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Investigation of peripheral gene expression patterns of transcripts within the NRG–ErbB 
signaling pathway, other than neuregulin-1 (NRG1), among patients with schizophrenia 
and more specifically treatment-resistant schizophrenia (TRS) is limited. The present 
study built on our previous work demonstrating elevated levels of NRG1 EGFα, EGFβ, 
and type I(Ig2) containing transcripts in TRS by investigating 11 NRG–ErbB signaling pathway 
mRNA transcripts (NRG2, ErbB1, ErbB2, ErbB3, ErbB4, PIK3CD, PIK3R3, AKT1, mTOR, 
P70S6K, eIF4EBP1) in whole blood of TRS patients (N = 71) and healthy controls (N = 57). 
We also examined the effect of clozapine exposure on transcript levels using cultured 
peripheral blood mononuclear cells (PBMCs) from 15 healthy individuals. Five transcripts 
(ErbB3, PIK3CD, AKT1, P70S6K, eIF4EBP1) were significantly elevated in TRS patients 
compared to healthy controls but only expression of P70S6K (Pcorrected = 0.018), a protein 
kinase linked to protein synthesis, cell growth, and cell proliferation, survived correction 
for multiple testing using the Benjamini–Hochberg method. Investigation of clinical fac-
tors revealed that ErbB2, PIK3CD, PIK3R3, AKT1, mTOR, and P70S6K expression were 
negatively correlated with duration of illness. However, no transcript was associated 
with chlorpromazine equivalent dose or clozapine plasma levels, the latter supported 
by our in  vitro PBMC clozapine exposure experiment. Taken together with previously 
publi shed NRG1 results, our findings suggest an overall upregulation of transcripts 
within the NRG–ErbB signaling pathway among individuals with schizophrenia some of 
which attenuate over duration of illness. Follow-up studies are needed to determine if the 
observed peripheral upregulation of transcripts within the NRG–ErbB signaling pathway 
are specific to TRS or are a general blood-based marker of schizophrenia.

Keywords: treatment-resistant schizophrenia, NRG–ErbB pathway, gene expression, symptom severity, schizophrenia

http://www.frontiersin.org/Psychiatry/
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2017.00225&domain=pdf&date_stamp=2017-11-06
http://www.frontiersin.org/Psychiatry/archive
http://www.frontiersin.org/Psychiatry/editorialboard
http://www.frontiersin.org/Psychiatry/editorialboard
https://doi.org/10.3389/fpsyt.2017.00225
http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:chad.bousman@ucalgary.ca
https://doi.org/10.3389/fpsyt.2017.00225
http://www.frontiersin.org/Journal/10.3389/fpsyt.2017.00225/full
http://www.frontiersin.org/Journal/10.3389/fpsyt.2017.00225/full
http://www.frontiersin.org/Journal/10.3389/fpsyt.2017.00225/full
http://www.frontiersin.org/Journal/10.3389/fpsyt.2017.00225/full
http://loop.frontiersin.org/people/470099
http://loop.frontiersin.org/people/70854
http://loop.frontiersin.org/people/88773
http://loop.frontiersin.org/people/100883
http://loop.frontiersin.org/people/82886


FigUre 1 | NRG–ErbB signaling pathway. Neuregulin-1 (NRG1) and NRG2 bind to ErbB3 and/or ErbB4, which in turn undergoes homo or heterodimerization and 
activates PI3K. PI3K then activates AKT and subsequently mTOR causing initiation of protein synthesis via the mTOR signaling pathway. mTOR phosphorylates and 
activates P70S6K which facilitates phosphorylation of small ribosomal protein 6 (S6) and eukaryotic translation initiation factor 4B (eIF4B) and leads to initiation of 
protein synthesis. Activated mTOR also causes phosphorylation and inactivation of eIF4EBP1, which release eIF4E and facilitates translation.
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inTrODUcTiOn

Intracellular signaling initiated by neuregulins (NRGs) and their 
cognate receptors (ErbBs) are vital for the assembly of neuronal 
circuitry (1, 2), including myelination of axonal processes (3, 4),  
neurotransmission (5), and synaptic plasticity (6–8). Abnor­
malities in NRG–ErbB signaling have been implicated in schizo­
phrenia, with the majority of evidence linked to neuregulin­1 
(NRG1) and ErbB4 (5, 9–11).

