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Reward processing, which plays a critical role in adaptive behavior, is impaired in 
addiction disorders, which are accompanied by functional abnormalities in brain reward 
circuits. Internet gaming disorder, like substance addiction, is thought to be associated 
with impaired reward processing, but little is known about how it affects learning, espe-
cially when feedback is conveyed by less-salient motivational events. Here, using both 
monetary (±500 KRW) and symbolic (Chinese characters “right” or “wrong”) rewards and 
penalties, we investigated whether behavioral performance and feedback-related neural 
responses are altered in Internet game overuse (IGO) group. Using functional MRI, brain 
responses for these two types of reward/penalty feedback were compared between 
young males with problems of IGO (IGOs, n = 18, mean age = 22.2 ± 2.0 years) and 
age-matched control subjects (Controls, n  =  20, mean age  =  21.2  ±  2.1) during a 
visuomotor association task where associations were learned between English letters 
and one of four responses. No group difference was found in adjustment of error 
responses following the penalty or in brain responses to penalty, for either monetary or 
symbolic penalties. The IGO individuals, however, were more likely to fail to choose the 
response previously reinforced by symbolic (but not monetary) reward. A whole brain 
two-way ANOVA analysis for reward revealed reduced activations in the IGO group in 
the rostral anterior cingulate cortex/ventromedial prefrontal cortex (vmPFC) in response 
to both reward types, suggesting impaired reward processing. However, the responses 
to reward in the inferior parietal region and medial orbitofrontal cortex/vmPFC were 
affected by the types of reward in the IGO group. Unlike the control group, in the IGO 
group the reward response was reduced only for symbolic reward, suggesting lower 
attentional and value processing specific to symbolic reward. Furthermore, the more 
severe the Internet gaming overuse symptoms in the IGO group, the greater the acti-
vations of the ventral striatum for monetary relative to symbolic reward. These findings 
suggest that IGO is associated with bias toward motivationally salient reward, which 
would lead to poor goal-directed behavior in everyday life.

Keywords: internet gaming disorder, feedback learning, reward value, ventromedial prefrontal cortex, ventral 
striatum
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inTrODUcTiOn

Excessive Internet gaming in adolescents and young adults has 
been a growing public health concern due to its negative psycho-
logical and social consequences, including sleep abnormalities, 
lower well-being, depression, low academic achievement, and 
job loss [for reviews, see Ref. (1)]. Like pathological gambling 
disorder, the behavioral and neurological characteristics of this  
behavioral problem, which is often called Internet gaming disorder 
(IGD), seem to include the intolerance, craving, and withdrawal 
symptoms associated with substance abuse (2).

In all addiction, disruption of the dopaminergic mesolim-
bic system is known to underlie a pathologically persistence 
that is driven by positive outcomes, despite possible negative 
consequences (3, 4). Just as those with cocaine addiction show 
distorted sensitivity to positive and negative outcomes (5, 6), 
individuals with IGD also fail to utilize either positive or negative 
outcome during a guessing task (7–9). Relative to normal healthy 
individuals, those with IGD also show enhanced activation in the 
orbitofrontal cortex for positive outcomes and decreased activa-
tion in anterior cingulate for negative outcomes (7). Reduced 
activations were also reported for individuals with IGD in various 
subcortical regions, depending on reward types (e.g., monetary 
reward, social reward, and performance feedback) for a simple 
left/right discrimination task (10).

The dopaminergic mesolimbic system is known to be involved 
in the experience of hedonic feelings (10), reward prediction 
(11), and reinforcement learning based on reward-prediction 
errors (12–14). Increases of neural response have been reported 
in the ventral striatum (VS) and ventromedial prefrontal cortex 
(vmPFC) in response to cues associated with addictions, such 
as nicotine (15) or cocaine (16) addiction. Greater responses in 
orbitofrontal cortex were also observed in individuals with IGD 
(7, 17) and pathological gambling (18, 19), which is in line with 
the “incentive sensitivity hypothesis” (20). Addiction, however, 
has also been associated with deficits in the dopaminergic reward 
system, leading to the “reward deficiency hypothesis” (21) in 
which problems of substance addiction are viewed as com-
pensatory behavior for deficiencies in the reward system (22). 
Consistent with this view, IGD individuals showed reduced levels 
of dopamine D2 receptor availability and dopamine transporter 
(23, 24), as well as reduced striatum activation for cues predict-
ing monetary reward during Internet games (25, 26). Both views 
may explain the poor academic achievement often observed in 
adolescents and young adults with IGD (27). For example, the 
selective sensitivity to positive feedback may be related to prob-
lems in school or everyday life, where appreciation of reward is 
based on internal motivation (recognition or awareness of one’s 
progress), not on external incentive (e.g., monetary gain or loss). 
Alternatively, the deficits in reward processing associated with 
reduced brain responses may impair feedback processing in 
learning, including both reward processing for positive outcomes 
and error processing for negative outcomes.

In human learning, the ability to adjust or maintain one’s 
future behavior involves various cognitive functions, ranging 
from forming stimulus-response associations based on the repet-
itive experience of the outcome, to evaluating the value of the 

outcome itself, to exerting attentional control for remembering 
the stimulus-response-outcome sequence. The efficiency of feed-
back processing is often affected by the value of the outcome (such 
as its saliency), as well as by individual differences in the capacity 
of attention or memory control. Given that there is a bias in value 
processing (e.g., overvaluation of game-rewards) in IGD individu-
als (28), several learning deficits may be predicted for feedback/
reinforcement learning. However, impairments in learning from 
rewards are not easily separated from those involving penalty, 
since both reward and penalty serve independently as feedback 
in reinforcement learning (29). One approach to examining how 
a deficit or bias in reward processing in IGD influences feedback 
learning may be to isolate the results of information processing 
of reward from those of penalty in terms of the rate of behavioral 
adjustments in future response selection.

