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Progressive loss of brain tissue is seen in some patients with schizophrenia and might 
be caused by increased levels of glutamate and resting cerebral blood flow (rCBF) alter-
ations. Animal studies suggest that the normalisation of glutamate levels decreases rCBF 
and prevents structural changes in hippocampus. However, the relationship between 
glutamate and rCBF in anterior cingulate cortex (ACC) of humans has not been studied 
in the absence of antipsychotics and illness chronicity. Ketamine is a noncompetitive 
N-methyl-D-aspartate receptor antagonist that transiently induces schizophrenia-like 
symptoms and neurobiological disturbances in healthy volunteers (HVs). Here, we used 
S-ketamine challenge to assess if glutamate levels were associated with rCBF in ACC in 
25 male HVs. Second, we explored if S-ketamine changed the neural activity as reflected 
by rCBF alterations in thalamus (Thal) and accumbens that are connected with ACC. 
Glutamatergic metabolites were measured in ACC with magnetic resonance (MR) spec-
troscopy and whole-brain rCBF with pseudo-continuous arterial spin labelling on a 3-T 
MR scanner before, during, and after infusion of S-ketamine (total dose 0.375 mg/kg). 
In ACC, glutamate levels were associated with rCBF before (p < 0.05) and immediately 
following S-ketamine infusion (p = 0.03), but not during and after. S-Ketamine increased 
rCBF in ACC (p < 0.001) but not the levels of glutamate (p = 0.96). In subcortical regions, 
S-ketamine altered rCBF in left Thal (p = 0.03). Our results suggest that glutamate levels in 
ACC are associated with rCBF at rest and in the initial phase of an increase. Furthermore, 
S-ketamine challenge transiently induces abnormal activation of ACC and left Thal that 
both are implicated in the pathophysiology of schizophrenia. Future longitudinal studies 
should investigate if increased glutamate and rCBF are related to the progressive loss of 
brain tissue in initially first-episode patients.

Keywords: glutamate, magnetic resonance spectroscopy, cerebral blood flow, pseudo-continuous arterial spin 
labelling, ketamine, schizophrenia, structural brain changes
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inTrODUcTiOn

Schizophrenia is a devastating disease with a progressive loss of 
brain tissue in a subgroup of patients (1). The cause of the loss 
is currently unknown, but persistently high levels of the neuro-
transmitter glutamate and alterations of resting cerebral blood 
flow (rCBF) might be implicated. The loss of brain tissue is among 
others seen in the temporal and frontal regions (1–5) comprising 
the anterior cingulate cortex (ACC) and hippocampus that both 
might be implicated in the pathophysiology of schizophrenia 
(6–9). Interestingly, increased brain glutamate in rodents has 
been linked to structural changes in ACC and hippocampus  
(10, 11). In addition, preclinical studies suggest that glutamate is 
a key regulator of rCBF (12). However, studies investigating the 
association between glutamate, rCBF, and structural changes in 
patients with schizophrenia are sparse and have mainly focused 
on the hippocampus. In hippocampus of unmedicated patients, 
a negative association between glutamatergic metabolites and 
brain volume has been found (13), and in prodromal patients, 
a correlation between cerebral blood volume and structural 
brain changes in patients that later transitioned to psychosis 
was observed (11). Interestingly, a rodent study found that the 
normalisation of increased brain glutamate in hippocampus was 
able to both normalize rCBF and prevent structural changes (11). 
This suggests that glutamate-modulating agents might be neu-
roprotective, at least in hippocampus. However, the association 
between glutamate, rCBF, and structural changes has not been 
explored in ACC and nearby prefrontal areas where increased 
glutamatergic metabolites are found in some studies of early 
schizophrenia (14–16), and the loss of brain tissue is seen both 
early and later in the illness (1–5). Only one study has examined 
the association between glutamate and rCBF in ACC of medicated 
patients (17). This study found a positive correlation between 
rCBF in white matter (WM) and levels of glutamate in a large 
group of patients, but interpretation was limited by treatment 
with antipsychotics and a broad age range since both factors affect 
glutamate (18, 19) and rCBF (20). The confounding effects of 
antipsychotics and illness duration can be avoided by recruiting 
first-episode, antipsychotic-naïve or minimally treated patients, 
but glutamate and rCBF have only been studied separately in 
this patient group. Glutamatergic metabolites in ACC or nearby 
medial prefrontal cortex (mPFC) are either increased (14–16), 
decreased (21), or similar (22) compared to healthy volunteers 
(HVs). Likewise, rCBF studies have found increased (23, 24), 
decreased (25), and unchanged (26, 27) levels in the prefrontal 
cortex of antipsychotic-naïve schizophrenia. Although specula-
tory, these findings might reflect that a subgroup of patients 
is characterized by both increased glutamatergic activity and 
enhanced rCBF. This could very well be the subgroup, where 
progressive loss of brain tissue is found later in the illness (1). 
In sum, studies investigating the association between glutamate 
and rCBF in ACC of antipsychotic-naïve schizophrenia are war-
ranted given that the normalisation of these disturbances could 
prevent structural changes in hippocampus. Early prevention of 
progressive loss of brain tissue in the course of schizophrenia is 
clinically relevant because structural changes have been associ-
ated with poorer functional outcome (28).