Neuregulin­1 and ErbB4, together, initiate signaling via the  
PI3K-AKT signaling pathway, which results in activation of mTOR  
and in turn stimulates protein synthesis (Figure 1). Several human  
postmortem brain studies have shown dysregu lation of gene 
expression of NRG1, ErbB4 or down­stream targets among 
individuals with schizophrenia (12–17). Likewise, evidence  
of dysregulated gene expression of NRG1 (18–20), ErbB1/ErbB4 
(21), and PI3K/AKT (22, 23) in peripheral tissues [i.e., whole 
blood, peripheral blood mononuclear cells (PBMCs), monocytes]  
in schizophrenia has also been shown in people with chronic 
schizophrenia. Treatment­resistant schizophrenia (TRS) pati ents 
represent a considerable subgroup who have significant increases 
in multiple NRG1 splice variants in peripheral blood (24). 
Thus, we may expect the biological interactors (receptors) and 
mediators (kinase) of this pathway to also be changed. However, 
peripheral examination of gene expression within this pathway 
among individuals with TRS has yet to be completed. Moreover, 
the impact of medication, lifestyle (e.g., smoking, alcohol use), 

and/or symptom severity on NRG1­related mRNA expression is 
largely unknown.

The present investigation, therefore, quantiatively compared 
(i) whole blood mRNA levels of 11 NRG–ErbB signaling receptors 
and pathway genes (NRG2, ErbB1, ErbB2, ErbB3, ErbB4, PIK3CD, 
PIK3R3, AKT1, mTOR, P70S6K, eIF4EBP1) among individuals 
with TRS and healthy controls, (ii) associations between mRNA 
levels and symptom severity, age of onset, duration of illness, 
clozapine plasma level, and chlorpromazine equivalent dosage, 
and (iii) the effect of clozapine exposure on mRNA expression 
in PBMCs from healthy controls. We expected that there would 
be multiple molecular changes in TRS compared to controls that 
may contribute to the amplification of NRG1 signaling in perhi­
peral blood in support of a widespread gain of function model of 
NRG1 in the pathophysiology of schizophrenia.

MaTerials anD MeThODs

Participants
Clinical Samples
Seventy­one participants aged 18–65 with schizophrenia who 
were treated with clozapine were recruited from inpatient and 
outpatient clinics in Melbourne, Australia. As these individuals 
failed to respond to two or more previous trials of antipsychot­
ics, had poor functioning, and persistent symptoms, they were 
considered “treatment­resistant,” consistent with current criteria 
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Table 1 | Demographic data and clinical characteristics of participants.

characteristic schizophrenia 
(n = 71)

controls 
(n = 57)

P-value

Age, mean (SD) years 40 (10) 40 (11) 0.702a

Gender, n (%) males 53 (75) 35 (61) 0.108b

RIN, mean (SD) 8.4 (0.9) 8.7 (0.3) 0.006a*

Ancestry, n (%) CEU 62 (90) 50 (88) 0.742b

Substance use in past 3 months, n (%)
Tobacco (smoked) 33 (47) 12 (21) 0.003b*

Alcohol 59 (83) 55 (97) 0.016b*

Cannabis 11 (15) 7 (12) 0.385b

Amphetamine 4 (6) 2 (4) 0.439b

Cocaine 0 (0) 2 (4) 0.137b

Opiates 1 (1) 1 (2) 0.990b

Clozapine plasma level, mean (SD) 
μg/L

432 (234) – –

Chlorpromazine equivalent (excluding 
clozapine) dosage mean (SD) mg/day

142 (286) – –

Age of onset, mean (SD) years 22.5 (6) – –
Duration of illness, mean (SD) years 17 (8) – –
PANSS scores, mean (SD)

Positive 10 (6) – –
Negative 15 (5) – –
Disorganized 8 (3) – –
Excitement 6 (2) – –
Depression 6 (3) – –
Total 62 (14) – –

CEU, Northern and Western European ancestry; TRS, treatment-resistant 
schizophrenia; RIN, RNA integrity number; PANSS, Positive and Negative Syndrome 
Scale.
aIndependent sample t-test.
bChi-square (χ2) test.
*P < 0.05.
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(25). In addition, 57 age­, sex­, and socioeconomic­matched 
unrelated healthy controls were recruited from the general com­
munity. Controls with a first­degree family history of psychiatric 
illness, prior or current use of antipsychotic medication, head 
injury, seizure, neurological disease, impaired thyroid function, 
and/or substance abuse/dependence were excluded. Detailed 
demographic characteristics of all participants are presented in 
Table 1.