In this study, in order to understand the effect of IGD on 
feedback learning, young male adults at high risk for IGD  
[i.e., problematic Internet game overuse (IGO)] were examined 
during a visuomotor association learning task. Identification of 
the neural mechanisms and behavioral features associated with 
feedback learning in individuals with IGO should provide fur-
ther understanding of the reward-related problematic behaviors 
observed in IGD. We hypothesize that feedback processing dur-
ing learning would be altered, which, therefore, would result in 
differences in behavioral performance and neuronal responses in 
individuals with IGO relative to controls. A primary goal, there-
fore, was to determine whether and to what extent different types 
of feedback result in differences in learning and brain responses 
between IGO individual and controls. In order to separate the 
effects of reward from penalty feedback on learning, we analyzed 
the rates of staying with the same response after each reward and 
the rate of switching to a different choice after penalty. As well 
as impaired reward processing, abnormal insular and anterior 
cingulate cortex responses associated with response inhibition 
or error processing have been reported in IGD individuals  
(8, 30). Thus, it is conceivable that alterations in feedback process-
ing of reward and/or penalty would be reflected in the responses 
of brain regions related to reward and/or penalty, respectively. 
In order to assess feedbacks of different motivational saliency, 
we compared the effects of monetary and symbolic feedback. 
If IGO is associated with greater bias toward externally salient 
incentive relative to less-salient ones, we would predict that the 
effect of saliency on learning would be greater for those with IGO 
than those without IGO. We would also predict that these differ-
ences in feedback saliency would result in different patterns of 
activation of the reward network between IGO individuals and 
controls. Of particular interest are the vmPFC, which is known 
to be involved in evaluation of the subjective value of objects 
or events (31), and the VS, which has been suggested to encode 
hedonic experience (32).

In addition to evaluating the hypothesis and related predic-
tions outlined above, we also wished to determine if the severity 
of IGO symptoms is associated with greater bias in hedonic 
responses of VS, as was previously found for gambling disorder 
(19). To achieve this, we examined the relationship between IGO 
severity measured in questionnaires and the difference in VS 
responses to monetary relative to symbolic reward.

http://www.frontiersin.org/Psychiatry/
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FigUre 1 | Overview of the feedback type and experimental paradigm.  
(a) During a visuomotor association task, a participant was instructed to 
learn appropriate S-R association pairs by pressing one of four response 
keys while a single letter stimulus was presented for 2,500 ms and followed 
either by positive or negative feedback for correct and error responses, 
respectively. (B) Four types of feedback: monetary reward, symbolic reward, 
monetary penalty, and symbolic penalty. (c) Three types of learning condition 
according to the feedback contingency. ISI, inter-stimulus interval; ITI, 
inter-trial interval.
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MaTerials anD MeThODs

Participants
The participants consisted of 18 young males with IGO (IGOs; 
age 22.2  ±  2.0, males) and 20 Control males (Controls; age: 
21.2 ± 2.1), recruited through advertisements in the university 
community in Kangwon province, South Korea. All were right-
handed, and none reported a history of neurological or psychiat-
ric disorders. Written consent was obtained from each participant 
after the study objectives and methods were fully explained. 
Participants received the incentives earned during the learning 
task after finishing the experiment. The study was carried out 
in accordance with the recommendations of the principles of 
Declaration of Helsinki, with written informed consent obtained 
from all subjects. The protocol was approved by the institutional 
review board of Kangwon National University.

As a part of the recruitment procedures, all volunteers were 
prescreened with the Internet Game Addiction Diagnostic Scale 
(IGADS) (33) and asked about their type of Internet usage 
(e.g., shopping, social networking, or game). Only those who 
reported gaming as their main use of the Internet and showed 
high scores on the IGADS (higher than the upper 20% of the 
distribution, i.e., 67) were classified as potential participants 
of the IGO group, while those who reported no Internet game 
activity and had low IGADS scores (lower than the mean, i.e., 47)  
were provisionally placed in the Control group of the fMRI 
study. Then, the modified Korean version of the Young’s Internet 
Addiction Test (IAT) (34, 35), which consists of 20 items associ-
ated with problematic online Internet use, such as withdrawal and 
intolerance, was administered for those prescreened for the fMRI 
study. It is scored on a 100-point scale. A value of 50 or higher 
has been suggested to indicate occasional or frequent problematic 
Internet use and one over 80 to indicate significant pathological 
use (36). In this study, only those who showed a criterion score 
of 50 or higher on the IAT questionnaire were finally placed in 
the IGO group. Among the potential members of Controls, those 
who did not reach the criterion score of 50 for the IAT question-
naire, and were of comparable age to the IGO group, were placed 
in the final Control group.

To characterize the IGO group, the participants were given a 
clinical assessment and a personality evaluation relevant to the 
phenomenon of IGD (37). We assessed depression symptoms 
with the Beck Depression Inventory (BDI) (38), impulsivity 
with the Barratt Impulsiveness Scale-11 (BIS-11)-Revised (39), 
and personality traits (novelty seeking, harm avoidance, reward 
dependence, and persistence) with the Temperament and 
Character Inventory (TCI) (40). In addition, working memory 
(WM) capacity was evaluated with digit span forward and digit 
span backward using a subtest of the Wechsler Adult Intelligence 
Scale-IV (41).

stimuli and fMri Paradigm
Participants underwent an fMRI scan session of four runs, for 
which participants were told to learn S-R associations in a trial 
and error fashion (Figure 1A). For each letter (learning stimu-
lus), one of four alternative keys (response) was to be pressed.  
Both monetary and symbolic feedbacks were employed to indicate 

whether the response was correct or an error (Figure 1B). A cor-
rect choice was followed by positive feedback, either a monetary 
gain or via a symbolic signal. Likewise, any erroneous response 
was followed by negative feedback, either a monetary loss or a 
symbolic signal. Monetary gain (monetary reward) and loss (mon-
etary penalty) were indicated by “+500” or “−500,” respectively, 
appearing in the center of a circle on the display. The Chinese 
symbols right [正] (symbolic reward) or wrong [不] (symbolic 
penalty) appeared in this circle to represent symbolic feedback 
(educated Koreans are familiar with basic Chinese characters). 
In order to minimize visual confusion, positive feedbacks were 
presented in green and negative feedbacks in red.

We compared three learning conditions (i.e., gain, loss, and 
neutral conditions), each of which differed in the nature of 
positive and negative feedbacks (Figure  1C). For the associa-
tion assigned to the gain condition, monetary reward followed 
a correct response (CR), whereas symbolic penalty followed an 
error response. For the loss condition, a monetary penalty served 
as negative feedback, whereas a symbolic reward was used for 
positive feedback. For the neutral condition, no monetary gain 
or loss occurred, and only symbolic reward or penalty followed 
correct and error responses, respectively.