Pharmacological models of schizophrenia are an alterna-
tive approach to study brain abnormalities not confounded by 
antipsychotics and illness duration. Ketamine is a noncompeti-
tive N-Methyl-D-Aspartate receptor antagonist that transiently 
induces schizophrenia-like symptoms when administered to 
HV (29, 30). Ketamine also increases glutamate in the prefrontal 
cortex of rats (31) and glutamate, glutamine (gln), or gln/gluta-
mate in ACC of HVs in some (32–34), but not all studies (35). 
Ketamine also enhances rCBF in ACC and other prefrontal areas 
in HV (36–39). The sub-anaesthetic doses used correspond to 
doses used to treat depressive disorder (40), and ketamine chal-
lenge is generally considered safe.

The primary aim of this study was to investigate if glutamate 
and rCBF in ACC were associated before, during, and after the 
infusion of a sub-anaesthetic dose of S-ketamine administered 
to HVs. Because abnormal thalamocortical interactions might 
underlie schizophrenia (41) and lead to striatal, dopaminergic 
disturbances (8, 42–44), we also examined rCBF alterations dur-
ing S-ketamine infusion in the accumbens and thalamus (Thal) 
that are connected with ACC (45).

ParTiciPanTs anD MeThODs

The study was a noncontrolled pre–post intervention design 
where 25 nonsmoking, right-handed healthy male volunteers 
aged 21–31  years received constant i.v. infusion of S-ketamine 
(Pfizer) during magnetic resonance imaging (MRI) scanning. 
The dosing regimen was 0.25 mg/kg for 20 min and thereafter 
0.125 mg/kg for 20 min to keep blood levels stable. S-Ketamine 
was used since the racemic form (mixture of S- and R-ketamine) 
is not available in Denmark.

Levels of glutamate in ACC and whole-brain rCBF were 
obtained before, during, and after S-ketamine infusion as shown 
in Figure 1.

Exclusion criteria were current or previous psychiatric illness 
tested with Schedules for Clinical Assessment in Neuropsychiatry 
(46), drug and alcohol abuse as reported by self-report and con-
firmed with urine testing (Rapid Response, Jepsen HealthCare, 
Tune, DK), psychiatric disease in first-degree relatives, past 
or present physical illness, the use of nicotine substitutes, the 
previous use of ketamine; or the use of benzodiazepines, antip-
sychotics, anticonvulsants, or antidepressant (as e.g., sleeping 
medication) within the past 2 months. The study was approved 
by the Committee on Biomedical Research Ethics for the Capital 
Region of Denmark (H-4-2014-033), and all participants pro-
vided written informed consent after the study procedures were 
fully explained.