Mini International Neuropsychiatric Interview (26) was 
administered to all participants to confirm the diagnosis of 
schizophrenia as well as to rule out the presence of psychiatric 
disorders in healthy controls. The Positive and Negative Syndrome 
Scale (PANSS) (27) was used to assess the clinical symptoms 
and the patients were scored in accordance with the consensus 
five­factor (i.e., positive, negative, disorganized/concrete, excited, 
depressed) PANSS model (28). Information on tobacco, alcohol, 
and illicit drug use in the past 3 months was collected using a 
substance use questionnaire. Whole blood samples were collected 
after overnight fasting and processed according to standardized 
blood collection and processing protocol (see supplementary 
methods for more details). Plasma levels of clozapine were 
measured and chlorpromazine equivalent dosage (excluding 
clozapine) were calculated for the 31% (n = 22) of participants 
with schizophrenia who were taking concomitant antipsychotic 
medication in accordance with published guidelines (29, 30). 
All the participants provided written informed consent and the 

study protocol was approved by the Melbourne Health Human 
Research Ethics Committee (MHREC ID 2012.069). The study 
complied with the Declaration of Helsinki and its subsequent 
revisions (31).

In Vitro Clozapine Exposure Samples
To assess the effect of clozapine exposure on gene expression of 
our candidate transcripts, fresh frozen PBMCs from 15 healthy 
individuals (8 males and 7 females) of European ancestry with a 
mean age of 35 (SD = 13.5; range 20–54 years) were purchased 
from STEMCELL™ Technologies, Inc. (Vancouver, BC, Canada). 
A sample size of 15 was sufficient to detect a large effect (Cohen’s 
d = 0.80) between exposed and unexposed conditions at α = 0.05 
and power (1  −  β)  =  0.80. The percentage of current smokers 
among the donors was 33.3% (n = 5). All the donors were tested 
for HIV­1, HIV­2, hepatitis B and hepatitis C prior to blood 
collection.

Peripheral blood mononuclear cells isolated from whole 
blood were supplied as vials containing 100 million cells. PBMCs 
were rapid­thawed from liquid nitrogen and seeded in six­well 
plates in triplicates at a concentration of 2 million cells per well 
(1 × 106 cells/mL) in RPMI­1640 medium (Sigma­Aldrich; St. 
Louis, MO, USA) supplemented with l­glutamine (0.3 g/L) and 
sodium bicarbonate (2 g/L), penicillin (100 U/mL), streptomy­
cin (100 µg/mL), and 10% fetal bovine serum for 24 h. Cells were 
then exposed to clozapine (Sigma­Aldrich, St. Louis, MO, USA) 
for 24 h and 7 days, at a concentration of 1.2 µM (control cells 
were exposed to vehicle only, see supplementary methods for 
details) and incubated at 37°C in 5% CO2. Clozapine was initially 
dissolved in absolute ethanol and media was used for dilution. 
The final concentration of ethanol on each well was 1 in 8,000. 
The concentration of clozapine used was determined from the 
mean plasma concentration of clozapine found in the first 48 
recruited clinical samples (1.2 µM or 384 ng/mL). Toxicity assays 
(CytoTox 96® Non­Radioactive Cytotoxicity Assay; Promega 
Corporation, Madison, WI, USA) were performed at baseline, 
24  h and 7­day time points after clozapine exposure to meas­
ure the production of lactate dehydrogenase within the media  
(see Figure S1 in Supplementary Material for more details).

rna extraction, complementary Dna 
(cDna) synthesis, and Quantitative real-
time Pcr
PureLink RNA Mini Kit (ThermoFisher scientific, Waltham, 
MA, USA) was used to extract total RNA from both clinical 
and in vitro samples following standard manufacturer’s instruc­
tions. The RNA integrity number (RIN) range was 3.60–9.50 
(mean =  8.59, SD =  0.79). Total RNA was reverse transcribed 
to complementary DNA (cDNA) using SuperScript® IV First­
Strand Synthesis System (Invitrogen, Foster city, CA, USA) using 
random hexamers. cDNA (10.25 ng) was used as a template for 
real­time PCR (RT­qPCR) using master­mix and gene specific 
validated Taqman assays from Applied Biosystems, Foster City, 
CA, USA. Inventoried assays (TaqMan®, Invitrogen, USA) were 
used for all the genes of interest as well as for four reference genes 
(beta­actin, ACTB; ubiquitin C, UBC; ABL proto­oncogene 1, 
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ABL1; Succinate Dehydrogenase Complex Flavoprotein Subunit A, 
SDHA). See Table S1 in Supplementary Material for a list of each 
of the probes and primers.