The learning list was composed of 24 English letters; two letters, 
O and X were excluded to avoid associations with pre-existing 
meanings of correctness (to Koreans, X is associated with 
“incorrect” and O with “correct”). Eight letters were assigned 
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to each learning condition, and eight associations (2 × 4 runs) 
were to be learned for each learning condition. Only six asso-
ciation pairs (two for each condition) were introduced for each 
run, during which the associations were repeated eight times  
(a total of 48 trials per run). Participants were informed that the 
association contingency between a letter and a target response 
was fixed for all stimuli and that choosing the CR arbitrarily 
assigned to each alphabetic character would be always followed 
by a reward. For each trial, the choice of response was required 
to be made while a learning stimulus (an English character) was 
displayed for 2.5  s; feedback was display for 1.0  s, following a 
1.5  s inter-stimulus interval (ISI, display of “+”) (Figure  1A). 
Trials were separated by jittered inter-trial intervals (ITI, dis-
play of “+”, mean jitter = 4 s, range = 2.5 to 6.5 s). Responses 
were made by pressing one of four keys: two keys either with 
an index or middle finger for each hand. Stimuli and feedback 
display were presented with an MR-compatible NordicNeurolab 
Visual system (SVGA, resolution: 800 × 600), and the behavioral 
response was recorded using a response button box (4-button 
box HHSC-2  ×  4-c, Current Designs Inc., Philadelphia, PA, 
USA). Responses faster than 100  ms were excluded from the 
analysis of reaction time (RT).

To determine if the valence and arousal for each feedback type 
differed between two groups, subjective ratings were obtained 
using a post-experiment questionnaire after the fMRI scan. 
Emotional valence (“how positive/negative” it was to them: from 
1 = extremely pleasant to 9 = extremely unpleasant) and arousal 
(“how relaxing/exciting” it was: from 1 = not at all aroused to 
9 = extremely aroused) were rated with a self-assessment mani-
kin (42).

Mri acquisition
MRI data were collected on a 3-T SIEMENS TRIO scanner 
with a 12-channel radio frequency coil while participants 
performed the learning task. T2*-weighted echo planar images 
were obtained using a gradient echo planar imaging sequence 
with the following parameters: repetition time (TR) = 2,000 ms, 
echo time (TE) = 30 ms, flip angle = 90°, slice thickness = 3.0 
with 1 mm gap, field of view = 240 mm2, matrix size = 80 × 80, 
voxel size = 3.0 mm × 3.0 mm × 3.0 mm, 36 slices, descending 
sequential, 223 volumes per run. T1-weighted structural data for 
anatomical localization were acquired using a 3D fast-field echo 
sequence (TR = 1,900 ms, TE = 2.52 ms, flip angle = 9°, field of 
view = 256 mm × 256 mm, matrix size = 256 × 256 × 192, voxel 
size = 1.0 mm × 1.0 mm × 1.0 mm). Stimulus presentation and 
behavioral data collection were implemented using E-prime 2.0 
software (Psychology Software Tools, Inc., Pittsburgh, PA, USA).

Behavioral Data analyses
Conventional behavioral analyses were performed both on the 
average percentage of CRs and on RT obtained for three conditions 
of four runs (192 trials), using a two-way mixed ANOVA with 
two levels of between-subject group factor (IGOs vs. Controls) 
and three levels of within-subject condition factor (gain, loss, and 
neutral). Behavioral responses were sorted post  hoc, based on 
the choice of response of the current trial in relationship to the 
feedback type of the previous trial with the same stimulus. Here 

we define four types of response: choosing the same response 
as the one that had been followed by a reward for the previous 
presentation of the same stimulus (referred to as a “correct-stay 
response”), or choosing a different response (a “correct-change 
response”); choosing a different response from the one that had 
been followed by a penalty for the previous presentation of the 
same stimulus (an “incorrect-change response”), or choosing the 
same response (an “incorrect-stay response”). The rate of correct-
stay (incorrect-change) responses was computed by dividing the 
total number of correct-stay (incorrect-change) responses by the 
sum of correct-stay and correct-change responses (incorrect-stay 
and incorrect-change) responses and subjected to a between 
group analysis (two sample t-test) for each feedback type. 
Statistical analyses were performed using IBM SPSS statistics 20.0 
(IBM Corp., Armonk, NY, USA), and a threshold for statistical 
significance of p < 0.05.

fMri Data analyses
Image Preprocessing
Preprocessing and statistical analysis of the fMRI data were per-
formed using Statistical Parametric Mapping software1 (SPM12; 
Wellcome Trust Centre for Neuroimaging, London, UK) imple-
mented in MATLAB R2013b (The MathWorks, Inc., Natick, MA, 
USA). First, the origin of each individual anatomical image (x, y, 
z = 0, 0, 0 mm coordinates) was set to the anterior commissure. 
Functional data were realigned to the first volume to correct for 
subject movements, slice-time corrected to the middle of the 
image acquisition, segmented to white matter, gray matter and 
CSF using Tissue Probability Map template, spatially transformed 
to match the MNI template, and spatially smoothed with a 6-mm 
Gaussian kernel. fMRI data for each individual were high-pass 
filtered with a cutoff period of 120-s.

Statistical analyses were performed with a two-stage mixed 
effect model. In the first individual analysis, a general linear model 
was used to generate voxel-wise statistical parametric maps from 
the functional data. For each participant, the following regressors 
were modeled for the four feedback events based on combina-
tions of two feedback valences (positive or negative) and three 
learning condition trials (gain, loss, or neutral): positive feedback 
(i.e., monetary reward) and negative feedback (symbolic penalty) 
for trials of gain condition, positive feedback (symbolic reward) 
and negative feedback (monetary penalty) at loss condition trials, 
and positive feedback (symbolic reward) and negative feedback 
(symbolic penalty) at neutral condition trials, using a stick func-
tion time-locked with the presentation of feedback. The regres-
sors were convolved with a canonical hemodynamic response 
function. Additional regressors of no interest were also included, 
such as the realignment parameters from the preprocessing step, 
for correcting for head movement and outlier scans. Outliers 
based on the global mean signal (>5 z-score) and movement 
(>2 mm) were detected using Artifact Detection Tools (ART2). 
The number of outliers did not differ between groups (IGO: mean 
[M] = 18.2, SD = 17.9; Control: M = 10.7, SD = 11.9, t = 1.53, 

