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Alcohol abuse can have devastating effects on social relationships. In particular,  
discrepant patterns of heavy alcohol consumption are associated with increased rates 
of separation and divorce. Previous studies have attempted to model these effects 
of alcohol using socially monogamous prairie voles. These studies showed that alco-
hol consumption can inhibit the formation of pair bonds in this species. While these 
findings indicated that alcohol’s effects on social attachments can involve biological 
mechanisms, the formation of pair bonds does not properly model long-term human 
attachments. To overcome this caveat, this study explored whether discordant or 
concordant alcohol consumption between individuals within established pairs affects 
maintenance of pair bonds in male prairie voles. Male and female prairie voles were 
allowed to form a pair bond for 1  week. Following this 1-week cohabitation period, 
males received access to 10% continuous ethanol; meanwhile, their female partners 
had access to either alcohol and water or just water. When there was a discrepancy 
in alcohol consumption, male prairie voles showed a decrease in partner preference 
(PP). Conversely, when concordant drinking occurred, males showed no inhibition in PP. 
Further analysis revealed a decrease in oxytocin immunoreactivity in the paraventricular 
nucleus of alcohol-exposed males that was independent of the drinking status of their 
female partners. On the other hand, only discordant alcohol consumption resulted 
in an increase of FosB immunoreactivity in the periaqueductal gray of male voles, a 
finding suggesting a potential involvement of this brain region in the effects of alcohol 
on maintenance of pair bonds. Our studies provide the first evidence that alcohol has 
effects on established pair bonds and that partner drinking status plays a large role in 
these effects.

Keywords: ethanol, alcohol drinking, social attachment, prairie voles (Microtus ochrogaster), oxytocin, 
FosB/ΔFosB, periaqueductal gray

inTrODUcTiOn

Alcohol is often used as a “social lubricant” to enhance social bonds. On the other hand, alcohol 
abuse can have detrimental effects on certain social bonds. Among such affected social bonds are 
long-term relationships between spouses. In a survey exploring the demographic distribution of 
drinking patterns, 73% of married men and 63% of married women stated that they drink alcohol 
(1). Heavy alcohol use during a marriage has been associated with decreased marital satisfaction 
and increased rate of divorce (2–6). In fact, alcohol and drug use is the third most commonly 
reported reason—behind infidelity and incompatibility—for divorce in the United States (7). 
However, it has been shown that martial dissatisfaction (8–10) and divorce rates (11–13) tend to 
increase when there is a discrepancy in husband and wife drinking patterns, but not when the 
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spouses drink in concordance. Given the high prevalence of 
alcohol consumption in long-term relationships, it is important 
to understand whether biological mechanisms contribute to 
the effect of discrepancies in alcohol intake on separation rates.

Using laboratory rodent models can help elucidating the 
biological mechanisms regulating long-term relationships. One 
valuable rodent model of mammalian social monogamy is the 
prairie vole (Microtus ochrogaster). Like humans, prairie voles 
form socially monogamous bonds between same-sex mates (14) 
and opposite-sex partners (15), and display biparental care for 
offspring (16, 17). Social attachments, or pair bonds, in prairie 
voles are mediated by several neurotransmitter and receptor 
systems that are homologous to those regulating human social 
affiliations (18–24). These similarities between prairie voles  
and humans make prairie voles a good translational animal 
model to study social pair bonds in the laboratory.

Researchers began to investigate the effects of drugs of 
abuse on pair bonding in prairie voles (25–28). Importantly, 
not only will prairie voles form social bonds but also they vol-
untarily self-administer high doses of ethanol without training 
on a sucrose-fading procedure (29). Unlike most other rodent 
models, prairie voles can consume higher levels of alcohol 
when housed in same-sex pairs compared with prairie voles 
housed in isolation (29). This increase in social drinking in 
prairie voles is similar to the social facilitation of drinking seen 
in humans (30). Interestingly, the social facilitation of drinking 
was previously seen only in same-sex prairie vole pairs, but 
not between opposite-sex partners (31, 32). Thus, it is clear 
that different social environments differentially influence the 
self-administration of alcohol in prairie voles, much like in 
humans.

Previously, there has not been an adequate amount of 
research on the effects of alcohol on opposite-sex pair bonds 
in rodent models. To the best of our knowledge, only one study 
has investigated these effects. Anacker et al. (33) explored the 
effects of alcohol on the formation of pair bonds in male and 
female prairie voles. Briefly, male and female prairie voles were 
paired for 24  h while simultaneously receiving access to 10% 
ethanol and water or only water. To determine their pair-bond 
strength, animals were then tested in the partner preference 
test (PPT). Males exposed to alcohol showed no preference 
for their partner when compared with the control group.  
By contrast, females showed facilitation in the preference for 
their partner compared with the control group. The opposite 
effects of alcohol consumption on the formation of partner 
preference (PP) in males versus females were accompanied 
by sex-specific effects of alcohol on neural activity in several 
brain regions. These findings demonstrated that alcohol’s effects 
on social pair bonds could have biological underpinnings. 
How ever, alcohol’s effects on pair-bond formation do not fully 
model the disruption that the discrepancy in alcohol intake has 
on long-term relationships.