Complementary DNA (10.25  ng) was subjected to quanti­
tative real­time PCR in duplicate using FAM­MGB TaqMan® 
gene expression probes (Invitrogen, Foster city, CA, USA) in 
192  ×  24 Dynamic Arrays IFC in Fluidigm® BioMark™ HD 
system (South San Francisco, CA, USA) at the Monash Health 
Translation Precinct Medical Genomics Facility (Hudson 
Institute of Medical Research, Clayton, VIC, Australia). In addi­
tion, no reverse transcriptase controls and no template controls 
were included to rule out genomic DNA contamination and 
reagent contamination, respectively. Adhering to minimum 
information for publication of RT­qPCR (MIQE) guidelines 
(32), normalized relative quantities (NRQ), i.e., 2−ΔCt where 
ΔCt = [Ct(candidate gene) − Ct (geometric mean of reference genes)] of each mRNA 
isoform was calculated using the geometric mean expression 
of two reference genes (UBC and ACTB) that did not differ 
between groups in the clinical cohort. ABL­1 and SDHA were 
not used as reference genes because their expression differed 
significantly by group in the clinical cohort (Figures S2–S4 in 
Supplementary Material). In the in vitro cohort only, ABL­1 was 
stable after 24 h clozapine exposure and ACTB was stable after 
7 days clozapine exposure and were used for normalization and 
subsequent analysis at specific time points.

statistical analysis
Two­sided tests were used for all statistical analyses. Shapiro–
Wilk test and quantile–quantile (Q–Q) plots were used to assess 
normality of variable distributions. Student’s t­tests were used to 
test differences for continuous variables between schizophrenia 
patients and healthy controls, while chi­squared (χ2) tests were 
used for categorical variables. The Benjamini and Hochberg 
(B–H) step­up procedure (33) was used to adjust for multiple 
comparisons for all analyses. Effect sizes were calculated using 
the Hedges’ g method (34).

Prior to analysis, the NRQ values for all the mRNA transcripts 
were checked for normality using Q–Q plots (Figure S5 in 
Supplementary Material) and as required were log10 transformed 
for subsequent analysis. In addition, we assessed the following 
variables as potential confounders: age, sex, RIN, alcohol use, 
and smoking status. A variable was considered a confounder and 
included in our statistical models only when it was significantly 
different between groups (P < 0.05) and was significantly associ­
ated with gene expression. The log­transformed NRQ values 
were compared among groups using general or generalized linear 
models based on their distribution and adjusted for appropriate 
covariates. Outliers were identified using the Grubbs’ test for 
outliers and removed from further analysis.

Within the schizophrenia group, Pearson or Spearman 
correlations, depending on data distribution, were calculated 
between gene transcript levels and symptom severity, age of 
onset, illness duration, current chlorpromazine equivalent dose, 
and clozapine plasma levels. In addition, mRNA transcript levels 
between participants in positive symptom remission and non­
remission were assessed using a t­test or Mann–Whitney U test. 
Positive symptom remission was defined as a PANSS score of ≤3 

on delusions, hallucinations, grandiosity, and unusual thought 
content (28).

To assess differences in gene expression between clozapine 
exposed and unexposed PBMCs at both time points (24 h and 
7 days), Wilcoxon matched paired t­test were used, adjusting for 
age, gender, and RIN.