Psychotomimetic effects were assessed with the Positive and 
Negative Syndrome Scale (PANSS) (47) and the effect on mood 
with the Positive and Negative Affect Schedule (PANAS) (48) by 
trained raters before and after S-ketamine infusion. For assess-
ments after infusion, participants were asked about their experi-
ences during infusion while being on the scanner.

Magnetic resonance acquisitions
Data were acquired using a 3-T Philips Achieva system 
(Philips Healthcare, Eindhoven, Netherlands) equipped with a 
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FigUre 1 | Time line of magnetic resonance imaging acquisitions and dose regimen of S-ketamine infusion. First, a T1-weighted structural scan (T1w; duration 
10 min) was acquired followed by five sets of 1H-MRS and pCASL data (total acquisition time 11 min) before (scan 1), during (scans 2–4), and after (scan 5) 
S-ketamine infusion. Stippled arrows indicate the start and end of infusion and the dotted arrow dose change. MRS, Magnetic resonance spectroscopy; pCASL, 
pseudo-Continuous Arterial Spin Labelling.
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32-channel head coil (Invivo, Orlando, FL, USA). A whole-brain 
three-dimensional high-resolution T1-weighted structural 
scan (TR 10 ms, TE 4.6 ms, flip angle = 8°, and voxel size = 0
.79 mm × 0.79 mm × 0.80 mm) was obtained for grey matter 
(GM) and white matter (WM) WM tissue classification and 
anatomical reference. A forehead strap was placed to minimize 
head motion. One participant moved approximately 2 mm, all 
others <0.7 mm.

Proton magnetic resonance spectroscopy (1H-MRS) and 
unsuppressed water reference spectra were obtained with 
frequency-stabilised point-resolved spectroscopy (TE 30  ms, 
TR 3,000 ms, 128 averages with MOIST water suppression). A 
2.0 cm × 2.0 cm × 2.0 cm voxel was prescribed in ACC (Brodmann 
areas 24 and 32) by drawing a line through the extremities of 
corpus callosum, placing the point of the voxel at the intersection 
and aligning to corpus callosum as shown in Figure 2C. Similar 
acquired acquisitions have revealed good test–retest reliability 
for glutamate with a percentage coefficient of variation  <7% 
(unpublished data). Acquisition time was 7 min.

A pseudo-Continuous Arterial Spin Labelling (pCASL) 
sequence was used to assess rCBF as described elsewhere 
(49). The sequence consisted of 30 pairs of perfusion weighted 
and control scans (dual echo EPI; 16 slices of 5  mm with an 
in-plane resolution of 3.55  mm ×  3.55  mm; SENSE factor 2.3; 
TR =  4,100 ms; TE =  12 ms, 28.5 ms at a post-labelling delay 
of 1,600 ms; labelling duration 1,650 ms; background inversion 
pulses at 1,663 and 2,850 ms after the start of labelling). M0 scan: 
TR/TE = 10 s/9 ms. Acquisition time was 4 min.

1h-Mrs analysis
Proton magnetic resonance spectroscopy spectra were analysed 
with LCModel version 6.3-1 J (50) within the spectral range of 0.2 
and 4.0 ppm using water scaling to estimate the concentration of 
neurometabolites from a standard basis set comprising alanine, 
aspartate, creatine (Cr), phosphocreatine (PCr), GABA, glucose, 
gln, glutamate, glycerophosphocholine (GPC), phosphocholine 
(PCh), glutathione, myo-inositol (Ins), lactate, N-acetyl aspar-
tate (NAA), NAA glutamate, scyllo-Ins, and taurine. Spectra 
quality was evaluated by visual inspection, and individual 

neurometabolites with Cramer–Rao Lower bound (CRLB) >20% 
were excluded. The percentage of GM and WM in the 1H-MRS 
voxel was estimated and used to calculate institutional units of 
glutamate (gluIU), glx (glxIU), and glnIU corrected for cerebrospinal 
fluid contamination as described in the Supplementary Material. 
GluIU was used as the primary outcome, and glxIU and glnIU were 
analysed as the secondary outcomes to allow comparison with 
other studies. In exploratory analyses, glutamate, glx, and gln 
scaled to Cr (Cr + PCr) were analysed.