In this study, we used male prairie voles to investigate the 
effects of discrepancies in alcohol intake on established pair 
bonds. We hypothesized that when there was a discrepancy in 
alcohol access between partners, the prairie voles would show a 
decrease in PP compared with voles that had a partner who was 

given access to alcohol. Our results demonstrate that discordant, 
but not concordant, alcohol drinking leads to a decrease in PP 
in male prairie voles. Follow-up experiments testing effects of 
alcohol on immunoreactivity of oxytocin, arginine vasopressin 
(AVP), and FosB suggest that the effect of discrepant drinking 
may involve activation of the periaqueductal gray (PAG). To the 
best of our knowledge, this is the first demonstration of alcohol’s 
effects on pair-bond maintenance and the first investigation of 
neurocircuits that might mediate this effect.

MaTerials anD MeThODs

animals
Adult male and female prairie voles (n = 150; 76–126 days old) 
from our breeding colony at the VA Portland Health Care System 
(VAPORHCS) Veterinary Medical Unit were used in these 
experiments. All animals were weaned at 21  days and housed 
in same-sex sibling groups (two to four animals per cage) in 
cages (27 cm × 27 cm × 13 cm) under a 14:10 light/dark cycle, 
until the start of experiments. All subjects had access to cotton 
nestlets and ad libitum access to water and a diet of mixed rabbit 
chow (LabDiet Hi-Fiber Rabbit; PMI Nutrition International, 
Richmond, IN, USA), corn (Nutrena Cleaned Grains; Cargill, 
Inc., Minneapolis, MN, USA), and oats (Grainland Select Grains; 
Grainland Cooperative, Eureka, IL, USA) throughout the entire 
experiment. All experiments were conducted in accordance 
with the Institutional Animal Care and Use Committees at the 
VAPORHCS and Oregon Health & Science University, Portland, 
OR, USA.

housing conditions
At the start of experiments, male subjects were placed in a 
standard plastic housing cage with a female partner for 1 week to 
establish a pair bond. The following week, all subjects and oppo-
site-sex partners were placed in a mesh-divided social housing 
cage (27 cm × 27 cm × 13 cm). These social housing cages have 
been described previously (29, 34). Briefly, they contain a mesh 
divider in the middle of the cage to separate each animal in the 
pair. These cages prevent animals from mating, but allow olfac-
tory and visual social contact with partners to still occur. These 
cages also allow the monitoring of individual fluid consumption. 
It has previously been described that these mesh-divided social 
housing cages do not affect established pair bonds (35).

Two-Bottle choice Test
During the period when animals were housed in mesh-divided 
cages, all animals were given continuous access to two 25  mL 
glass cylinders fitted with a metal sipper tube and rubber stopper. 
Three experimental conditions were used in these set of experi-
ments: (1) both male and female partners were given access to 
one bottle of water and a second bottle containing 10% ethanol 
(Both EtOH); (2) the male was given access to one bottle of water 
and a second bottle of 10% ethanol, whereas the female partner 
was given access to two bottles of water (Male only EtOH); and 
(3) both male and female partners were given access to two 
bottles of water (Control). Bottles were monitored every 24 h, 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


3

Walcott and Ryabinin Alcohol and Pair-Bond Maintenance

Frontiers in Psychiatry | www.frontiersin.org November 2017 | Volume 8 | Article 226

and then bottles were refilled and their position was switched to 
prevent side bias.

Average daily alcohol consumption for each prairie vole was 
calculated by dividing the grams of alcohol by the kilogram of 
body weight. Alcohol consumption and preference for alcohol 
were both analyzed by repeated-measures ANOVA for the 
effects of days, treatment, and their interaction after testing 
for normality using the Shapiro–Wilk test (all data sets for 
alcohol consumption and preference passed the normality test; 
p > 0.05). Significance for all experiments was set at p < 0.05.

Partner Preference Test
Partner preference test was used as a standard way to test pair 
bonding in prairie voles (36, 37). Immediately following the 
two-bottle choice paradigm (described earlier), the effect of 
discordant and concordant alcohol consumption on pair-bond 
maintenance in male subjects (total n = 23) was assessed using a 
3-h PPT. The PPT was performed in a three-chambered appara-
tus with the partner stimulus (n = 23) tethered in one chamber, 
the female stranger (n = 23) tethered in the opposite chamber, 
and the subject animal placed in a center, non-social chamber 
and allowed to move freely throughout the three chambers. The 
female stranger animals were housed in mesh-divided cages with 
siblings and were exposed to the same experimental treatment as 
the female partners. PPT was videotaped and was viewed later 
for behavioral analysis.