resUlTs

NRG–ErbB signaling Pathway Transcripts 
are Upregulated in Trs
Two (ErbB1, ErbB4) of the 11 NRG–ErbB pathway mRNA tran­
scripts interrogated, were not detectable in more than 80% of the 
full cohort and so were removed from further analysis. The rates 
of non­detects were not significantly different between groups 
(ErbB1: case 95%, control: 97%; ErbB4: case 81%, control 85%). 
Analysis on the remaining nine transcripts showed significantly 
elevated levels of five transcripts: ErbB3 (P = 0.046), PIK3CD 
(Praw = 0.035), AKT1 (Praw = 0.018), P70S6K (Praw = 0.002), and 
eIF4EBP1 (Praw = 0.013) in TRS patients compared to healthy 
controls after adjustment for covariates. However, only P70S6K 
(PB–H = 0.018) remained significant after correction for multiple 
comparisons (Figure  2). Importantly, transcript levels were 
not correlated with clozapine plasma levels or chlorpromazine 
equivalent antipsychotic exposure (excluding clozapine) (Table 
S2 in Supplementary Material). The lack of relationship between 
mRNA levels and clozapine levels were further corroborated by 
our in vitro analysis that showed no difference in mRNA levels 
of detectable transcripts (n = 9) in clozapine exposed compared 
to unexposed PBMCs, except mTOR mRNA which showed 
decreased expression levels in clozapine exposed cells at both 
24 h (P = 0.001) and 7­day (P = 0.05) time points (Figures S6 
and S7 in Supplementary Material).

NRG–ErbB signaling Pathway Transcripts 
are associated with Duration of illness  
but not age of Onset or symptom severity
Among individuals with TRS, significant negative correlations 
between duration of illness and ErbB2 (r = −0.293, Praw = 0.016, 
PB­H = 0.031), PIK3CD (r = −0.303, Praw = 0.013, PB­H = 0.031), 
PIK3R3 (r  =  −0.275, Praw  =  0.025, PB­H  =  0.038), AKT1 
(r = −0.290, Praw =  0.017, PB­H =  0.031), mTOR (r = −0.339, 
Praw = 0.005, PB­H = 0.023), and P70S6K (r = −0.347, Praw = 0.005, 
PB­H = 0.023) expression were detected (Figure 3). None of the 
reference genes were significantly correlated with duration 
of illness, UBC (r = −0.139, Praw =  0.263), ACTB (r =  0.232, 
Praw  =  0.59). No significant correlations were observed 
between any of the transcripts and age of onset (Table S2 in 
Supplementary Material).

A significant positive correlation between ErbB2 expres­
sion and PANSS excitement score (r  =  0.289, Praw  =  0.014, 
PB–H = 0.667) was observed but did not survive correction for 
multiple comparisons (Table S3 in Supplementary Material). 
An exploratory examination of TRS patients in positive 
symptom remission versus non­remission revealed no statisti­
cally significant differences in levels of any of the gene mRNA 
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FigUre 2 | Normalized relative quantities (NRQ) of the gene transcripts: (a) NRG2 [treatment-resistant schizophrenia (TRS): 3.11, interquartile range (IQR) = 1.5–
5.12, controls: 3.44, IQR = 1.89–6.34; F1, 111 = 0.524, P = 0.113]; (b) ErbB2 (TRS: 3.72, IQR = 2.39–6.19, controls: 3.44, IQR = 2.42–5.73; Wald χ2 = 0.029, 
P = 0.864); (c) ErbB3 (TRS: 2.39, IQR = 1.26–3.35, controls: 1.38, IQR = 0.82–2.70; F1, 126 = 4.071, P = 0.083); (D) PIK3CD (TRS: 4.57, IRQ = 3.45–7.34, 
controls: 3.86, IQR = 2.94–5.16; Wald χ2 = 4.464, P = 0.079); (e) PIK3R3 (TRS: 1.34, IQR = 0.86–2.17, controls: 1.02, IQR = 0.8–1.85; Wald χ2 = 0.104, 
P = 0.84); (F) AKT1 (TRS: 0.94, IQR = 0.75–1.61, controls: 0.75, IQR = 0.59–1.11; Wald χ2 = 5.605, P = 0.054); (g) mTOR (TRS: 2.10, IQR = 1.66–3.69, controls: 
1.44, IQR = 1.44–2.65; Wald χ2 = 4.746, P = 0.20); (h) P70S6K (TRS: 1.57, IQR = 1.16–2.68, controls: 1.02, IQR = 0.77–1.58; Wald χ2 = 13.90, P = 0.018);  
(i) eIF4EBP1 (TRS: 3.81, IQR = 2.88–5.58, controls: 2.80, IQR = 2.30–3.55; Wald χ2 = 8.71, P = 0.054). Error bars represent median with interquartile range. 
Benjamini–Hochberg adjusted P-values are shown (*P < 0.05).
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transcripts after correction for multiple comparisons (Table S4 
in Supplementary Material).