pcasl analysis
Calculation of rCBF was done using the FSL software package 
(https://fsl.fmrib.ox.ac.uk/fsldownloads_registration). First, the 
“Brain extraction Tool” was used to remove non-brain tissue from 
a T1-weighted image. Second, the pCASL data obtained before, 
during, and after ketamine infusion were co-registered with the 
skull-stripped T1-weighted image, and, lastly, the T1-weigthed 
image was nonlinearly co-registered to Montreal Neurological 
Institute (MNI) space and the combined transformation was 
applied to the rCBF maps.

The effects of S-ketamine on rCBF were investigated with both 
voxel-based and region of interest (ROI) analyses. Voxel-based 
analysis identified areas with the most significant increase of rCBF 
using an analysis of variance (ANOVA) model and permutation-
based statistical inference. We further used threshold-free cluster 
enhancement to account for spatial dependencies. The statistical 
maps were thresholded at p  <  0.05 and corrected for multiple 
comparisons (FWE correction). ROI analyses were performed 
in two defined cortical areas with the first corresponding to the 
position of the MRS voxel in ACC and the second to the region 
with most significant voxel-based changes of rCBF, and in the 
subcortical regions provided by the MNI atlas from FSL (left 
and right Thal, caudate, accumbens, and putamen). The rCBF 
was calculated as both absolute values in mL/100 g/min and as 
normalised values by dividing each voxel with the global mean 
for each subject to reduce inter-subject variation caused by 
a difference in global rCBF. Normalised rCBF was used as the 
primary outcome to enhance the sensitivity to regional changes, 
but absolute rCBF values are reported as well.
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FigUre 2 | Glutamate levels in anterior cingulate cortex (ACC) (n = 25) (a) and percentage change of normalised resting cerebral blood flow (rCBF) in ACC  
and medial prefrontal cortex (mPFC) (n = 16) (B) before (scan 1), during (scans 2–4), and after S-ketamine infusion (scan 5). Sagittal image with proton magnetic 
resonance spectroscopy voxel location (c), representative spectra with raw data (in black) and fitted data (in red) (D), and image of the overlap between the area 
with the most significant rCBF increase corresponding to mPFC (in yellow) and the ACC corresponding to the MRS voxel (blue) are shown (e). Horizontal bars 
represent the mean values. *p < 0.0125, **p < 0.0025, and ***p < 0.00025 (p < 0.05/4 to control for multiple comparisons).
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statistics
The primary hypothesis that levels of glutamate (independent 
variable) would be associated with normalised rCBF in ACC 
(dependent variable) during each of the five scans was tested with 
five separate linear regression models with a significance level set 
to p < 0.05 for this a priori hypothesis.

The main effect of S-ketamine on levels of glutamatergic 
metabolites and rCBF was evaluated separately using a one-way 
repeated measures ANOVA (rmANOVA) with statistical signifi-
cance defined as p < 0.05 for the main effects and p < 0.0125 for 
post  hoc t-tests (separate t-tests Bonferroni corrected with p/4 
scans during S-ketamine infusion). Multivariate tests of the main 
effect are reported if the assumption of sphericity was violated. No 
outliers were identified according to Cook distance criterion (51).