1 http://www.fil.ion.ucl.ac.uk/spm.
2 http://www.nitrc.org/projects/artifact_detect.
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TaBle 1 | Demographic characteristics of participants.

igO  
(n = 18)

controls 
(n = 20)

t p

Age (years) 22.17 (2.0) 21.20 (2.2) 1.40 p = 0.169
IGADS 75.61 (6.4) 31.05 (6.0) 22.11 p < 0.001**
IAT 62.78 (10.3) 29.75 (5.9) 12.30 p < 0.001**
Reported time being 
spent for Game (h)

24.06 (11.5) 0.91 (3.3) 7.66 p < 0.001**

WM (forward) 10.7 (1.6) 10.6 (1.9) 0.13 p = 0.900
Depression (BDI) 14.17 (8.8) 6.45 (4.9) 3.39 p = 0.001*
Impulsivity (BIS-11) 72.56 (9.6) 59.20 (7.8) 4.70 p < 0.001**
Temperament (Tci)
Novelty seeking 44.06 (6.8) 38.10 (7.4) 2.58 p = 0.014*
Harm avoidance 48.50 (10.7) 37.30 (8.8) 3.55 p = 0.001*
Reward dependence 48.33 (8.9) 48.15 (12.5) 0.05 p = 0.959
Persistence 39.39 (7.4) 48.85 (10.6) −3.15 p = 0.003*

Mean values are displayed with SDs in parentheses.
IGO group, Internet game overuse group; IGADS, Internet Game Addiction Diagnostic 
Scale; IAT, Internet addiction test; BDI, Beck depression inventory; BIS-11, Barret 
Impulsivity Scale-11; TCI, temperament and character inventory, WM, working memory.
*Statistical significant at p < 0.05 (two-tailed).
**p < 0.001 (two-tailed).
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p = 0.13). To test whether movements differed between groups, 
we calculated the mean frame-by-frame movement (43): there are 
no significant differences between IGO and Control groups (IGO: 
M = 0.145, SD = 0.04; Control: M = 0.143, SD = 0.06, t = 0.12, 
p = 0.90).

Feedback-Related fMRI Group Analysis
Individual contrast images for monetary reward, symbolic 
reward, monetary penalty, and symbolic penalty obtained from 
the first level analyses were entered to three separated second level 
group analysis using a random effects model. First, we examined 
the difference between feedback valence by comparing reward 
(positive feedback) and penalty (negative feedback). A paired 
t-test was performed with the contrast of [Reward(monetary + symbolic) 
vs. Penalty(monetary + symbolic)]. Brain regions for which significantly 
greater activations were specific to reward or penalty were used 
as functional masks for further group analyses. Then a two-
way factorial ANOVA was performed to identify brain regions 
showing a group difference specific to the monetary effect using 
a between factor (group: IGO vs. Control) and a within factor 
(feedback type: monetary vs. symbolic). These ANOVAs were 
separately performed for reward and penalty. Examples of reward 
analysis follow: the main effect of group using the contrast of  
[IGO(monetary reward + symbolic reward) vs. Control(monetary reward + symbolic reward)];  
the main effect of feedback type using the contrast of [mon-
etary reward(IGO + Control) vs. symbolic reward(IGO + Control)]; and 
the interaction of group  ×  feedback type using the contrast of  
[(IGOmonetary reward  >  IGOsymbolic reward) vs. (Controlmonetary reward  > 
Controlsymbolic reward)]. The findings for the main effect of feedback 
type are listed in Tables S4 and S5 in Supplementary Material for 
reward and penalty, respectively.

For these whole brain voxel-wise analyses, statistical para-
metric maps were primarily thresholded at a voxel-level p-value 
of 0.001 and corrected for multiple-comparisons using cluster-
extent based thresholding, in which a cluster size exceeding 
184  mm3 (k  >  23) was considered significant, which resulting 
in a cluster-level family-wise error (FWE) corrected p-value of 
0.05. The cluster-extent estimation was based on a Monte Carlo 
simulation, using a MATLAB script (cluster_threshold_beta.m 
obtained from https://www2.bc.edu/sd-slotnick/scripts.htm) 
with the following parameters: acquisition matrix  =  80  ×  80; 
original voxel dimensions  =  3  ×  3  ×  3; number of slices  =  36; 
FWHM = 6; resampled voxel resolution = 2 × 2 × 2; corrected 
p-value = 0.05; voxel-based p-value = 0.001; iterations = 1,000.

From brain regions showing significant responses in the 
whole brain voxel-wise analyses, the mean percent signal 
changes were calculated from the first level contrast images for 
each participant using MarsBar (0.413). To reveal patterns of 
significant interaction, these percent signal changes were also 
used in simple effect tests using SPSS statistics 20.0. In addition, 
any possible relationship between the feedback-related brain 
response and subject’s personality, or between the brain response 
and behavioral measurements, were examined using the Pearson 
correlation analysis test.

3 http://marsbar.sourceforge.net.

Correlation Analysis with IGO Symptom Severity  
for the VS
Based on our a priori hypothesis for the VS region, we examined 
the relationship between the incentive-related response of the VS 
and degree of IGO symptoms, as measured by IAT. The incentive 
associated brain contrast images (monetary reward > symbolic 
reward) were subjected to correlation anal ysis using IAT score 
as the covariates. Using a small volume correction approach, 
significance was determined with multiple-comparisons cor-
rection (FWE p-value of 0.05) within a priori VS mask (k = 384, 
volumes = 3,072 mm3). The VS mask was made by combining 
the caudate head ROI (WFU-PickAtlas4 with human-atlas TD 
Brodmann’s areas +) and the nucleus accumbens ROI (Harvard–
Oxford Subcortical Structural Atlas5). The same analysis was also 
performed with IGADS score for IGO severity.

resUlTs

Demographic and clinical results
The demographic, clinical assessment, and personality measure-
ment data were summarized in Table  1. The IGADS, IAT, and 
game playing time of the IGO group were significantly higher 
than those of the controls (t  =  22.11, 12.30, 7.66, respectively, 
all p < 0.0001). There was no group difference in WM capacity 
(t = 0.13, p = 0.90). As expected, the IGO group had significantly 
higher depression (BDI: t  =  3.39, p  =  0.001) and impulsivity 
scores (BIS-11: t = 4.7, p < 0.001), relative to the Control group. 
We also found IGO-associated group differences in personality 
traits: higher novelty seeking (t = 2.58, p = 0.014), harm avoidance 
(t = 3.55, p = 0.001), and lower persistence (t = −3.15, p = 0.003). 