The main outcome of PPT is the duration of time the male sub-
ject spends huddling with either the partner or stranger animal; 
this is a measure of social preference. An experimenter who was 
blinded to group assignment and trained in detecting huddling 
behavior used VLC Media Player (Boston, MA, USA) to view 
the recorded videos. Behavior Tracker 1.0 software was used to 
measure the amount of time each animal spent huddling with the 
partner or stranger at a 5× playback speed. Male huddling time 
with female partners was analyzed using the Brown–Forsythe 
test to determine normality. Partner huddling was normally 
distributed (F2,15 = 0.532, p = 0.598), thus the PPT data met the 
assumptions required to use parametric test for analysis. PPT 
data were analyzed by two-way ANOVA with stimulus animal 
(i.e., partner or stranger) and treatment (i.e., alcohol or water 
access) as between-subjects factors and followed by a Fisher’s 
LSD post hoc test.

resident-intruder (ri) Test
Another way to measure pair-bond maintenance is through the 
RI test. Previously, it has been described that attack frequency 
toward a same-sex stranger during the RI test can be used to 
measure the strength of a pair bond (18, 38, 39). Therefore, a dif-
ferent set of male animals (total n = 27) from the ones described 
earlier was used for the RI test. These animals were exposed to 
the two-bottle choice paradigm and the mesh-divided housing 
as above, but instead of the PPT; they were put through the RI 
test. The 10-min RI test took place in the mesh-divided cages  
(on the subject’s side) immediately following the voluntary alco-
hol intake procedure. The female partner (n = 27) was removed 
from her side and placed in a separate holding cage during the 
test. The male strangers (n = 27) were housed in mesh-divided 

cages with siblings and were exposed to the same experimental 
treatment as the male subjects. The RI test was videotaped and 
was viewed later for behavioral analysis.

The main outcome of the RI test is the frequency of aggres-
sive interactions (lunges, bites, chases, and offensive rears) 
toward the stranger male. An observer blind to experimental 
conditions used VLC Media Player (Boston, MA, USA) to view 
the recorded videos. JWatcher behavioral observation software 
(V 1.0, Macquarie University and UCLA) was used to measure 
the frequency of aggressive interactions at a 1× playback speed. 
To determine if we could use a parametric test to analyze the 
RI data, we used the Brown–Forsythe test to analyze normality.  
The Brown–Forsythe test revealed that the RI data were nor-
mally disturbed (F2,15 = 2.647, p = 0.104), thus a parametric test  
was used. RI data were analyzed by one-way ANOVA to deter-
mine the effects concordant and discordant alcohol drinking 
had on aggressive frequency.

embryo analysis
After the PPT and RI tests, female partners were euthanized. 
Embryos were then removed and weighed. The average weights 
of all apparent embryos in an animal were used for analysis. 
Embryo weights were analyzed because the stage of pregnancy is 
positively correlated with measurements of maintenance of pair 
bonds (35). Specifically, male prairie voles that have a female 
partner that had been pregnant for 10 days or more spend sig-
nificantly more time huddling with their partner over a stranger, 
compared with males who have a female partner who had been 
pregnant for less than 10  days. Average embryo weights that 
correspond to >0.3  g are considered to be optimal impregna-
tion (greater or equal to 10 days pregnant at the time of testing), 
while weights <0.3  g are considered suboptimal impregnation  
(less than 10 days pregnant at the time of testing) (35, 38). Five 
female partners in the PPT experiment and nine female partners 
in the RI experiment had suboptimal pregnancies. As a result, 
in the final analysis, there were six animals per group in the 
PPT experiment and five to seven animals per group in the RI 
analysis. Only data from male subjects that had a female partner, 
which reached optimal pregnancy, were used in statistical analy-
sis within this study.

immunohistochemistry
To determine the potential molecular mechanisms involved in 
effects of discordant and concordant alcohol consumption on 
established pair bonds, subjects (n = 5–7 per group) from the 
RI experiment were euthanized by CO2 immediately after the 
completion of the RI test. Brains were then extracted, fixed in 
2% paraformaldehyde/PBS for 24  h, and cryoprotected using 
20% and then 30% sucrose/PBS. Brain tissue was sliced at 
40-µm coronal sections and stored in 0.1% sodium azide until 
IHC assay. Sections containing 18 brain regions were selected 
for analysis. Regions of interest were determined by using the 
Paxinos and Franklin (40) mouse brain atlas. The following pri-
mary antibodies were used: anti-oxytocin (1:20,000, Peninsula 
Laboratories), anti-AVP (1:50,000, Peninsula Laboratories), 
and anti-FosB (1:27,000, Abcam). An anti-rabbit secondary 
antibody made in goat (Vector Laboratory, Inc.) was used, and 
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FigUre 1 | The effects of discordant and concordant alcohol consumption on the partner preference test (PPT) in male voles. (a) Males that had a female partner 
that was exposed to alcohol showed an increase in alcohol consumption during the two-choice test, but showed no difference in (B) alcohol preference. (c) Males 
showed a partner preference (PP) under all three experimental conditions, but PP was significantly decreased when only the male had access to EtOH compared 
with when both animals were exposed to EtOH or only water. (D) When the EtoH exposed groups were matched for alcohol consumption and preference, there 
was still a significant decrease in the amount of time the males in the Male only EtOH group spent huddling with their partners, compared with the males in the 
 Both EtOH group. *p < 0.05; **p < 0.01; ***p < 0.001; #significant effect of animal (p ≤ 0.04). Error bars indicate mean ± SEM.
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then signal was amplified using a Vectastain ABC kit (Vector 
Laboratory, Inc.). Tissue was then stained using a metal enhan-
ced diaminobenzidine substrate kit (Thermo Fisher Scientific)  
and visualized using a Leica DM4000 bright-field microscope.  
All cells that were stained above background were counted using 
automatic cell counting techniques by ImageJ. An experimen-
ter blinded to the condition of the subjects analyzed the data 
by one-way ANOVA. Significant effects were followed up by a 
Fisher’s LSD post hoc test.