PANSS (total, positive, negative, and general subscores) and 
PANAS (positive- and negative-affect scores) before and after 
ketamine infusion were analysed using Wilcoxon signed rank 
test. Correlations between mental state effect changes induced 
by S-ketamine and levels of glutamate or normalised rCBF in 
the ACC voxel were tested with Spearman’s rho and corrected 
for multiple comparisons (Bonferroni). Statistical analyses were 
performed in SAS version 7.1 (SAS institute, Cary, NC, USA).

resUlTs

Mental state changes and laboratory 
results with s-Ketamine
The mental state changes with S-ketamine and demographic 
variables of participants are summarized in Table 1. S-Ketamine 

significantly increased PANSS total, and all subscores with items 
P2 (disorganized thinking) and P3 (hallucinations) being most 
prominently affected with an increase of 104 and 184%, respec-
tively. Furthermore, S-ketamine significantly decreased positive 
affect. The negative affect increased but not to a significant 
extent.

Serum levels of S-ketamine obtained from four HVs after scan 
5 as test samples were 140.5 ± 27.0 ng/mL.

glutamatergic Metabolites before, during, 
and after s-Ketamine
No spectra were excluded after visual inspection, and the quality 
was good as shown in a representative spectrum in Figure 2D. 
CRLB values were <9% for glutamate and glx, but 23 gln-values 
were excluded due to CRLB >20%. Full-width half-maximum, 
signal-to-noise ratio, and CRLB for glutamate, NAA, myo-Ins, 
and choline did not differ during the five MRS acquisitions, but 
CRLB for glx, gln, and PCr + Cr did as summarized in Table S1 
in Supplementary Material.

GluIU, glxIU, glnIU, and other neurometabolites: There were 
no significant main effects of time for gluIU [F(4, 96)  =  0.13, 
p = 0.962] (Figure 2A), glxIU [F(4, 96) = 1.07, p = 0.374], glnIU 
[F(4, 36) = 0.64, p = 0.635], or other neurometabolites such as 
NAA, Cr + PCr, choline (GPC + PCh), and myo-Ins. The mean 
values of metabolites are provided in Table S2 in Supplementary 
Material. The inclusion of glutamate, glx, or gln scaled to Cr in 
the rmANOVA did not change the results. Lastly, no main effect 
of time was found for gluIU, glxIU, and glnIU in the subgroup of 
HV, which also had a pCASL scan (n = 16). In sum, S-ketamine 
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TaBle 1 | Demographic characteristics and psychotomimetic effects with 
S-ketamine.

characteristic Means

N (males only) 25
Age, years ± SD 25.4 ± 3.3 
BMI, kg/m2 ± SD 23.5 ± 2.0 
Years of education ± SD 14 ± 2 
PANSS total ± SEM Pre 32.0 ± 0.5

Post 38.4 ± 1.2***
PANSS positive ± SEM Pre 7.5 ± 0.3

Post 10.8 ± 0.4***
PANSS negative ± SEM Pre 7.5 ± 0.1

Post 8.5 ± 0.5**
PANSS general ± SEM Pre 17.0 ± 0.3

Post 19.2 ± 0.7**
Positive affect ± SEM Pre 30.7 ± 1.2

Post 23.5 ± 1.5***
Negative affect ± SEM Pre 11.8 ± 0.4

Post 13.3 ± 0.7

BMI, body mass index; PANSS, Positive and Negative Syndrome Scale.
**p < 0.01.
***p < 0.001.

FigUre 3 | Brain regions with a significant increase of absolute resting cerebral blood flow (mL/100 g/min) during the infusion of S-ketamine at scans 2–4. The 
colours represent p-values from the voxel-based analysis as shown to the right. Abbreviations: ACC, anterior cingulate cortex; Thal, thalamus; l Cau, left caudate 
(ventral part); L Acc, left accumbens; l Ins, left insula.
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2 was in mPFC/ACC, insula, left accumbens (L Acc), and left 
ventral caudate (Figure 3, scan 2), and during scan 3 in left and 
right Thal (Figure 3, scan 3).

After normalizing rCBF, the most significant increase was seen 
in Brodmann area 32 (MNI coordinates x = 45, y = 83, z = 45) 
that corresponds to mPFC and partly overlaps with the MRS 
voxel in ACC (Figure 2E).

