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Background: New technologies can profoundly change the way we understand psychia­
tric pathologies and addictive disorders. New concepts are emerging with the develop­
ment of more accurate means of collecting live data, computerized questionnaires, and 
the use of passive data. Digital phenotyping, a paradigmatic example, refers to the use 
of computerized measurement tools to capture the characteristics of different psychiatric 
disorders. Similarly, machine learning–a form of artificial intelligence–can improve the 
classification of patients based on patterns that clinicians have not always considered in 
the past. Remote or automated interventions (web­based or smartphone­based apps), 
as well as virtual reality and neurofeedback, are already available or under development.

Objective: These recent changes have the potential to disrupt practices, as well as 
practitioners’ beliefs, ethics and representations, and may even call into question their 
professional culture. However, the impact of new technologies on health professionals’ 
practice in addictive disorder care has yet to be determined. In the present paper, we 
therefore present an overview of new technology in the field of addiction medicine.

Method: Using the keywords [e­health], [m­health], [computer], [mobile], [smartphone], 
[wearable], [digital], [machine learning], [ecological momentary assessment], [biofeed­
back] and [virtual reality], we searched the PubMed database for the most representative 
articles in the field of assessment and interventions in substance use disorders.

Results: We screened 595 abstracts and analyzed 92 articles, dividing them into 
seven categories: e­health program and web­based interventions, machine learning, 
computerized adaptive testing, wearable devices and digital phenotyping, ecological 
momentary assessment, biofeedback, and virtual reality.

Conclusion: This overview shows that new technologies can improve assessment and 
interventions in the field of addictive disorders. The precise role of connected devices, 
artificial intelligence and remote monitoring remains to be defined. If they are to be 
used effectively, these tools must be explained and adapted to the different profiles 
of physicians and patients. The involvement of patients, caregivers and other health 
professionals is essential to their design and assessment.

Keywords: addictive medicine, digital phenotype, ecological momentary assessment, virtual reality, wearable 
devices, machine learning
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iNTRODUCTiON

Addictive disorders are common, but only a small minority of 
patients receives adequate treatment (1). Diagnosis, early detec-
tion of at-risk patients, and the daily monitoring of symptoms 
and treatments (including self-management) are major issues 
in addictive medicine and public health. New technologies 
(smartphone, computers, biomarkers) and the parallel expansion 
of medical information technology and artificial intelligence have 
brought about a paradigm shift, resulting in more personalized 
and predictive medicine (2). These new tools are spurring prac-
titioners to think about addictive disorders in different ways that 
may ultimately modify their practices. If behavior disorders can 
be captured by mathematical or computer models, and if diseases 
can be predicted and relapses detected earlier by machines or 
smartphones, what role will be left for healthcare teams to play?

These new technologies are also revolutionizing research, 
insofar as data collection methods can now be classified as either 
active or passive (3). The collection of active (or live) data, which 
refers to all self-evaluation procedures that can be implemented 
on a computer or smartphone, requires input from the patient, 
whereas passive data (heart rate, motion detection, sound or light 
sensor, number of calls sent, duration of calls, etc.) are collected 
via background tasks. Sometimes, patients do not even know 
when data are being collected, allowing the observer’s influence 
to be reduced to a minimum.

New technologies also appear to be important in the field of 
treatment. The expansion of web-based and smartphone-based 
interventions holds out the prospect of having a coach or thera-
pist in the pocket (4). The democratization of virtual reality and 
the development of neurofeedback methods also appears useful 
in addictive disorders.

There are many issues in addictive medicine: pathology screen-
ing in patients who sometimes minimize their consumption; 
active treatment of craving using cognitive behavioral therapy 
(CBT)-driven techniques applied remotely and in real time; and 
the strengthening of cooperation between patients and clinicians 
by facilitating the links between them. The tools currently under 
development look set to bring many concrete improvements. 
They may also improve our understanding of the underlying 
mechanisms of various addictions.

In this article, we conducted an overview of the various 
innovative technologies related to assessment and intervention 
in addictive disorders, describing various concepts, applied to 
addictive disorders, as this new approach could profoundly 
change the therapeutic relationship, patient assessment and the 
nature of interventions.