resUlTs

effects of concordant and Discordant 
Drinking on Maintenance of PP
To compare effects of concordant and discordant drinking on 
pair-bond maintenance, we examined three groups of adult male 
prairie voles. Control males were cohabitated with females for 
2 weeks. During the second week, a mesh divider was introduced 
between the male and the female allowing the experimenter to 
monitor fluid consumption of each member of the pair. Males 

of the Both EtOH group were housed similarly, but during the 
second week both the male and the female were introduced to 
a choice between two fluids: water and 10% ethanol. Since both 
males and females in these pairs were exposed to alcohol, they 
were considered to experience concordant drinking. Males of 
the Male only EtOH group were also cohabitated for 2  weeks, 
but only male animals had access to a choice between water and 
10% ethanol during the second week. Therefore, these males 
experienced discordant drinking.

When both male and female partners were given access to 
alcohol, males consumed on average 10.8 ± 0.3 (mean ± SEM) 
grams of alcohol per kilogram of body weight (g/kg) per day over a 
7-day drinking period. Meanwhile, when only the male was given 
access to alcohol, males consumed on average 6.4 ± 0.5 g/kg of 
10% ethanol over the same 7-day period. Depending on day and 
animal, alcohol consumption ranged from 0.0 to 30.8 g/kg and 
0.9 to 11.9 g/kg in the Both EtOH and Male only EtOH groups, 
respectively. Analysis of the alcohol consumption revealed that 
males in the Both EtOH group significantly increased the amount 
of 10% ethanol consumed compared with males in the Male 
only EtOH group (F1,70 = 11.820, p = 0.001; Figure 1A). There 
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 was no significant difference between the amount of 10% ethanol 
consumed each day (F6,70 = 0.135, p = 0.991) and no significant 
interaction between day and treatment group (F6,70  =  0.199, 
p  =  0.976). Alcohol preference was not significantly different 
between the males in the Both EtOH (range: 0.0–98.8%) group 
and the males in the Male only EtOH (range: 4.9–85.2%) group 
(F1,70  =  3.127, p  =  0.081; Figure  1B). There was no significant 
difference in alcohol preference between each day (F6,70 = 0.921, 
p = 0.485) and no significant interaction between day and treat-
ment group (F6,70 = 0.451, p = 0.842).

In addition to the analysis of alcohol intake and preference, 
water intake was analyzed. There was no significant difference 
in water intake between males in the Both EtOH group and 
males in the Male only EtOH group (F1,70 = 0.016, p = 0.900). 
There was no significant difference between the amount of water 
consumed each day (F6,70 = 1.165, p = 0.335), and no interaction 
between day and treatment group (F6,70 = 0.378, p = 0.891).

Next, we tested the effects of discordant and concordant 
drinking on PP in male prairie voles. During the PPT, there was 
a significant effect of stimulus animal (partner versus stranger) 
on huddling time (F1,30  =  67.70, p  <  0.0001), a significant 
effect of treatment (Both EtOH versus Male only EtOH versus 
Control) on huddling time (F2,30  =  4.236, p  =  0.002), and a 
significant interaction between treatment and stimulus animal 
(F2,30 = 4.701, p = 0.017; Figure 1C). Post hoc analysis revealed 
that males in all three groups spent significantly more time 
huddling with their partner compared with the stranger animal 
(p < 0.05). The most important finding was that males in the 
Both EtOH (p = 0.0009) and Control (p = 0.001) groups spent 
significantly more time huddling with their partners compared 
with the amount of time the males spent huddling with their 
partner in the Male only EtOH group.

To determine if the difference in alcohol consumption 
between the Both EtOH and Male only EtOH groups contrib-
uted to the difference in PP between these groups, we matched 
groups for alcohol consumption by eliminating data from three 
animals. This manipulation eliminated the significant differ-
ence in alcohol intake between the Both EtOH and Male only 
EtOH groups (p = 0.237). Reanalysis of the PPT in animals with 
matched intakes confirmed the significant effect of stimulus ani-
mal on huddling (F1,14 = 37.610, p < 0.0001), a significant effect 
of treatment on huddling time (F1,14 = 5.237, p = 0.038), and a 
significant interaction between stimulus animal and treatment 
(F1,14 = 6.514, p = 0.023; Figure 1D). Post hoc analysis revealed 
that both groups had a significant PP (p < 0.05) and again showed 
a significant increase in the amount of the time males in the Both 
EtOH group spent huddling with their partner compared with the 
males in the Male only EtOH group. This finding confirmed that 
the difference in the amount of time the males spent huddling 
with their partners was not attributed to the difference in alcohol 
consumption in the Both EtOH and Male only EtOH groups.

effects of concordant and Discordant 
Drinking on selective aggression
When sexually naïve prairie voles are introduced to a novel con-
specific they tend to show affiliative behaviors (41). These affili-
ative behaviors start to become directed specifically toward their 

partner once they formed a pair bond (18, 38, 42). In addition 
to more affiliative behaviors toward their partner, pair-bonded 
voles also display more aggressive behaviors toward unfamiliar 
same-sex stimulus animals. Therefore, we explored if males in 
the Male only EtOH group would show a change in the amount 
of aggressive behaviors toward an unfamiliar same-sex stimulus 
animal during the RI test. A separate group of animals were 
cohoused for a week and then introduced to the mesh divider 
cages with each animal receiving the two-bottle choice paradigm, 
as described earlier.

