantanen V-V, Vuoriluoto K, Wurster S, et al. Conserved structural, pharmacological and functional properties among the three human and five zebrafish α(2)-adrenoceptors. *Br J Pharmacol* (2005) 144:165–77. doi:10.1038/sj.bjp.0706057

Conflict of Interest Statement: MS is an employee of Orion Pharma. No funding was received by Orion Pharma for this, or previous work by these authors. The authors declare that over the past 3 years, BH has participated in advisory boards and received honoraria from Servier[®], and has received research funding from Servier[®] and Lundbeck[®]. ORM-10921, which was used in recent studies by the authors and cited in this paper was sponsored by Orion Pharma. BH declares that, except for income from the primary employer and research funding from the below-mentioned organizations and agencies, no financial support or compensation has been received from any individual or corporate entity over the past 3 years for research or professional services, and there are no personal financial holdings that could be perceived as constituting a potential conflict of interest. The authors declare no other conflicts of interest.

Copyright © 2017 Uys, Shahid and Harvey. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.