MeTHOD

We conducted a narrative review using the MeSH terms and 
keywords [e-health], [m-health], [computer], [mobile], [smart-
phone], [wearable], [digital], [machine learning], [ecological 
momentary assessment], [biofeedback] and [virtual reality], 
and we searched the PubMed database for studies in the field of 
substance use disorders (SUDs). AB, FF, and SM screened 595 
abstracts, and 92 articles were then analyzed and divided into 

seven categories, the first five for evaluation and the last two for 
treatment: 1. e-health applications and web-based interventions, 
2. Machine learning, 3. Computerized adaptive testing (CAT),  
4. Wearable devices and digital phenotyping, 5. Ecological momen-
tary assessment (EMA) and ecological momentary intervention 
(EMI), 6. Biofeedback and neurofeedback, and 7. Virtual reality. 
These categories were chosen because they correspond to the 
most innovative topics and most reported in most studies on new 
technologies in psychiatry.

CONCePTUAL OveRview

A brief description of the concepts underlying new technologies 
in the field of mental health is summarized in Table 1.

OveRview OF TeCHNOLOGiCAL 
iNNOvATiON STRATeGieS iN SUBSTANCe 
USe DiSORDeRS

e-Health Applications and web-Based 
interventions
The term e-health was originally defined by John Mitchell in 1999 
as a “new term needed to describe the combined use of electronic 
communication and information technology in the health sector. 
The use in the health sector of digital data—transmitted, stored, 
and retrieved electronically—for clinical, educational, and 
administrative purposes, both at the local site and at a distance” 
(5). This term now covers a broader reality (6), as it includes any 
device or computer software relating to health, centered around 
two fields:

 1. Telehealth, in other words, health mediated by telecommunica-
tions tools (telemedicine, telemonitoring and mobile health);

 2. Robotics, defined as a set of techniques using automatic machi-
nes or robots, that includes both medical robotics itself (e.g., 
robot surgeons) and the use of programs based on artificial  
intelligence.

It is at the interface of these two fields that new Clinical 
Decision Support Systems (CDSS) have been developed, defined 
as computer applications “whose aim is to provide clinicians 
with information describing the clinical situation of a patient 
in useful time and place as well as appropriate knowledge … 
to improve the quality of care and the health of patients” (17). 
Although e-health technology in the area of SUDs is still at a 
relatively early stage, several projects are worthy of interest, as 
these new technologies allow realtime evaluation to be combined 
with an interventional dimension. Several e-health solutions 
[i.e., A-CHESS (18)] improve self-management by providing 
self-assessment modules and reminders and also allow for rapid 
contact with a support service to ensure swift responses in case 
of need. Other types of software [ORION (19, 20), D-ARIANNA 
(21, 22), Steering Clear program (23)] optimize behavioral 
risk quantification (overdose for Orion, binge-drinking for 
D-ARIANNA, drink-driving for Steering Clear) via scalar self-
assessment modules. These programs deliver rapid intervention 
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TABLe 2 | Smartphone­ and web­based e­health interventions.

Concept Description

A­CHESS The Addiction­Comprehensive Health Enhancement Support 
System includes both static content (e.g., audio­guided 
relaxation) and interactive features (e.g., if a patient is near a 
high­risk location such as a familiar bar, a GPS­initiated alert 
asks the patient if s/he really wants to be there)

ORION The Overdose RIsk InfOrmatioN project was set up to develop 
and pilot an e­health psychoeducational tool that provides 
information about the risks of having a drug overdose

D­ARIANNA The Digital­Alcohol RIsk Alertness Notifying Network for 
Adolescents and young adults was set up to develop and pilot 
an e­health psychoeducational tool that provide information to 
adolescents and young adults about the risks of binge drinking

Steering Clear Steering Clear of Driving After Drinking is a tailored e­health 
intervention that aims to reduce repeat offending by first­time 
convicted drink driving offenders via an online program

JITAI The Just­In­Time Adaptive Intervention framework could be 
used to design a mobile app that carries out in­the­moment 
monitoring of triggers for lapsing, and delivers personalized 
coping strategies to prevent lapses from occurring

reSET reSET is a digital therapeutic system designed to be used as 
an adjuvant to standard outpatient therapy for treating SUDs. 
It combines patient­facing interventions and assessments via 
a mobile device, with clinician­facing dashboards and data 
analytics on the back end

TABLe 1 | Summary of concepts.