ROI Analyses of Absolute and Normalised  
rCBF Changes
The rmANOVA of ROIs revealed a significant main effect of time 
for absolute rCBF (mL/100 g/min) in the two defined cortical ROIs 
mPFC (F(4, 60) = 29.6, p < 0.0001) and the ACC voxel (denoted 
ACC hereinafter) (F(4, 60) = 13.44, p = 0.0002) with post hoc tests 
revealing a significant increase in mPFC during scan 2 (26 ± 3%, 
p  <  0.0001), scan 3 (30  ±  4%, p  <  0.0001), scan 4 (21  ±  5%, 
p = 0.0014), and at trend level that did not survive correction for 
multiple comparisons during scan 5 (12 ± 4%, p = 0.025), and 
in ACC during scan 2 (18 ± 3%, p < 0.0001), scan 3 (20 ± 3%, 
p = 0.0001), and scan 4 (15 ± 4%, p = 0.006), but not during scan 
5 (7 ± 4%, p = 0.11). Absolute values in mL/100 g/min for the 
five scans are reported in Table S3 in Supplementary Material. In 
the subcortical ROIs, a significant main effect of time was seen in 
left and right Thal, left caudate (L Cau), and L Acc, although the 
post hoc tests only were significant during scan 2 for L Cau and L 
Acc as reported in Table S4 in Supplementary Material.

After normalizing rCBF, the main effect of S-ketamine 
remained significant in mPFC (F(4, 60)  =  15.06, p  <  0.0001), 
ACC (F(4, 60) = 5.45, p = 0.0008), and left Thal (F(4, 12) = 4.08, 
p = 0.026). Post hoc tests revealed a significant increase in mPFC 
and ACC during scans 2–4, and additionally in mPFC during 

infusion did not appear to affect glutamatergic metabolites in the 
ACC voxel.

rcBF before, during, and after s-Ketamine
pseudo-Continuous Arterial Spin Labelling data were only usable 
for 16 subjects due to technical challenges.

Voxel-Based Analysis
Voxel-based analysis of the absolute rCBF (mL/100  g/min) 
revealed that the most significant increase of rCBF during scan 
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FigUre 4 | Glutamate levels and normalised resting cerebral blood flow (rCBF) in anterior cingulate cortex were positively associated immediately following 
S-ketamine infusion (scan 2) (N = 16; b = 0.07, t = 2.41, p = 0.03).
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scan 5 (Figure 2B). In left Thal, normalised rCBF appeared to 
decrease during scan 2; however, the post hoc tests were insig-
nificant. No main effect of time was seen in right Thal, 1 Cau, 
right caudate, right accumbens, left putamen, and right putamen. 
Statistics and percentage increase compared to preinfusion (scan 
1) of normalised rCBF values for cortical and subcortical ROIs 
are provided in Tables S5 and S6 in Supplementary Material, 
respectively.

In sum, S-ketamine infusion affected mPFC/ACC and left Thal 
after correction for the effect of global blood flow (normalisation).

relationship between levels of glutamate 
and normalised rcBF in acc before, 
during, and after s-Ketamine
Higher levels of gluIU were significantly associated with higher 
values of normalised rCBF in ACC prior to S-ketamine infusion 
during scan 1 (b = 0.05, t = 2.19, p = 0.046) and immediately 
following infusion during scan 2 (b = 0.07, t = 2.41, p = 0.03, 
Figure 4), but not to a significant extent during scan 3 (b = 0.04, 
t = 1.64, p = 0.12), scan 4 (b = 0.01, t = 0.45, p = 0.66), or scan 
5 (b = 0.02, t = 0.62, p = 0.55). When adjusting for age, similar 
results were observed, although only borderline significant dur-
ing scan 1 (scan 1: p = 0.05; scan 2: p < 0.05; scan 3: p = 0.15; scan 
4: p = 0.60; scan 5: p = 0.56).