DiscUssiOn

Our findings suggest transcription in the NRG–ErbB signaling 
pathway is upregulated in the whole blood of individuals with 
TRS and is negatively correlated with duration of illness. Among 
the nine detectable NRG–ErbB pathway transcripts we exam­
ined, five (ErbB3, PIK3CD, AKT1, P70S6K, and eIF4EBP1) were 
elevated and, of these, P70S6K survived correction for multiple 
comparisons. Importantly, we could not attribute this upregula­
tion of peripheral transcription in the NRG–ErbB pathway to age, 
sex, or medication. In fact, results from our in  vitro clozapine 

exposure experiment suggested clozapine might reduce rather 
than increase transcription of genes within the NRG–ErbB signal­
ing pathway, particularly mTOR expression. Overall, our findings 
support our hypothesis that there is a generalized increase in 
NRG1 signaling in people with TRS.

Previous findings by us and others support the notion of 
increased transcription of genes within the NRG–ErbB signal­
ing pathway in schizophrenia. We recently showed in the same 
cohort used in the current study, an increased expression of 
three NRG1 transcripts [i.e., NRG1­EGFα, NRG1­EGFβ, and 
NRG1­typeI(Ig2)] in TRS compared to controls (24). In addition, 
several studies by others have reported increased expression of 
specific isoforms of NRG1 (18) and mRNA of down­stream sign­
aling molecules, including PIK3CD, PIK3CB (16, 22), and AKT1  
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FigUre 3 | (a) Distribution of duration of illness in years (mean = 17, SD = 8). Correlations between duration of illness and (b) ErbB2 (r = −0.293, PB–H = 0.031);  
(c) PIK3CD (r = −0.303, PB–H = 0.031); (D) PIK3R3 (r = −0.275, PB–H = 0.038); (e) AKT1 (r = −0.290, PB–H = 0.031); (F) mTOR (r = −0.339, PB–H = 0.023);  
(g) P70S6K (r = −0.347, PB–H = 0.023) mRNA expression. Expression of PIK3R3, mTOR, and P70S6K are represented as the standardized residual from a linear 
regression model after adjusting for potential confounds [i.e., age for PIK3R3, RNA integrity number (RIN) and smoking for mTOR, age, RIN and smoking for 
P70S6K]. Solid lines represent the line of best fit and dotted lines represents 95% confidence intervals for the line of best fit.
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(22, 23) in schizophrenia patients. Furthermore, other down­
stream signaling molecules, such as mTOR, P70S6K, and eIF4B, 
have been shown to be increased in major depressive disorder 
(35). However, as we are not aware of any human studies that have 
interrogated P70S6K, in schizophrenia, we are the first to report 
increased mRNA of P70S6K in TRS.

P70S6K encodes for a vital kinase in the mTOR signaling path­
way (36–38) that when phosphorylated by mTOR results in phos­
phorylation and activation of translation elongation factors eIF4B 
and eEF2K, thereby promoting protein translation (39, 40). Our 
findings suggest upregulation of P70S6K, in part, may result from 
an increase in transcription of several genes upstream of P70S6K 
within the NRG–ErbB signaling pathway. However, other genes 
(i.e., BDNF, DISC1) as well as neurotransmitters (i.e., glutamate, 
serotonin) and hormones (e.g., insulin) have also been shown to 
activate the PI3K–AKT–mTOR signaling pathway (41–43) and as 
such may contribute or confound the increase in P70S6K expres­
sion we have observed. However, most studies find decreased 
BDNF levels in the blood of people with schizophrenia (44) and 
suggest some degree of insulin resistance in clozapine­treated 
patients (45). Future investigations should attempt to account 
for these other signaling factors and the potential confounders 
of metabolic changes in people with schizophrenia being treated 
with clozapine, as doing so will further elucidate the suitability 
of P70S6K as a peripheral biomarker of over­activity in the NRG1 
pathway in schizophrenia.