4 https://www.nitrc.org/projects/wfu_pickatlas.
5 http://www.cma.mgh.harvard.edu/.
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FigUre 2 | Behavioral results. (a) The mean percent of correct response (CR) in the three learning conditions. (B) The group means of correct-stay rate, i.e., the 
rate of choosing the same CR, following either monetary or symbolic reward. (c) The group means of incorrect-change rate, i.e., the rate of choosing a different 
response, following either monetary or symbolic penalty. IGO: Internet game overuse; *p < 0.05, **p < 0.01.
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However, there was no group difference in reward dependence 
(t = 0.05, p = 0.959).

Behavioral results
Behavioral Effects of Monetary Incentive and Loss
In general, the CR rate of the gain condition (M = 68.7%, SD = 7.1) 
was higher relative to the loss (M = 64.2%, SD = 10.7) or neutral 
conditions (M = 60.4%, SD = 13.4) [F(2, 72) = 12.28, p < 0.001, 
Figure 2A]. The same learning condition effect was observed in 
RT: shorter RT of the gain condition (M = 899.9, SD = 175.2 ms) 
relative to the loss (M = 972.7, SD = 176.6 ms) or neutral conditions 
(M = 985.0, SD = 179.9 ms) [F(2, 72) = 12.6, p < 0.001]. There was 
no significant difference between the groups (IGO: M = 62.0%, 
SD = 10.8; Control: M = 66.6%, SD = 6.5) [F(1, 36) = 2.62, p = 0.11] 
or interaction between group by condition. Like CR, there was 
no significant group difference in RT [F(1, 36) = 1.16, p = 0.29] or 
interaction between group and condition [F(2, 72) = 1.85, p = 0.16].

For the correct-stay rate, there was no group difference fol-
lowing monetary reward, t = −0.57, p = 0.57 (Figure 2B). After 
symbolic rewards, however, the correct-stay rate of the IGO group 
(M = 0.82, SD = 0.18) was significantly lower than that of the 
Control group (M = 0.91, SD = 0.07), t = −2.17, p = 0.036, indi-
cating a deficit of positive feedback processing in the IGO group 
only when no incentive was involved. For the incorrect-change 
rate, no group difference was found either after monetary [IGO: 
M = 0.87, SD = 0.09; Control: M = 0.86, SD = 0.09, t = 0.22, 
p = 0.82] or symbolic penalty [IGO: M = 0.82, SD = 0.12; Control: 
M = 0.85, SD = 0.07, t = −0.94, p = 0.35] (Figure 2C). Detailed 
information for the behavioral results are listed in Table S1 in 
Supplementary Material.

Individual Differences Associated with Learning 
Performance
None of personality or clinical measures was found to be associ-
ated with feedback learning performance. However, WM capacity 
was associated with learning performance in the individuals with 
IGO. For example, only for the IGO group, both the correct-stay 
rate following monetary reward (r  =  0.57, p  =  0.013) and the 
incorrect-change rate following monetary penalty (r  =  0.62, 

p = 0.006) were positively correlated with individual WM capac-
ity. Performance following symbolic feedback was not associated 
with WM capacity for the IGO group (correct-stay rate following 
symbolic reward: r = 0.38, p = 0.13; incorrect-change rate follow-
ing symbolic penalty: r = 0.30, p = 0.24). For the Control group, 
no relationship was found with WM capacity for any feedback 
type (the correct-stay rates following monetary reward, r = 0.05, 
p  =  0.85, or symbol reward, r  =  0.41, p  =  0.07; the incorrect-
change rates following monetary penalty, r  =  0.14 p  =  0.56 or 
symbol penalty, r = −0.10, p = 0.67).

Subjective Rating of Feedback
Different valence and arousal ratings for monetary effects 
(monetary–symbolic) were compared between groups for each 
feedback valence (Figure S1 and Table S2 in Supplementary 
Material). Analysis of emotional valence ratings on positive feed-
back showed that, relative to the Control group, the IGO group 
exhibited a marginally increased arousal for monetary reward 
relative to symbolic reward (IGO: 2.11 ± 2.4, Control: 0.8 ± 2.2, 
t  =  1.75, p  =  0.09), whereas the two groups did not differ on 
emotional valence ratings (IGO: 1.78 ± 1.6, Control: 1.1 ± 1.2, 
t = 1.47, p = 0.15). Interestingly, compared to the Control group, 
the IGO group rated monetary penalty more negative (IGO: 
1.94 ± 1.6, Control: 0.85 ± 1.1, t = 2.43, p = 0.020) and more 
arousing (IGO: 3.11 ± 2.3, Control: 1.3 ± 1.4, t = 2.91 p = 0.006) 
than symbolic penalty.

imaging results
Feedback Valence-Specific Brain Activation: Reward 
vs. Penalty
Brain regions showing feedback valence effects are summarized in 
Table S3 and Figure S2 in Supplementary Material. As expected, 
various regions (shown in yellow in Figure 3), including vmPFC 
and VS, showed greater activation for positive relative to negative 
feedback, while the anterior insula, right DLPFC, and dmPFC, 
showed greater activations for negative relative to positive feed-
back. Those valence-specific maps were used for further analysis 
of group comparison for positive and negative feedback.