When both partners were given access to 10% ethanol, males 
consumed on average 7.2 ± 0.5 g/kg (range: 0.7–17.0 g/kg) dur-
ing the 7-day drinking period. When only the male was given 
access to 10% ethanol, males consumed on average 7.0 ± 1.0 g/kg 
(range: 0.1–15.0 g/kg). Analysis of alcohol consumption revealed 
that there was no statistical difference in the amount of alcohol 
consumed by the males in the Both EtOH and the Male only 
EtOH groups (F1,70 =  0.012, p =  0.915; Figure 2A). There was 
no significant difference between the amount of 10% ethanol 
consumed each day (F6,70 = 1.264, p = 0.285) and no significant 
interaction between day and treatment group (F6,70  =  0.674, 
p = 0.671). Males in the Both EtOH group showed a 64 ± 4.4% 
preference (range: 6.0–100%) for alcohol, whereas the males 
in the Male only EtOH group showed a 44 ±  4.7% preference 
(range: 2.7–91.2%) for alcohol; thus, leading to the occurrence 
of a significant difference between the two groups (F1,70 = 11.10, 
p  =  0.001; Figure  2B). There was no significant difference in 
alcohol preference between each day (F6,70 = 1.204, p = 0.315) 
and no significant interaction between day and treatment group 
(F6,70 = 0.895, p = 0.504).

To complement the alcohol intake and preference data, we 
analyzed the amount of water intake between groups. There was 
a significant difference between the amount of water consumed 
between the males in the Both EtOH group and males in the 
Male only EtOH group (F1,70 = 17.050, p < 0.0001). There was no 
significant difference in water intake between days (F6,70 = 1.519, 
p = 0.185) and no significant interaction between day and treat-
ment group (F6,70 = 0.935, p = 0.475).

To determine if discordant alcohol consumption between 
partners contributes to a change in aggressive behavior, we ran 
the RI test after seven days of the two-bottle choice paradigm. 
We found no significant difference in the number of aggressive 
behaviors toward the unfamiliar same-sex intruder between the 
three treatment groups (F2,15 = 1.066, p = 0.369; Figure 2C). To 
determine if the difference in alcohol preference ratio contrib-
uted to the non-significant effect of aggressive behaviors, we 
matched groups for alcohol consumption and preference and 
reanalyzed the RI test for the Both EtOH and Male only EtOH 
groups. Similarly to the previous results, we found no difference 
in the number of aggressive behaviors toward the RI (t9 = 0.183, 
p = 0.859; Figure 2D).

immunohistochemical analysis of 
Potential substrates of alcohol’s  
effects on Pair-Bond Maintenance
Oxytocin and AVP play important roles in pair bonding, and 
oxytocin levels in the neurons of the paraventricular nucleus 
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FigUre 2 | The effects of discordant and concordant alcohol consumption on aggression frequency during the resident-intruder (RI) test in male prairie voles.  
(a) Alcohol consumption in males did not differ between treatment groups. (B) There was a significant difference between the alcohol preference ratio between  
the Both EtOH and Male only EtOH groups. (c) Aggression frequency toward a stranger male during the RI test did not differ between male subjects in the three 
treatment groups. (D) When the alcohol consumption and alcohol preference ratio between the two alcohol-consuming groups were matched, there was still no 
difference in aggression frequency between the two groups. Error bars indicate mean ± SEM.
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of hypothalamus (PVN) have been shown to decrease follow-
ing long-term alcohol consumption (43). Therefore, we tested 
whether the effects of alcohol on PP in the experiment above could 
be due to changes in the levels of these peptides. Immediately 
following the RI test, animals were euthanized and brains were 
cryopreserved for immunohistochemistry. We found a significant 
effect of treatment for oxytocin-ir in the PVN (F2,17  =  3.753, 
p = 0.045; Figure 3A). Post hoc analysis revealed that the males 
that were given access to alcohol had a significant decrease of 
the amount of oxytocin-ir cells within the PVN (p  <  0.05). 
Photomicrographs of oxytocin-ir in the PVN are shown for 
all three groups in Figures  3C–E. By contrast, we found no 
significant difference between the number of AVP-ir cells within 
the PVN between the three groups (F2,17  =  1.576, p  =  0.236;  
Figure 3B).

Although we identified an effect of alcohol consumption 
on oxytocin levels, these levels were not different between the 
Both EtOH and Male only EtOH groups. Therefore, an effect of 
alcohol on PVN oxytocin levels could not completely explain 
the difference in PP between these groups, suggesting that other 
systems are involved in the effects of discordant drinking on 
pair-bond maintenance.