Concept Description Reference

e­health Combined use of electronic communication and information technology in the health sector. This includes  
telehealth (health mediated by telecommunications tools: telemedicine, telemonitoring and mobile health/ 
m­health) and robotics (techniques using automatic machines or robots, including machine learning)

(5, 6)

Clinical Decision Support System Computer­based tool supporting the decision­making process, in order to facilitate organizational processes  
and provide clinicians with information about patients’ clinical status and the knowledge they need to improve  
quality of care and patient health

(7)

Machine learning Scientific discipline that focuses on how computers learn from data, using statistics to learn relationships from  
data, and computer science to accurately detect classification patterns via efficient computing algorithms

(8)

Computerized adaptive testing, CAT A computer­administered test in which each item or set of items is selected according to the test taker’s  
responses to the previous ones

(9)

Ecological momentary assessment Smartphone­based evaluation of symptoms from day to day in patient’s usual environment, free from  
recall biases, as the patient self­assesses “right then, not later; right there, not elsewhere”

(10, 11)

Ecological momentary intervention Smartphone­based intervention involving the delivery of psychoeducation, advice or recommendations  
about how to behave according to the patient’s immediate environment

(12–14)

Digital phenotyping Moment­by­moment quantification of the individual­level human phenotype using passive data (GPS,  
accelerometer, voice, call and text logs, screen use) from digital devices (smartphone, wearable devices)

(15)

Biofeedback or neurofeedback Painless, noninvasive procedure that consists in capturing biometric data (EEG, ECG, EMG, skin conductance,  
temperature) and feeding them back to patients in real time so that they gradually learn (through positive  
reinforcement) how to promote brain activity corresponding to the therapeutic target using CBT techniques  
and relaxation

(16)
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in the form of guidelines, tips, motivational techniques and 
people to contact. Finally some programs [e.g., JITAI (24)] are 
intended to prevent relapse by providing regular monitoring and 
individualized coping strategies. A recent review (25) showed 
that computer-based alcohol interventions are generally effec-
tive in reducing alcohol consumption. Longer, multisession 
interventions are more effective than shorter or single-session 
interventions. Other programs provide individually tailored 
clinical content in a multimedia format (26, 27) to promote 
psychoeducation. In the field of smoking cessation, meta-analysis 
showed the interest of web-based interventions (28).

The US Food and Drug Administration (FDA) recently 
authorized a smartphone-based e-health program for prescrip-
tion: the Pear® reSET application, which uses CBT, psychoeduca-
tion, social connection and self-assessment (craving, mood, etc.) 
to treat different types of SUDs (except for opioid dependence). 
The good results (40.3% adherence to abstinence in reSET users 
vs. 17.6% in control group) nevertheless need to be replicated 
(data should be available in 2018) (29). A description of these 
technologies can be found in Table 2.

Machine Learning
Machine learning is the subfield of artificial intelligence that 
gives “computers the ability to learn without being explicitly 
programmed” [Arthur Samuel, 1959 (30)]. It uses a different 
kind of classification process: Supervised classification seeks to 
automatically identify rules from databases constituted of “exam-
ples” (classically, these are cases that have already been validated, 
such as a well-established diagnosis), while with unsupervised 
classification, the collected data are not labeled, and the objective 
of the software is to group them into clusters so that the closest 
and most similar ones are placed in the same cluster, whereas 

those that are further apart are placed in separate clusters. This 
method makes it possible to find new structures. The coupling 
of machine learning with complementary examinations (MRI, 
EEG) reveals patterns that allow patients to be divided into 
different groups, which could be useful for screening or for 
describing groups with a particular phenotype (e.g., patients at 
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risk of relapse). These techniques will make it possible in the near 
future to improve addictologists’ predictive skills, as is already 
the case for the prediction of psychotic transition in patients in 
an at-risk mental state (31) and in the field of mood disorders 
(32, 33). In addictive medicine, one study (34) has already 
shown that the risk of alcohol relapse can be predicted with 77% 
accuracy by analyzing clinical data (e.g., demographics, alcohol 
use, dependence severity, craving, health-related quality of life, 
and psychological measures at baseline), while the probability of 
treatment success can be predicted with an AUC between 0.793 
and 0.820 (35) using clinical data (10 patient characteristics, 3 
treatment characteristics, principal source of referral, summary 
of type of problematic substance and mental health problem). 
Chih et al. (36) used a Bayesian network model to predict relapse, 
based on responses to 2934 A-CHESS weekly surveys provided by 
152 alcohol-dependent individuals who had recently completed 
residential treatment. It showed good predictability, with an AUC 
between 0.829 (cross-validation) and 0.912 (external validation). 
Mumtaz et  al. (37) developed a machine learning method that 
utilized resting-state EEG-derived features as input data to 
distinguish patients with alcohol use disorder from healthy 
controls and to perform automatic screening. Results showed 
that interhemispheric coherences between brain regions differed 
significantly between the study groups, with high classification 
efficiency (accuracy = 80.8, sensitivity = 82.5, specificity = 80; 
F = 0.78). The authors concluded that EEG data can be used as 
objective markers for screening patients with alcohol use disorder.