http://www.frontiersin.org/Psychiatry/
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FigUre 3 | Internet game overuse (IGO) associated differences in brain activations during reward processing. (a) The IGO group showed reduced activations  
for reward in the left rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) region (shown in green) indicated by a significant group main 
effect [IGO(monetary reward + symbolic reward) vs. Control(monetary reward + symbolic reward)]. (B) The left inferior parietal (IP) region and medial orbitofrontal cortex/ventromedial prefrontal 
cortex (mOFC/vmPFC) showing a significant interaction effect between group and reward types (shown in red) [(IGOmonetary reward > IGOsymbolic reward) vs.  
(Controlmonetary reward > Controlsymbolic reward)]. The regions shown in yellow indicate areas whose activations were greater for reward relative to penalty in the  
voxel-wise analysis of all participants.
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Group Differences in Brain Responses to Reward
According to the two-way factorial ANOVA analysis with the 
factors group (IGO vs. Control) and positive feedback type 
(monetary reward vs. symbol reward) (Table  2; Table S4 in 

Supplementary Material), an anterior dorsal part of vmPFC near 
the rostral anterior cingulate cortex (rACC/vmPFC) was the 
only brain region showing a significant reduction of activation of 
IGO relative to the Control group (Figure 3A, cluster-level FWE 
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FigUre 4 | Relationship between level of medial orbitofrontal cortex/ventromedial prefrontal cortex (mOFC/vmPFC) response for symbolic reward and learning.  
Only for the Internet game overuse (IGO) group, the percent correct response (CR) rate of the neutral condition was positively correlated with the level of brain 
response for symbolic reward. The regions shown in yellow indicate areas whose activations were greater for reward relative to penalty in the voxel-wise analysis of 
all participants.

TaBle 2 | Brain regions showing group differences in response to reward.

region r/l/M Ba Mni coordinate stats

x y z T sizea

group difference
IGO < Control

rACC/vmPFC L 32 −6 50 12 18.8 29
IGO > Control

NS

group × reward-type interaction
IP region L 39 −46 −56 20 20.5 26
mOFC/vmPFC M 11 −2 44 −10 19.8 24

Inclusively masked with contrast of [reward–penalty].
IGO group, Internet game overuse group; IP region, inferior parietal region;  
rACC, rostral anterior cingulate cortex; mOFC, medial orbitofrontal cortex; vmPFC, 
ventromedial prefrontal cortex.
aCluster-level corrected p < 0.05.
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p < 0.05). Furthermore, we found a significant group and feedback 
interaction in the more posterior ventral part of vmPFC near the 
medial orbitofrontal cortex (mOFC/vmPFC) and the left inferior 
parietal (IP) region, in which the IGO group showed reduced 
activation for symbolic relative to monetary reward, whereas the 
Control group showed no such reward type difference (Figure 3B, 
cluster-level FWE p < 0.05).

In particular, for the neutral condition (IGO: r = 0.54, p < 0.05; 
Control: r =  0.21, p =  0.38), for which no monetary incentive 
or loss was involved in learning, only in the IGO group was the 
individual difference in the level of activity in the mOFC/vmPFC 
region significantly positively correlated with the CR (Figure 4). 
A trend of positive correlation was found in the IGO group also 
with the correct-stay rate (following the symbolic reward) of the 
neutral condition (IGO: r = 0.47, p = 0.051; Control: r = 0.32, 
p = 0.17). These findings are in contrast to the observation that 
the level of mOFC/vmPFC activity in IGO group individuals 
had no relationship with the incorrect-change rate of the neu-
tral condition (r = 0.30, p = 0.23). For the IGO group, no such 
relationship was observed in the rACC/vmPFC region that 
was defined by a significant group difference (IGO: monetary, 

r = −0.13 p = 0.62; symbol, r = 0.13 p = 0.61; Control: monetary, 
r = −0.23, p = 0.34; symbol, r = −0.17, p = 0.47) or the IP region 
defined by a significant group by feedback type interaction (IGO: 
monetary, r = 0.12 p = 0.65; symbol, r = 0.31 p = 0.22; Control: 
monetary, r = −0.26, p = 0.27; symbol, r = −0.22, p = 0.36).

Group Differences in Brain Responses to Penalty
There were no IGO-associated differences in brain response for 
penalty: there was no group difference or interaction between 
group and feedback type (cluster-level FWE p < 0.05). However, 
the penalty type itself (monetary penalty vs. symbolic penalty) 
affected brain responses in several regions, as listed in Table S5 
in Supplementary Material.

The Relationship between Incentive-Related  
VS Responses and Severity of IGO Symptoms
In a VS region defined a priori based on a previous finding for 
gambling disorder (19), a significant positive relationship was 
found in the IGO group between the IAT score and the size of the 
incentive effect of the regional activity (monetary reward > sym-
bolic reward) (MNI x, y, z = 12, 20, −2, k = 22, T = 5.65, small 
volume corrected FWE p < 0.05; r = 0.87, p < 0.001), but not the 
Control group (r = −0.02, p = 0.87) (Figure 5). Similar results 
were found with IGADS scores (IGO: r = 0.71 p < 0.001; Control: 
r = −0.24, p = 0.31). This relationship was also confirmed with 
the IGADS score for the right VS (MNI x, y, z = 12, 14, 0, k = 12, 
T  =  4.7, small volume corrected FWE p  <  0.05). Other brain 
regions showing the same relationship either with IAT or IGADS 
are reported in Table S6 in Supplementary Material.

DiscUssiOn

Here we investigated whether and how behavioral performance 
and feedback-related neural responses during learning are 
altered in IGO group. Our main interest was to see if IGO is 
associated with abnormally high sensitivity for motivational 
salient feedback, or abnormally low sensitivity for non-salient 
feedback. Within a simple association learning task, participants 
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FigUre 5 | The relationship between ventral striatum (VS) response bias for monetary reward and severity of Internet game overuse (IGO) symptoms. The greater 
differential activation in the right VS region for monetary relative to symbolic reward [for the contrast of (monetary reward > symbolic reward)] was associated with 
higher IAT scores in the IGO group, but not the Control group. IAT: Young’s internet addiction test.
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experienced various types of feedback that differed in motiva-
tional saliency (i.e., monetary reward/penalty vs. non-monetary 
symbolic reward/penalty). In comparison to the Control group, 
we observed several behavioral and neural response differences 
in the IGO group. First, individuals with IGO exhibited reduced 
learning efficiency for non-monetary (i.e., symbolic) positive 
feedback, whereas they did not differ in learning from monetary-
positive feedback or from negative feedback (i.e., monetary or 
symbolic penalty). Second, the brain response for symbolic 
reward was blunted in the vmPFC region, unlike for monetary 
reward. Lastly, the level of bias observed in the VS activation for 
monetary reward, relative to symbolic reward, was associated 
with severity of IGO symptoms.