GlxIU was associated with normalised rCBF in ACC prior to 
S-ketamine infusion at a trend level that did not survive correc-
tion for multiple comparison (p < 0.05/2 = 0.025) during scan 
1 (b = 0.03, t = 2.29, p = 0.038), and significantly during scan 
2 (b = 0.06, t = 3.85, p = 0.002) but not during scans 3, 4, or 5 
(p > 0.05). Similar results were obtained when adjusting for age 
(scan 1: p = 0.035; scan 2: p = 0.002; scans 3–5: p > 0.05).

No association was found between glnIU and normalised rCBF 
in ACC, neither when adjusting for age. Also, there was no main 
effect of age for any of the metabolites, and all the gluIU/glxIU/
glnIU × age interactions were insignificant and removed from the 
analyses.

relationship between changes in Mental 
state with s-Ketamine, levels of 
glutamate, and normalised rcBF in mPFc
Neither glutamate in ACC nor normalised rCBF in mPFC dur-
ing S-ketamine infusion (scans 2–4) correlated with changes 
in PANSS total, positive, negative, and general or positive and 
negative affect to a significant extent.

Physiological Data
Ketamine infusion did not significantly affect blood pressure 
(systolic) or heart rate.

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


7

Bojesen et al. Glutamate, rCBF, and S-Ketamine

Frontiers in Psychiatry | www.frontiersin.org February 2018 | Volume 9 | Article 22

DiscUssiOn

The primary finding of this study was that levels of glutamate 
were positively associated with normalised rCBF in ACC before 
and immediately following the infusion of S-ketamine in HV. 
In addition, S-ketamine transiently induced abnormal neural 
activation as measured by altered normalised rCBF in mPFC, 
ACC, and left Thal. However, levels of glutamate in ACC were 
not affected during S-ketamine infusion.

The results support that glutamate levels and rCBF are associ-
ated in ACC as also seen in a recent study of medicated patients 
with schizophrenia (17), a rodent study of hippocampus (11), 
and preclinical studies (12). Importantly, this association was 
independent of antipsychotic exposure and psychiatric illness 
chronicity.

In terms of clinical relevance, a rodent study revealed that the 
normalisation of increased glutamate and enhanced rCBF could 
prevent structural changes in hippocampus (11). Given that glu-
tamate and rCBF were associated in ACC in our study, it is likely 
that glutamate-modulating agents also might be neuroprotective 
in this area as well when given to schizophrenia patients with 
increased glutamate levels. The progressive loss of brain tissue in 
schizophrenia is only seen in a subgroup of patients (1), and we 
speculate if increased glutamatergic activity and enhanced rCBF 
characterize the subgroup of patients who experience structural 
changes later in the illness. Thus, future studies should aim at 
investigating if increased glutamate in ACC and enhanced rCBF 
in first-episode patients predict the progressive loss of brain 
tissue.

The association between glutamate levels and normalised 
rCBF in the ACC was only seen before (scan 1) and immedi-
ately following (scan 2), but not during (scans 3 and 4) or after 
(scan 5) S-ketamine infusion, which can indicate that glutamate 
mainly regulates rCBF during an increase in HVs, whereas 
other factors might be involved during the maintenance and 
decrease of enhanced rCBF. In preclinical studies, glutamatergic 
neurotransmission plays a key role in the regulation of cerebral 
blood flow by activating N-Methyl-D-Aspartate receptors on 
neurons and metabotropic glutamate receptors on astrocytes 
(12). The subsequent rise in intracellular Ca2+ leads to the release 
of intracellular-vasodilating messengers but can also cause blood 
vessel constriction (12). The outcome of intracellular Ca2+ rise is 
influenced by preexisting vessel tone and the O2 concentration, 
in that dilation occurs with physiological O2 concentrations and 
constriction with supraphysiological O2 concentrations (12, 52). 
Although speculative, our findings might imply that S-ketamine 
initially induces vasodilation, but that this effect diminishes 
or ceases after some time due to persistently increased O2 and 
enhanced vessel tone.