In the field of addictology research, these techniques are now 
being used to identify behavioral biomarkers predictive of the use 
of substances such as cocaine (38) or heroin (39).

Computerized Adaptive Testing
Computerized Adaptive Testing (CAT) (40) has been developed 
to mimic clinicians. It uses a limited form of artificial intelli-
gence to automatically adapt questionnaire items to the answers 
provided by the patient to previous items, using a large database 
of possible answers/questions. More specifically, after the first 
general questions, an algorithm adapts the subsequent items 
according to the patient’s initial answers. Complementary ques-
tions enhance the accuracy of the evaluation. The advantages of 
this type of testing are therefore an improvement in performance 
and a reduction in test duration, which is important, as the 
difficulties reported by patients mostly concern the amount of 
time spent completing the scales and the repetitiveness of the 
questions. This method, first developed by Fliege in 2005 and 
replicated by Gibbons (41), has been validated in depression 
disorders (42) with the CAT-DI. In the field of addictions, 
Pilkonis (43) demonstrated the validity of this method using the 
Patient-Reported Outcomes Measurement Information System 
(PROMIS), which includes five item banks for alcohol use. 
PROMIS CATs has been shown to be efficient and makes it fea-
sible to use a comprehensive health status profile in a substance 
use treatment setting, providing important prognostic informa-
tion regarding abstinence and drinking severity. Versions of this 
tool can also be used to rapidly explore common comorbidities 
with SUDs, such as the CAT-SS for suicidal behaviors (44) or 
the CAT-ANX for anxiety (45). Some related tests are now being 

developed using virtual avatars of psychiatrists who can con-
verse directly with patients, known as embodied conversational 
agents (46).

wearable Devices and Digital Phenotyping
John Torous and Lisa Gualtieri recently recalled the potential 
worth of connected objects in the field of mental health (47), 
as many devices now include multiple sensors such as accel-
erometers, heart rate sensors, sleep trackers, skin conductance 
sensors, and light sensors. The potential to gather real-time 
physiological data from fitness trackers, with the addition of 
symptom surveys from smartwatches, is attractive, and there is 
increasing interest in using real-time patient data as biomarkers 
of illness (48).

John Torous et al. have developed the concept of the digi-
tal signature or digital phenotype of pathology. These terms 
refer to the capture by computerized measurement tools of 
specific characteristics of psychiatric disorders (49, 50). Some 
behaviors or symptoms can be objectified and quantified by 
computer tools, constituting an e-semiotics. Sensor miniaturi-
zation and the ubiquitous use of smartphones make it possible 
to collect a large amount of data that psychiatrists had never 
been able to access before. Models based on these new semio-
logical signs are beginning to emerge (51, 52). This collection 
uses passive data, for which no intervention is necessary, as 
they are collected in background tasks, sometimes without the 
patient realizing it. The objective is to reduce the influence of 
the observer as much as possible. This detection may involve 
both a mobile phone and its onboard sensors (GPS, accel-
erometer, verbal flow detector, etc.) or else connected wear-
able objects that enable biometric monitoring in real time. 
For example, it is now possible to use heart rate variability 
(HRV) to distinguish an alcohol-dependent patient from a 
nondependent chronic alcohol user. Defined as the degree of 
fluctuation in the interval between two cardiac contractions, 
HRV is dependent on the autonomic nervous system and is 
markedly decreased in dependent patients (53). The links 
between HRV and addictive disorders, alcohol dependence 
in particular, are now quite well known (54). It is an interest-
ing biomarker, albeit not very specific, as changes in HRV 
are also encountered in mood disorders and posttraumatic 
stress disorder (PTSD) (55). In addictology, there has not yet 
been any research on specific digital phenotypes for different 
types of substance use, but more and more researchers are 
interested in coupling EMA with GPS (56, 57) or biosensor 
data. Activity-space analysis, which examines motion in 
different contexts, and EMA, which captures microlevel con-
textual changes as individuals move through their day can, 
for instance, improve understanding of drinking contexts in 
alcohol studies. Better identification of drug-using contexts 
can trigger the implementation of targeted interventions to 
prevent acting out.