internet gaming Overuse and learning 
efficiency
It is well-known that monetary incentives improve performance 
(44–46). This incentive effect was clearly observed for learning in 
the current study, where the CR of the gain condition was greater 
than that of the loss or neutral condition across all participants 
of both groups. However, the learning impairment with symbolic 
reward, but not monetary reward, was detected in the IGO group 
only when the effect of positive feedback was distinguished from 
that of negative feedback. This is contrast to the absence of a 
group difference in the incorrect-change rate, indicating that the 
IGO group had no problem in error processing from negative 
feedback, whether monetary or symbolic. Given that symbolic 
reward provides as much learning-relevant information as mon-
etary reward, indicating the previously chosen response as the 
target response, the internal motivation derived from the sym-
bolic reward seems to have been greater for individuals without 
IGO than for those with IGO. For the Control group, both types 
of positive feedback were equally useful for repeating the same 
response in the future. These findings can be viewed as consistent 
with “incentive sensitivity hypothesis,” since individuals with IGO 
did not process symbolic as efficiently as monetary reward, either 
due to impaired learning or reduced motivation. If they failed to 
attend or encode an event followed by the lesser motivationally 
salient feedback (i.e., symbolic reward), then the individuals with 

IGO may have not often been able to repeat the same response 
in the subsequent trial. At the least, the current study indicates 
that this is not associated with their inability to process symbolic/
social feedback, since the IGO individuals successfully avoided 
repeating the same error response after symbolic penalty as often 
as after monetary penalty.

To further understand how the IGO group performed as well 
as the Control group in terms of correct-stay rate following mon-
etary reward, we examined the relationship between individual 
differences in efficiency of reward processing and other psycho-
logical measures and found this to be associated with WM capac-
ity, but only for the IGO group, and only for monetary reward. 
It is reasonable to suppose that WM individual differences will 
influence performance when a WM strategy is employed. The 
positive correlation between WM and the learning performance 
for monetary feedbacks in the IGO group suggests the use of a 
WM strategy when high motivation is triggered by monetary 
incentive. We also observed a similar relationship for monetary 
penalty in the IGOs, suggesting higher motivation IGO individu-
als, for both monetary incentive and loss. The self-reported arousal 
data are consistent with this conclusion. The difference in arousal 
levels for the two feedback types (monetary  >  symbolic), was 
significantly greater in the IGO group than the Controls (more 
so for penalty than reward). Given that high arousal associated 
with stronger motivation is known to improve performance (47, 
48), the greater arousal measured by self-report in the current 
study indicates that unlike the Controls, the IGO group had 
greater motivation for monetary feedback relative to the symbolic 
feedback, which resulted in recruiting a WM strategy.

reduced activation for Positive Feedback 
Processing: racc/vmPFc
The rACC/vmPFC is known to be anatomically connected with 
the striatum and associated with reward processing (49). It is 
viewed as a part of a reward circuit (50, 51) that is sensitive to 
feedback valence (positive  >  negative) (52, 53). In the current 
study, reduced responses of rACC/vmPFC were found in the IGO 
group, both for monetary and symbolic rewards. Recent imaging 
studies of IGD revealed reductions in glucose metabolism (54) 
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and gray matter volume (55) in the rACC/vmPFC region. The 
reduction of reward-associated activations has been well docu-
mented in individuals with substance addiction, such as cocaine 
addiction (56), as well as its correlation with the level of substance 
pursuit behavior (57). The current findings suggest that impaired 
reward processing is associated with IGO, which shares neuro-
pathologies with other types of addiction, including substance 
abuse. We speculate that the probable impairments of reward 
processing by rACC/vmPFC must have been compensated for 
with a cognitive strategy, such as WM, as described above, when 
a monetary incentive was at stake.

reduced activations for symbolic reward: 
OFc/vmPFc and iP region
Both in the mOFC/vmPFC and IP regions, reduced activations 
specific for symbolic reward were observed only in the IGO 
group. These patterns of differential activation were in parallel 
with the behavioral data. For example, the correct-stay rate, 
especially following symbolic reward, was lower in the IGO 
group. The vmPFC region near the medial OFC has been 
suggested to be involved in value representation (58–60), 
especially for the subjective value of reward (e.g., reward 
magnitude) (31, 61) or preference information (62). Therefore, 
the reduced activations for the symbolic reward relative to the 
monetary reward in the mOFC/vmPFC of IGOs may reflect 
lower value representation for the non-monetary feedback, 
resulting in a weak motivational modification in goal-directed 
behavior (60, 63). This is in contrast to the Controls, who did 
not show any significant differences in activation or behav-
ioral performance between two types of reward, suggesting 
that the symbolic feedback was comparable to the monetary 
incentive in terms of reward value as positive feedback. This 
interpretation is relevant to a well-known clinical feature of 
addiction, namely, losing interest in social and recreational 
activities other than the addicted behavior, such as hobbies 
and entertainment (e.g., Internet gaming) (64). For monetary 
reward, we did not find any difference in brain activations of 
these regions between the IGO and Control groups, in contrast 
to the findings of Dong et al. (7), who reported an increased OFC 
activation for monetary reward in individuals with IGO, relative 
to Controls.

It is worth noting that we found group differences in reward-
associated activations in two focal regions of vmPFC: the more 
dorsal anterior region referred as rACC/vmPFC and the more 
ventral posterior region called mOFC/vmPFC. In contrast to 
decreases in activation in the dorsal anterior region of vmPFC 
(rACC/vmPFC) for both types of reward, in the more ventral 
posterior region (mOFC/vmPFC) the IGO-associated reduction 
was found only for symbolic reward. A functional dissociation 
has been suggested by a recent neuroimaging study (50): the 
more dorsal part of vmPFC (corresponding the rACC/vmPFC 
in our study) for positive prediction error; the more ventral part 
of vmPFC (mOFC/vmPFC in our study) for value processing. 
According to this dissociation, IGO seems to be associated not 
only with impairment of positive prediction error processing 
(rACC/vmPFC), which should be required for all reward type, 

but also with impairment of value processing (mOFC/vmPFC), 
which affects only for the non-monetary reward.