To begin identifying other neural substrates potentially 
involved effects of discordant drinking on PP, we examined 
FosB-ir across 18 different brain regions in the slices collected 

in the experiment above (Table 1). Five of the 18 brain regions 
showed significant differences between groups (Table 1). The 
number of positive FosB-ir cells within the PAG was significantly 
different between the three treatment groups. Specifically, males 
in the Male only EtOH group had an increase in FosB-ir cells in 
the entire PAG compared with the males in the Both EtOH and 
Control groups (Figures 4 and 5A). In addition to the effects in 
the PAG, there were significant between group differences in the 
nucleus accumbens core (NAcc Core) (F2,17 = 5.227, p = 0.017; 
Figure  6A), infralimbic cortex (IL) (F2,17  =  3.808, p  =  0.043; 
Figure 6B), ventral bed nucleus of the stria terminalis (vBNST) 
(F2,17  =  3.607, p  =  0.05; Figure  6C), and centrally projecting 
Edinger–Westphal nucleus (EW) (F2,17  =  6.931, p  =  0.006; 
Figure 6D). In all four of these regions, post hoc analysis revealed 
that FosB-ir in the males in the Both EtOH and Male only 
EtOH groups was not significantly different from each other. 
However, FosB-ir in Both EtOH or Male only EtOH groups 
was significantly different from males in the Control group. 
Thus, of all the brain regions examined, only PAG showed 
patterns of FosB expression different bet ween males exhibit-
ing discordant versus concordant drinking. To investigate if 
the difference was caused by a global increase in FosB-ir cells 
in the entire PAG or its particular subregion, we subdivided 
the PAG into three regions: dorsal medial (DMPAG), dorsal 
lateral (DLPAG), and lateral (LPAG) (Figure 4). There were no 
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FigUre 3 | Immunoreactivity for oxytocin and AVP in the PVN. (a) Number of oxytocin-immunnoreactive cells within the paraventricular nucleus of the 
hypothalamus (PVN) is significantly higher in the Control group compared with the Both EtOH and Male only EtOH groups. (B) Number of AVP-immunoreactive cells 
within the PVN does not differ between the three treatment groups. Representative photomicrographs of oxytocin immunoreactivity in the PVN in the (c) Both EtOH 
(scale bar, 0.2 μm), (D) Male only EtOH, and (e) Control groups. *p < 0.05. Error bars indicate mean ± SEM.

TaBle 1 | The mean ± SEM for positive FosB cells for each experimental group per brain region examined.

Brain region Both etOh Male only etOh control p-Value

Anterior cingulate (CG1) 781.3 ± 37.0 701.4 ± 75.5 775.9 ± 36.8 0.299
Anterior cingulate (CG2) 911.8 ± 95.3 919.0 ± 103.2 888.7 ± 38.7 0.968
Agranular insula 250.9 ± 30.4 237.9 ± 22.3 254.5 ± 16.7 0.881
Granular insula 378.2 ± 50.9 362.1 ± 35.7 353.7 ± 16.9 0.904
Infralimbic cortex 354.9 ± 51.0 418.8 ± 36.4 260.2 ± 24.0 0.043
Retrosplenial cortex 1,395.0 ± 154.9 1,333.0 ± 79.2 1,202.0 ± 45.40 0.470
Dorsal lateral striatum 953.9 ± 92.7 868.6 ± 149.3 1,007.0 ± 79.7 0.700
Dorsal medial striatum 1,383.0 ± 89.5 1,380.0 ± 104.3 1,287.0 ± 95.1 0.741
Nucleus accumbens core 1,385.0 ± 119.0 1,510 ± 84.0 988.6 ± 145.6 0.017
Nucleus accumbens shell 945.6 ± 86.0 1,021.0 ± 91.8 821.1 ± 129.0 0.405
Lateral septum 384.7 ± 35.0 372.2 ± 32.6 328.6 ± 26.7 0.467
Dorsal bed nucleus of the stria terminalis 197.8 ± 33.1 165.1 ± 25.8 112.5 ± 12.6 0.106
Ventral bed nucleus of the stria terminalis 204.6 ± 29.6 187.6 ± 19.9 119.1 ± 16.1 0.050
Paraventricular of the hypothalamus 27.3 ± 5.3 35.9 ± 5.0 47.9 ± 16.7 0.209
Hippocampus (CA1–3) 198.5 ± 49.1 308.1 ± 53.0 322.9 ± 59.5 0.248
Dentate gyrus 592.6 ± 120.3 747.8 ± 124.0 478.5 ± 107.1 0.307
Periaqueductal gray (PAG) (total) 220.3 ± 24.8 290.8 ± 30.1 199.4 ± 5.6 0.037
PAG (dorsal medial) 31.6 ± 3.4 45.1 ± 6.8 38.3 ± 7.8 0.297
PAG (dorsal lateral) 40.9 ± 6.6 47.4 ± 6.2 39.83 ± 5.6 0.650
PAG (lateral) 149.2 ± 18.1 199.7 ± 19.7 121.3 ± 10.3 0.016
Edinger–Westphal nucleus 11.4 ± 2.1 10.3 ± 1.6 3.1 ± 1.0 0.006

The p value from the ANOVA for each brain region is listed in column 5. Regions with significant p values (α ≤ 0.05) are in bold text.
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between group differences in the number of FosB-ir cells in the 
DMPAG (F2,17 = 0.297, p = 0.297) and DLPAG (F2,17 = 0.441, 
p =  0.65). However, there was a between group difference in 

the LPAG (F2,17  =  5.311, p  =  0.016; Figures  5B–D). Post hoc 
analysis revealed that males in the Male only EtOH group had 
a significant increase in the number of FosB-ir cells in the 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


FigUre 4 | Representative photomicrographs for FosB immunoreactivity in 
the subregions of the periaqueductal gray (PAG) in (a) Both EtOH, (B) Male 
only EtOH, and (c) H2O. DM, dorsal medial PAG; DL, dorsal lateral PAG; L, 
lateral PAG.
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LPAG compared with the males in the Both EtOH (p < 0.05) 
and Control (p < 0.01) groups.