Wearable biosensors have been developed to:

•	 Study physiological change during opioid use (decrease in 
locomotion and increase in skin temperature are consistently 
detected) (58);
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•	 Monitor real-time drug use (59) or alcohol consumption (60), 
possibly through the detection of a metabolite (ethyl glucuro-
nide) in human sweat (61);

•	 Monitor and study autonomic nervous system activity via 
electrodermal activity, 3-axis acceleration, ECG and tempera-
ture, in order to detect arousal events and automatically send 
therapeutic and empathetic messages to the patient using 
CBT (62).

These sensors can be coupled with biofeedback systems (cf. 2.6).

eMA and eMi
Classic data collection relied on a conventional interview format 
where the psychiatrist observes, questions, and evaluates the 
patient in order to form an opinion about that patient’s diagnosis, 
consumption, and the consequences of that consumption. EMA 
is the evaluation of symptoms day to day, in the patient’s usual 
environment, free from recall biases as the patient self-assesses 
right then, not later; right there, not elsewhere (10, 11). This new 
method using active data (supplied by the patient) profoundly 
modifies the assessment procedure by introducing a computer-
ized third party between doctor and patient. The use of dedicated 
smartphone apps allows patients to keep an accurate diary of 
their symptoms, behaviors, or consumption. Studies have shown 
that EMA apps are just as reliable as the scales usually used for 
psychiatric disorders (49, 63), with excellent acceptability, and 
possibly even a preference for this medium. Several studies [for 
a review, see in Ref. (13, 64)] have allowed SUDs to be assessed 
in real time:

•	 Alcohol use (12);
•	 Relationship between alcohol use and PTSD symptom inten-

sity (65);
•	 Relationship between alcohol use and mood (66, 67);
•	 Real-time illicit drug use (68, 69);
•	 Opioid craving (70);
•	 The context or state of mind in which a patient consumes (71);
•	 Effects of stress on relapse (72);
•	 Effects of Topiramate on alcoholic craving (73);
•	 Physical, interpersonal, or legal consequences of SUD (74).

Moreover, this repeated evaluation of symptoms over time 
may in itself have a therapeutic effect. A study conducted among 
patients with bipolar disorder (75) found that it potentially 
limits manic or hypomanic episodes, and we can assume that 
repeated assessment of addictive behaviors also has a thera-
peutic effect. The feeling of intrusion generated by self-report 
questionnaires is seldom reported in these studies, indicating 
good acceptability (76). Compliance is variable and depends 
on the patient’s type of consumption (77). For example, can-
nabis users are the least compliant, and a study is currently  
ongoing (78).

Smartphone-based intervention can take the form of either 
a virtual coach (79) applying CBT therapies or else a Screening, 
Brief Intervention, and Referral to Treatment (SBIRT) program 
(80, 81) that evaluates the patient quickly and offers appropriate 
care. Mobile phones afford the possibility of undertaking EMIs, 
that is, targeted, one-off interventions if a patient risks relapse or 

consumption. These targeted interventions can take many forms 
(12–14):

•	 SMS messages;
•	 Psychoeducation information;
•	 Realtime coping strategies;
•	 Motivational messages;
•	 Behavioral change promotion (82).

These tools construct a genuinely protective network (22) 
around the patient, who can benefit at any time from a health-
care platform offering information on possible care (including 
emergency care).

Biofeedback and Neurofeedback
Developed in the 1970s (16), biofeedback is a painless, noninva-
sive procedure that consists in capturing biometric data (EEG, 
ECG, EMG, skin conductance, temperature) and feeding them 
back to the patient in real time. The objective of neurofeedback, 
the name given to biofeedback measuring brain activity (by EEG 
or real-time fMRI), is to model the patient’s brain activity in real 
time as an image (video game type) or a sound. Based on CBT 
techniques and relaxation, patients gradually learn (through 
positive reinforcement) to promote brain activity corresponding 
to the therapeutic target. When activity in a desirable frequency 
band increases, the symbol modeling the brain activity changes 
(e.g., the video game moves faster), whereas when activity in an 
unfavorable band increases, the symbol changes in the opposite 
direction (e.g., the video game slows down). Patients gradually 
learn the newbrain wave, taking a wave corresponding to what 
is observed in healthy individuals as their model. Biofeedback 
research is currently focused on a variety of clinical issues (83), 
and several studies have examined the treatment of addictions by 
neurofeedback (84–87), especially for opiates and alcohol. One 
therapeutic hypothesis is that striatal cue reactivity to alcohol 
stimuli is reduced after neurofeedback training (88). A clinical 
study is in progress to compare neurofeedback training for alco-
hol dependence with classic treatment (89).