We also detected trend­level increases in three transcripts 
(ErbB3, PIK3CD, and AKT1) upstream of mTOR, within the 
NRG–ErbB signaling pathway among those with TRS. These 
increases in whole blood expression are, in part, supported by 
previous studies that have shown an increased AKT1 mRNA 
expression in PBMCs from individuals with early­onset (23) 
and treatment­naïve schizophrenia (46), suggesting peripheral 
upregulation of NRG–ErbB pathway transcripts may not be speci­
fic to the stage of illness and may occur during the first phases of 
schizophrenia and continue during the chronic phases. However, 
six of the mRNA transcripts (ErbB2, PIK3CD, PIK3R3, AKT1, 
mTOR, and P70S6K) we examined were negatively correlated 
with duration of illness, suggesting that as the illness progresses 
the upregulation of transcription within the NRG–ErbB signal­
ing pathway might become less apparent. However, it is not clear 
whether this correlation represents a potential disease process 
and/or a compensatory response in an effort to maintain signaling 
homeostasis. Studies examining patterns of NRG–ErbB signaling 
pathway transcripts over the course of the illness are required to 
confirm this notion and determine the underlying mechanism.

We did not find differences in the peripheral expression of 
NRG2 between TRS patients and controls. To our knowledge, 
we are the first to examine NRG2 mRNA in the blood in 
schizophrenia or other psychiatric disorder. However, a recent 
study showed that ablation of NRG2 in the adult mouse brain 
mimicked dopaminergic imbalance seen in schizophrenia  
(i.e., high subcortical dopamine, low cortical dopamine) and 
resulted in severe behavioral phenotypes relevant to psychiatric 
disorders (47). Thus, NRG2 may play a role in the pathophysio­
logy of schizophrenia but based on our results seems less likely 
to serve as a peripheral marker of neurobiological changes found 

in schizophrenia. Likewise, ErbB2 mRNA expression seems an 
unlikely peripheral marker of schizophrenia based on our null 
findings as well as findings from others that reported no differ­
ence in ErbB2 mRNA expression in monocytes of first­episode, 
drug­naive patients with schizophrenia compared to healthy 
controls (48). However, this same study suggested that there 
may be an exaggerated NRG1 stimulated cytokine response 
from PBMC in people with schizophrenia compared to controls 
(48), suggesting a link between overactive NRG1 signaling and 
inflammation.

Our study has notable limitations. First, we were unable to 
compare affected individuals with and without TRS and as such 
the specificity of our results to TRS patients remains to be con­
firmed. Second, we analyzed cross­sectional data, which makes 
it complicated to predict how gene expression patterns might 
change with disease progression and their possible relation to 
clinical symptoms. Third, we measured gene expression in whole 
blood, as this tissue is clinically accessible and commonly used 
in biomarker research. However, it is unclear how our findings 
will relate to other peripheral (PBMCs or lymphocytes) or central 
tissues (e.g., brain) despite some suggestion for their relevance in 
schizophrenia (49). Fourth, we did not investigate all transcripts 
within the NRG–ErbB pathway (i.e., PIK3CA-B, PIK3R1-2, eIF4B, 
eEF2, and eIF4E). We instead, chose transcripts based on evidence 
from the current literature in schizophrenia. Furthermore, we 
only interrogated mRNA levels of our candidate genes within the 
NRG–ErbB pathway and as such cannot rule out the potential that 
genetic, protein, and/or epigenetic markers in this pathway may 
differ in those with schizophrenia. Fifth, our sample size was rela­
tively small and as such requires independent validation. Finally, 
our in vitro clozapine exposure experiments examined a single 
clozapine concentration (1.2 µM) that was guided by pilot data 
from our study population. While this concentration of clozapine 
does reflect steady state plasma concentrations (50–52), future 
work with PBMCs should examine multiple concentrations that 
reflect the range of clozapine blood levels observed in the clinic 
together with interrogating a greater number of candidates at 
both genetic, gene expression and protein levels.

In summary, our results provide the first peripheral gene 
expression profile of the major NRG–ErbB pathway genes among 
individuals with TRS. We detected an overall upregulation of 
NRG–ErbB pathway transcripts among those with TRS, most 
robustly for P70S6K. We further showed that most of the tran­
scripts we examined were negatively correlated with duration 
of illness, suggesting the upregulation of NRG–ErbB pathway 
transcripts we observed in the current chronic schizophrenia 
cohort may be more easily detectable among individuals at earlier 
stages of the illness relative to healthy individuals. If this notion 
is substantiated by future research, NRG–ErbB pathway gene 
expression may serve, in part, as a useful peripheral biomarker 
for staging of the illness and possibly assist in the identification 
of those at greatest risk for TRS.
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