Levels of glutamate as measured with 1H-MRS in ACC were 
unaffected during the infusion of S-ketamine. This is in agreement 
with one previous study (35) but in contrast with two others (32, 
33). Several factors might explain this finding. First, the 1H-MRS 
voxel in ACC was placed a bit dorsal from mPFC where the most 
significant increase of rCBF was seen (Figure 2E). Although the 
ACC voxel and mPFC overlap, the increase of glutamate levels in 
ACC might not have been sufficient to be detected with 1H-MRS. 

Second, our dose regimen of S-ketamine might have been too 
high. We administered pure S-ketamine in a dosing regimen 
corresponding to previous studies where the racemic form was 
used (50% R- and 50% S-ketamine) (32, 33, 35), but it seems likely 
that the dose of pure S-ketamine and the racemic form does not 
correspond to 1:1 since R-ketamine restricts the clearance of 
the S-enantiomer (53). In addition, racemic ketamine mainly 
increases extracellular cortical glutamate at low doses in rats (31), 
and it is notable that the two 1H-MRS studies that found increased 
levels of glutamate (33) or gln (32) used a lower dose of racemic 
ketamine than in the present study and the other study where 
glutamate was unaffected (35). Third, one of the MRS ketamine 
studies found increased gln but not glutamate (32). Gln reflects 
glutamate released by the synapse and taken up by astrocytes 
only (54), whereas glutamate reflects other metabolic processes 
as well (55). Therefore, minor changes of the glutamate level in 
the synaptic cleft can be blurred by the glutamate contained in 
presynaptic vesicles and astrocytes. However, gln is challenging to 
accurately quantify at field strengths below 4 T due to overlapping 
resonance frequencies with glutamate. Lastly, a ketamine-induced 
increase of glutamatergic metabolites might be easier to detect in 
pathological conditions like depression, where resting glutamate 
is decreased (56).

S-Ketamine significantly affected rCBF in several areas. The 
voxel-based analysis revealed that the most significant increase 
of both absolute (mL/100 g/min) and normalised rCBFs was in 
ACC and the overlapping mPFC (Figures 2B,E), which is in line 
with previous PET (36, 37) and MRI studies (39), administering 
racemic ketamine to HVs. This confirms that the main effect of 
S-ketamine also is mediated through ACC/mPFC. The rCBF 
enhancements are most likely induced by the S-enantiomer, since 
the administration of pure R-ketamine seems to decrease rCBF in 
HVs (57).

Our second aim was to explore if S-ketamine transiently 
induced the abnormal neural activation of the accumbens and 
Thal as reflected by rCBF alterations since these areas are con-
nected with ACC (45) and implicated in the pathophysiology 
of schizophrenia (8, 42–44). Absolute rCBF was significantly 
increased in L Acc and left ventral caudate (left ventral striatum) 
and Thal (Figure 3, scan 2). However, only the effect in ACC/
mPFC remained significant in the voxel-based analyses when 
rCBF was normalised. In the ROI analyses, a significant increase 
of absolute rCBF was also seen in ACC, mPFC, left and right Thal, 
L Acc, and L Cau (Tables S3 and S4 in Supplementary Material) 
but only remained significant in ACC, mPFC, and left Thal after 
normalizing rCBF (Tables S5 and S6 in Supplementary Material). 
In left Thal, S-ketamine seemed to decrease normalised rCBF 
during scan 2, although not to a significant extent. This decrease 
might reflect a feedback mechanism due to the increased activ-
ity of ACC and mPFC. In sum, S-ketamine mainly seems to 
affect ACC/mPFC and left Thal, although accumbens might be 
activated to a minor extent. This is in accord with a ketamine 
study of rats that found mainly increased cortical glutamate and 
only to a minor extent increased striatal dopamine (31), and a 
SPECT study of HVs where striatal dopamine was unaffected by 
ketamine (58). Taken together, it seems that ketamine challenge 
only affects striatal dopaminergic activity to a minor extent. This 
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