virtual Reality
Until recently, virtual reality was limited by its cost and by the 
quality of the multimedia content. There has been a recent 
democratization of these systems (PS4 VR, Occulus Rift, etc.) 
concomitant with the video game industry’s growing interest 
in this technology. Decreasing costs and increasing power are 
making it useful for performing neuropsychological (cognition, 
emotions, and behavior) assessments in real-time (90). Both the 
environment and the perceptual stimuli can be manipulated to 
trigger pathological behaviors or sensations (e.g., craving) as well 
as to evaluate behavioral responses to a given situation that can 
elicit distress, allowing patients to learn how to cope with their 
problems better. Many studies are therefore underway, with a 
focus on environmental trigger disorders (anxiety disorders in 
particular), but also on depression. Eichenberg and Wolters (91) 
conducted a descriptive review of virtual reality studies prior 
to 2012 that was subsequently complemented with studies up 
to 2015 by Valmaggia et al. (92). These reviews showed that the 
most commonly treated disorders are anxiety disorders, eating 
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disorders, schizophrenia (distress associated with hallucina-
tions or delusions), and PTSD. Virtual reality therapy has good 
acceptability (93) and has been shown to be more effective in 
comparisons with patients receiving standard treatment or wait 
list control groups. Its results are similar to those of conventional 
CBT or in vivo exposure. Neither review contained data on SUDs, 
but several recent studies have been conducted in alcohol addic-
tion care, online gaming addiction (94, 95), and opioid use (96). 
Concerning alcohol dependence treatment, a study featuring 
a combination of relaxation, presentation of a high-risk situa-
tion, and presentation of an aversive situation (97) highlighted 
a neurobiological imbalance (high sensitivity to stimuli) in the 
limbic system in individuals with alcohol dependence. This 
protocol could potentially have a regulating effect on limbic 
circuits. Several studies (98–100) examining craving triggers and 
control have found that patients with alcohol dependency report 
extremely high levels of craving immediately upon exposure to a 
virtual environment with alcohol cues, regardless of social pres-
sure, social drinkers’ alcohol use is strongly influenced by their 
social environment. The use of virtual reality in the treatment of 
SUDs therefore involves exposure to the stimulus that induces 
craving, either via situational cues (social environment) or via 
the implementation of alcohol-based cues, allowing patients’ cop-
ing skills to be tested in real time. Finally, as in surgery, virtual 
reality can be used for training purposes to enhance screening 
or intervention methods for caregivers who may be confronted 
with SUDs (101).

DiSCUSSiON

There is a constantly growing body of knowledge in addictive 
medicine, and it is becoming increasingly complicated to handle 
all these data on a daily basis. In addition, more validated tools 
are needed to optimize the management the complexities of 
addiction. In the present overview, we discuss the major concepts 
related to new technologies that may well provide solutions in 
the field of addiction evaluation, diagnosis, or therapy within the 
near future. E-psychiatry is already booming, and some even talk 
about a digital mental health revolution (102). The acceptability 
of these technologies must therefore be assessed at different 
levels. It is generally based on several major criteria: usability 
(device’s flexibility and ease of learning), utility (technology’s 
contribution), satisfaction and reliability (including accuracy, 
effectiveness and efficiency). Cost, although fundamental, is a 
secondary consideration. Finally, the concept of risk impinges on 
acceptability and constitutes an important dimension of medical 
reasoning. It must therefore be taken into account when these 
technologies are being assessed (impact of false positives or false 
negatives, ethical issues).