DiscUssiOn

This study investigated how discordant and concordant alcohol 
drinking influences established pair bonds in male prairie voles. 

We found that male prairie voles had a decreased PP if the drink-
ing was discordant, but not when it was concordant. Specifically, 
PP was decreased when the males were drinking alcohol, while 
their female partner was drinking only water. By contrast, when 
both male and female partners were drinking alcohol, male prai-
rie voles showed no reduction in PP compared with when both 
partners were exposed to only water. Interestingly, when males 
were tested for selective aggression we saw no group differences 
between the amount of aggressive behaviors displayed toward 
an unfamiliar same-sex prairie vole in the RI test. Previous 
studies have shown that drugs of abuse administered during the 
formation of a pair bond can affect PP (25, 26, 33, 44). To the 
best of our knowledge, this is the first study to demonstrate an 
effect of a drug of abuse on PP when given after a pair bond has 
been formed.

We chose to investigate the effects of alcohol on maintenance 
of PP using the voluntary two-bottle choice drinking procedure 
because voluntary and involuntary modes of drug administra-
tion in rodent models engage different neurocircuits (45–48). 
This procedure allowed us also to investigate whether female 
partners would influence alcohol consumption in the males.  
We found that female drinking status had an inconsistent 
tendency to influence alcohol self-administration in male prai-
rie voles. Thus, in the first experiment the amount of alcohol 
consumed was significantly higher in the Both EtOH versus the 
Male only EtOH group. While this difference was not significant 
in the second experiment, males in the Both EtOH group showed 
a significantly higher preference for alcohol than males in the 
Male only EtOH group. Previous research has shown that same-
sex prairie voles will socially facilitate the amount of alcohol 
each partner consumes (31), but opposite-sex partners do not 
significantly influence drinking behaviors (32). The latter study 
had methodological differences in relation to this study, includ-
ing that males were gonadectomized and partners were exposed 
to increasing alcohol concentration (3–10%) over a 12-day 
period. It is possible that these two methodological differences 
were the reason why we saw that females can influence males’ 
self-administration in this study, but not in previous studies.  
It is also possible that significant effects of alcohol intake would 
be reached if more animals were used in this study. Importantly 
for the main result of the current investigation, when the Both 
EtOH and Male only EtOH groups were matched for alcohol 
intake and preference, only the Male only EtOH group showed 
decreased PP. This finding indicated that discordant drinking, 
but not concordant drinking inhibits maintenance of the pair 
bond in prairie voles.

Remarkably, the inhibitory effects of discordant drinking on 
pair-bond maintenance observed here parallel epidemiologi-
cal data on the association between alcohol consumption and 
marital dissolution in humans. Thus, couples with high alcohol 
drinking in both spouses are often found to be as stable as 
abstinent couples and significantly more stable than couples 
in which only one spouse drinks (12, 13, 49). This observation 
appears to be very consistent when it is based on the number of 
separations, and less so when it is based on subjective measures 
of marital satisfaction (6, 50–52). Interestingly, the effect of such 
discordant drug taking on marital stability is relatively specific 
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FigUre 5 | Immunoreactivity for FosB in the subregions of the periaqueductal gray (PAG). (a) The number of immunoreactivity FosB cells within the PAG was 
significantly increased in the Male only EtOH group compared with the Both EtOH and Control groups. There was no difference in the number of FosB cells in  
the PAG when both partners were exposed to EtOH compared with when both partners were exposed to only water. The PAG was divided into three subregions:  
(B) dorsal medial, (c) dorsal lateral, and (D) lateral. The three different two-bottle choice conditions had no significant effect on the number of FosB cells within  
the dorsal medial and dorsal lateral regions of the PAG. The number of FosB cells within the lateral region of the PAG significantly differed between the three 
treatment groups (D). The Male only EtOH group showed an increase in the number of FosB cells within the lateral PAG when compared with the Both EtOH  
and Control groups, thus leading to an increase in the total number of FosB cells within the PAG. *p < 0.05; **p < 0.01. Error bars indicate mean ± SEM.
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for alcohol, as it is not observed in relations to smoking and 
marijuana (11).