Like the vmPFC, reduced activation for the symbolic relative 
to monetary reward was found in the left IP region of the IGO 
group, whereas there was no reward type difference in the Control 
group. Activity of the IP region is known to be involved in direct-
ing attention (65) or reward-related decision making as a part of 
cognitive control (66). The IP activation level has been shown to 
be modulated by motivation (67, 68) or reward (69). Therefore, 
the reduced response for symbolic reward, relative to monetary 
reward, in the IP region of IGO group can be interpreted as a 
lower level of attentional control for symbolic reward, resulting 
in poorer learning in these individuals.

Note that no relationship was found in the IP region between 
individual differences in the activation level for symbolic reward 
and the CR rate of the neutral condition in the IGO group, 
unlike the mOFC/vmPFC region. This might be related to a 
characteristic of our task, in which the behavioral adjustments 
for next response involved long-term delayed period across many 
trials. Unlike the value processing of the mOFC/vmPFC region, 
the attentional processing mediated by the IP region may not 
be long lasting across inter-trials during learning, at least not 
long enough to translate into the average learning performance. 
The representations of reward encoded by the mOFC/vmPFC  
(31, 59), on the contrary, have been shown to involve a long-term 
motivational setup of the individual (70). This may explain our 
finding of an association between individual differences at the 
neural level of the mOFC/vmPFC and average performance level. 
The absence of such a relationship in our Control group may be 
related to the very small inter-individual variations of behavioral 
performance in this group, due to the high (above 90%) average 
correct-stay rate for symbolic reward (as well as for monetary 
reward in both groups). Thus, we could not determine if there 
was a relationship between behavioral performance and mOFC/
vmPFC activation for monetary reward in either group, or for 
symbolic reward in the Control group.

incentive effects in the Vs associated  
with severity of igO symptoms
As predicted, individual differences in VS bias for monetary 
reward were directly related to IGO severity. This finding is simi-
lar to that from pathological gamblers, in whom the differential 
VS activation for monetary reward relative to a non-addictive 
reward (i.e., an erotic reward) was associated with gambling 
severity (19). In summary, our results for IGOs support the 
notion that addiction is associated not with increased sensitivity 
(e.g., greater VS activation to all addiction-related stimuli relative 
to normal healthy individuals), but with an imbalance of sensitiv-
ity (i.e., greater VS activation for the addiction-related stimulus 
relative to non-addictive stimuli) (15, 19).

Note that VS biases were, in fact, observed in both groups: 
some showed a bias toward monetary reward and others 
toward symbolic feedback (shown in Figure  5). Unlike the 
mOFC/vmPFC, the VS bias toward monetary relative to sym-
bolic reward was not exclusively observed in the IGO group.  
In addition, half of the IGO group (as well as half of Controls) 
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showed a VS bias in the opposite direction, i.e., a greater response 
toward symbolic, rather than monetary reward. The greater bias 
toward monetary relative to symbolic reward in individuals with 
severe IGO symptoms suggests that this could be a risk factor 
for IGD.

Penalty Processing in individuals  
with igO
Unlike the case for reward processing, we did not find any behav-
ioral or neuronal evidence in individuals with IGO of impaired 
penalty processing. This may seem surprising in light of past 
findings. For example, it has been reported that IGD individuals 
show reduced insular brain activation accompanying response 
inhibition difficulties (30), or hyperactivation of the ACC dur-
ing error processing (8), results that are consistent with those 
from substance use disorder individuals, who showed impaired 
response inhibition or error processing (71). One possibility for 
the discrepancy between these and our results is the nature of 
error processing following penalty. The efficient penalty feedback 
processing in our study, measured as incorrect-change rate, is 
not associated with how well one inhibits a previously punished 
response, but is related to how well one switches to another 
response choice (three options) after penalty. Another possibil-
ity is that penalty feedback processing, even including response 
inhibition and error processing, may not be affected or impaired 
in individuals at high risk for IGD.

limitations
We did not find any IGO-related hypersensitivity for monetary 
reward, except for an indication of using a WM strategy. We can-
not rule out the possibility that hypersensitivity would have been 
observed if a sufficiently larger incentive was used than 20% of 
the accumulated earning of 500 KRW (less than 0.5 USD), like 
the 10 USD used by Dong et al. (7), or the video gaming items 
used by King and Delfabbro (28). However, we had no problem 
in finding differential responses for a specific reward type in the 
IGO group, both in brain activations and in behavior. Due to the 
practical difficulty in separating the effects of IGD from other 
personality issues, we cannot exclude the possibility that the high 
level of depression and impulsivity associated with abnormal 
reward processing (72, 73) influenced our results. Note that we 
focused on feedback-related brain activity using a fixed contin-
gency between a stimulus and a type of positive (or negative) 
feedback. This classical learning paradigm was methodologically 
useful for measuring the level of learning-related behavioral per-
formance. However, this deterministic reward paradigm did not 
afford the opportunity to observe abnormal reward-anticipatory 
processing in the Internet gamer (25). Lastly, the current findings 
were obtained from individuals with IGO who were identified 
via screening with the criteria of Young’ IAT, which has been 
the dominant screening method in previous research. In future 
research, the methodological procedures might be improved 
(74, 75) using a more reliable and valid tool, such as the DSM-5 
criteria (76).

cOnclUsiOn

In summary, IGOs was found to impair selectively learning from 
non-incentive symbolic reward, while not induced the normal 
level of brain responses in the mOFC/vmPFC and IP regions, 
indicating deficits in reward evaluation and attentional control 
processing, respectively. Also, the level of bias in the VS response 
toward monetary reward was associated with addiction severity, 
indicating a risk factor for IGD. These results provide clues for 
effective treatment and prevention of IGD. Considering formal 
educational settings where symbolic rewards are used rather than 
monetary reward, they suggest that individuals with IGO would 
suffer from poor learning performance in class, in addition to 
not allocating enough study time outside of school. The same 
problem would reoccur in normal daily life, where goal-directed 
behavior is often driven by internal motivation, not by external 
incentives. In particular, for individuals who combine a greater 
VS bias for external incentive (e.g., monetary reward) relative to 
internal incentive (e.g., symbolic feedback), with a personality 
of high depression and/or impulsivity, Internet games should be 
approached with great caution and care, rather than sought out 
as harmless entertainment.
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