In the present overview, we showed that these tools could 
prove extremely useful. The improved communication between 
healthcare providers via web-based, computer-based, or 
smartphone-based interventions can facilitate the management 
of a range of psychiatric or behavioral disorders. Some software 
(CAT) can support (and sometimes replace) clinicians in screen-
ing and monitoring. The recent development of digital pheno-
typing, where a computer collates the clinical characteristics of a 

mental state (sometimes with greater accuracy than a clinician), 
and the possibility of doing so remotely, will undoubtedly modify 
current practice. Most authors advocate the use of passive rather 
than active data in the context of disorders for which there is 
some anosognosia (e.g., bipolar disorder, SUDs), as this type of 
automatically generated data makes it possible to limit biases and 
the feeling of intrusion that EMA and self-report questionnaires 
can generate (especially if they are to be filled out regularly or 
appear in pop-ups).

Confidence in e-health among patients with addictions and 
healthcare professionals is a major issue (103). Studies have 
highlighted good acceptability and patient compliance (except 
for patients with a cannabis addiction), as there is no feeling of 
being observed. Using a smartphone seems less stigmatizing than 
using a specific device (e.g., connected bracelet). Machine learn-
ing is revolutionizing fundamental research by allowing for better 
classification of patients, based not only on clinical data, but 
also on biological or neuroimaging-derived data. It is becoming 
reasonable to talk about genuinely complementary examinations 
in behavioral studies. Finally, these new technologies are enabling 
the development of new therapies, including biofeedback and 
virtual reality, which focus on craving control and the learning 
of coping skills.

Although there is mounting evidence that e-addictology offers 
new opportunities for treatment, there is a lack of ran domized 
controlled trials. Available studies have several limita tions, 
including small sample sizes, heterogeneous study samples, only 
short-term follow up, and difficulty in determining whether 
the treatment effects were restricted to the studied addiction or 
could be generalized to other types of addiction. For example, 
smartphone apps are steadily increasing in number, but most are 
of a commercial nature and not truly efficient for patients and 
practitioners (104). There is also a gap between patients’ assess-
ments and evidence-based medicine: a like is not a statistical 
difference. Users may thus be exposed to dangerous recom-
mendations, and in any case, the overall agreement between 
guidelines and their content is often very low (105). Another 
concern is liability in the case of the malfunction of products, 
sensors, software or in security (hacking of data for example). 
There are also potential errors in false-positives and false-
negatives. Data must therefore be objectively analyzed to avoid 
the use of tools with low validity and reliability. Physicians obvi-
ously need to be involved in the development and evaluation of  
these tools.

There is also a dearth of information regarding the cost-
effectiveness of e-health tools and services (106). The lack of 
reimbursement schemes is equally problematic. Drug users live in 
more precarious conditions than the general population in terms 
of housing, social protection, and resources. The use of these new 
technologies may therefore be out of the reach of people with low 
incomes and/or limited computer literacy.

Lastly, the development of connected health technologies 
raises many ethical issues, the most important probably being the 
protection and ownership of personal and health data. The issues 
of confidentiality and transparency regarding data use have yet to 
be resolved. Very few patients are currently willing for their data 
to be shared with private companies (107).
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These changes call for a shift in thinking and in ways of doing 
things, and we can still ask what technological help addictologists 
would welcome and for which tasks? Can they bear comparison 
with certain technologies that sometimes seem to exhibit greater 
predictive accuracy? Or can their role as physicians be bet-
ter asserted through these devices? A study (108) that used a 
scenario-based methodology (evaluating the predictive value of 
medical imaging and passive vs. active data collection) to explore 
the acceptability of these new technologies among 515 French 
psychiatrists (including addictologists) revealed considerable 
disparity in acceptability, depending on the psychiatrists’ profiles. 
Addictologists (n  =  34), were among those who best accepted 
these new technologies, deeming that they could usefully support 
the therapeutic relationship, and who did not feel at all threatened 
by these devices.

CONCLUSiON

Active data obtained from EMA can provide a means of assess-
ing addictive behaviors (intrusion, sleep, etc.) and gaining an 
idea of their severity. The advantages of passive data gathering 

through smartphones, biosensors or connected objects, artificial 
intelligence, and the remote monitoring of patients with psychi-
atric pathologies have yet to be defined, and the question of data 
security will soon become central. In order to prevent data from 
being used for nonmedical purposes, we believe it is essential 
that physicians take up this issue and make recommendations on 
the subject. Important ethical considerations are hampering the 
acceptance of these technologies. If they are to be used, these new 
tools must therefore be explained and adapted to physician and 
patient profiles, all the while taking account of the risks inherent 
to their use (data piracy, false positives, etc.). Patients, caregivers, 
and other health professionals need to be involved in the design 
and evaluation of these new tools.
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