Importantly, a recent study by Leonard et al. (11) suggests that 
effects of discordant drinking on divorce rates could be stronger 
in heavy drinking wives than in heavy drinking husbands. 
Specifically, the effect of discordant drinking in husbands was 
statistically significant when data were unadjusted for soci-
odemographic, antisocial personality, and depression. When 
these three factors were adjusted for, heavy drinkers-husband 
heavy couples displayed a trend for the increase in divorce rates 
compared with non-using couples. By contrast, the discrep-
ant heavy drinkers-wife heavy group in their study showed a 
significant increase in divorce rates compared with non-using 
couples when adjusted or unadjusted for the same factors. Our 
study for the first time analyzed effects of discordant drinking 
on pair-bond maintenance in voles and initially focused on 
males. Our future experiments will address how a discrepancy 
in alcohol consumption affects pair-bond maintenance in female 

prairie voles. In addition, it will be important to investigate 
whether a different duration of alcohol access or withdrawal 
(versus intoxication) could modulate the effects of alcohol on 
pair-bond maintenance. Nevertheless, the current findings of 
disruptive effects of discordant alcohol drinking during 1 week 
on pair-bond maintenance in male voles provide evidence that 
such effects have biological underpinnings. Therefore, prairie 
voles can be used to investigate neural substrates of the effects of 
alcohol use and abuse on social monogamous behaviors. Such 
investigations were initiated in this study.

Our analysis on PVN showed that alcohol drinking in prairie 
voles leads to a decrease in the number of oxytocin-immunoreactive  
cells within the PVN. This reduction in oxytocin-immunoreactive 
cells occurred in both alcohol-consuming groups, regardless of 
female drinking status. This alcohol-mediated decrease in oxy-
tocin levels is in agreement with two previous studies. Silva et al. 
(53) found that rats that received an alcohol solution as their 
only liquid source for 6 or 10 months showed a decrease in the 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


FigUre 6 | FosB immunoreactivity enhanced in regions within the Both EtOH and Male only EtOH groups. The number of FosB positive cells in four additional  
brain regions showed a significant difference between the three groups. (a) Number of FosB positive cells within the nucleus accumbens core (NAcc Core) was 
significantly increased within the Both EtOH and Male only EtOH groups compared with the Control group. (B) Number of FosB positive cells in the infralimbic  
cortex (IL) was significantly increased in the Male only EtOH group compared with the Control group. (c) Subjects in the Both EtOH group had an increase in the 
number of FosB positive cells in the ventral bed nucleus of the stria terminalis (vBNST) compared with the Control group. (D) The number of FosB positive cells in 
the centrally projecting Edinger–Westphal nucleus (EW) was significantly increased in the Both EtOH and Male only EtOH groups compared with the Control group. 
*p < 0.05; **p < 0.01. Error bars indicated mean ± SEM.
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amount of oxytocin-immunoreactive and AVP-expressing cells 
in the PVN, which was attributable to cell death. Interestingly, 
the surviving cells showed hypertrophy, such that oxytocin 
mRNA and AVP mRNA levels per cell compensated for the cell 
loss. A more recent study performed by Stevenson et al. (43) in 
prairie voles showed that 7 weeks of voluntary alcohol consump-
tion of 15% ethanol in a two-bottle choice procedure resulted 
in a decrease in the number of oxytocin cells in the PVN of 
male animals. As in our experiments, there was no significant 
reduction in the number of PVN AVP neurons. These findings 
suggest that while a prolonged exposure to alcohol can affect 
the AVP system, the PVN oxytocin neurons are sensitive to 
relatively short exposures. In this study, the decrease in the 
number of oxytocin neurons was observed after an even shorter 
(1  week) exposure to alcohol than in the Stevenson study. 
While Stevenson et al. (43) and our study did not specifically 
address whether the reduction in oxytocin-positive neurons is 
attributable to cell death, the rapid effect observed in our study 
suggests an effect on oxytocin expression, rather than loss of 
specific neurons.

Our observation that only 1 week of voluntary alcohol con-
sumption was required for the significant reduction in oxytocin 
neurons indicates high sensitivity of this system to alcohol. On 
the other hand, the fact that both concordant and discordant 
drinking affected the PVN oxytocin neurons suggests that effects 
of alcohol on this system alone cannot explain the selective 

effect of discordant drinking on maintenance of PP. Therefore, 
additional mechanisms involved in this selective effect need to 
be explored.

We began searching for such involved additional systems 
by testing levels of FosB immunoreactivity in 18 brain regions  
that could be potentially involved in regulation of social attach-
ment or effects of alcohol. FosB is an immediate early gene. 
Expression of immediate early genes Fos, FosB, and JunB can be 
used to map acute changes in neural activity (54–56). However, 
repeated exposure to the same stimulus can attenuate the imme-
diate early gene response in neurons (57, 58). This decreased 
sensitivity to repeated treatment makes mapping changes in 
neural activity following 1  week of continuous exposure to 
alcohol difficult. In contrast to other immediate early genes, 
FosB also encodes a short deltaFosB protein, which gradually 
accumulates with repeated treatments (59–62). The anti-FosB 
antibody used in the current experiments recognizes both the 
full-length FosB protein and deltaFosB. Therefore, our FosB 
immunohistochemistry was capable of detecting effects of both 
acute and prolonged effects of alcohol. We have initiated map-
ping effects of prolonged alcohol consumption on neural activity 
in our earlier studies in mice (63, 64).

In this study, we detected five brain regions in which the 
number of FosB-immunoreactive cells was regulated by alcohol. 
We observed that alcohol, but not the drinking status of the 
female partner, increased FosB in NAcc Core, IL, vBNST, and 
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