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Depression has been associated with changes in both functional and effective con-
nectivity of large scale brain networks, including the default mode network, executive 
network, and salience network. However, studies of effective connectivity by means of 
spectral dynamic causal modeling (spDCM) are still rare and the interaction between 
the different resting state networks has not been investigated in detail. Thus, we aimed 
at exploring differences in effective connectivity among eight right hemisphere brain 
areas—anterior insula, inferior frontal gyrus, middle frontal gyrus (MFG), frontal eye field, 
anterior cingulate cortex, superior parietal lobe, amygdala, and hippocampus, between 
a group of healthy controls (N = 20) and medicated depressed patients (N = 20). We 
found that patients not only had significantly reduced strength of the connection from 
the anterior insula to the MFG (i.e., dorsolateral prefrontal cortex) but also a significant 
connection between the amygdala and the anterior insula. Moreover, depression severity 
correlated with connectivity of the hippocampal node. In conclusion, the results from 
this resting state spDCM study support and enrich previous data on the role of the right 
anterior insula in the pathophysiology of depression. Furthermore, our findings add to 
the growing evidence of an association between depression severity and disturbances 
of the hippocampal function in terms of impaired connectivity with other brain regions.

Keywords: depression, brain networks, effective connectivity, resting state functional Mri, spectral dynamic 
causal modeling, hippocampus, anterior insula, dorsolateral prefrontal cortex

inTrODUcTiOn

Depression is recognized as one of the most common and disabling psychiatric disorders with 
increasing prevalence and huge social and economic burden in terms of increased health-care costs, 
decreased productivity, and absenteeism (1). Symptoms of depressive disorders span across a range 
of psychopathological domains with major disturbances in affect (increased negative and reduced 
positive affect) and cognition (concentration, memory, executive function) (2). Accordingly, func-
tional neuroimaging has been concentrated mainly on these domains with a variety of task-related 
research revealing disrupted activity in specific brain areas (reflecting functional segregation) 
though not always with consistent results (3).

However, in the last years, the use of functional magnetic resonance imaging (fMRI) in depression 
as well as in other research areas has been slowly moving away from activity studies with more and 
more focus on connectivity (functional integration) instead. Two main approaches exist—functional 
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connectivity which is inferred on the basis of correlations of 
neuronal activity and effective connectivity that refers to the 
influence one neural system exerts over another, e.g., reflecting 
direct causal influence (4). The dynamic causal modeling (DCM) 
has been largely used for the assessment of effective connectivity 
in task-related but also to an increasing extent in resting state 
fMRI (5, 6). With respect to resting state fMRI, spectral DCM 
has been found to be more accurate and more sensitive to group 
differences compared to stochastic DCM (7).

Functional connectivity studies focused on depressive disorder 
have revealed disturbances in several of the resting state networks 
such as the default mode network (DMN), central executive 
network, salience network (SN), and the affective network (AN) 
(8–11). Apart from the disturbances of the intrinsic connectiv-
ity within those networks evidence is accumulating as well on 
disrupted connectivity between different networks (12–15). A 
recent meta-analysis by Kaiser et al. (16) confirms the findings 
of hyperconnectivity of the DMN, hypoconnectivity within the 
frontoparietal network (FN)—involved in cognitive control of 
attention and emotion, as well as hyperconnectivity between the 
DMN and the FN, and hypoconnectivity between the FN and 
regions of the AN. It is important to underline that observed 
disturbances of functional connectivity have been found to 
correlate with depression severity, diagnostic categories, specific 
depressive symptoms, and treatment response (17–20).

On the other hand, the majority of the effective connectivity 
studies in depressed patients have focused on task-related fMRI 
probing cognitive and emotional processing (21–23) with only a 
few reports on resting state fMRI (24, 25). By means of spectral 
DCM, Li et al. (24) investigated the DMN in a sample of healthy 
controls and depressed patients before and after treatment. The 
unmedicated patients had significantly lower coupling param-
eters from left parietal cortex to medial frontal cortex (MFC) and 
from posterior cingulate cortex (PCC) to right parietal cortex 
while they also exhibited higher coupling parameters from PCC 
to MFC compared to the control group but those differences were 
not significant following treatment.

A stochastic DCM was used by Hyett et al. (25) to investigate 
the connectivity between resting state networks with a focus 
on DMN, executive control (EXC), bilateral insula (INS), left 
frontoparietal, and right frontoparietal (RFP) attention modes 
in healthy subjects and depressed patients with and without 
prominent melancholic features. Significant differences between 
the non-melancholic and the control group were not found but 
melancholic patients demonstrated weaker connectivity from 
INS to EXC when compared to the healthy subjects and from INS 
to RFP mode in comparison with the non-melancholic group.

Those few effective connectivity studies, however, are not 
allowing scientists to fully understand how depression affects 
the causal influences between the nodes of the resting state brain 
networks. The advantages provided by the spectral DCM and 
the identified lack of sufficient data on effective connectivity in 
depressive disorder motivated us to investigate the causal influ-
ences among several brain regions already outlined by previous 
research as having a role in the underlying neuronal mechanisms 
of this highly prevalent psychiatric disorder. We decided to focus 
on areas mostly belonging to the SN and the EXC network and 

to see how depression and its severity relates to the connectiv-
ity of those regions. Thus, we aimed at exploring differences in 
effective connectivity among eight brain areas [anterior insula, 
inferior frontal gyrus (IFG), middle frontal gyrus (MFG), frontal 
eye field (FEF), anterior cingulate cortex (ACC), superior parietal 
lobe (SPL), amygdala, and hippocampus] as assessed by spectral 
DCM between a group of healthy controls and medicated 
depressed patients. Moreover, built on the abovementioned find-
ings of Hyett et  al., our main hypothesis was that patients will 
demonstrate disturbed causal influences of the insular cortex.

MaTerials anD MeThODs

subjects
Twenty adult subjects (mean age 46.1 ± 13.9, six males) comply-
ing with the DSM-IV-TR criteria for depressive episode (single  
or recurrent) in the context of major depressive disorder (n = 16) 
or bipolar affective disorder (n = 4) were recruited for the present 
study as well as 20 age- and sex-matched healthy controls (mean 
age 43.5 ± 12.9 years, six males). All participants were assessed by 
general clinical interview and the structured Mini International 
Neuropsychiatric Interview (M.I.N.I. 6.0) (26).

For the patient group, severity of current episode was assessed 
by means of Montgomery–Åsberg Depression Rating Scale 
(MADRS) (27) and a total score of at least 20 was the cutoff for 
inclusion. Subjects were excluded if they had a second axis-I 
diagnosis (psychotic, anxiety, substance-related disorder), severe 
decompensated somatic disorder, neurological disorder, history 
of head trauma with loss of consciousness, severe suicidal risk 
(10th item of MADRS ≥ 2). All patients have been on a stable 
medication with various antidepressants and mood stabilizers 
(including escitalopram, sertraline, venlafaxine, duloxetine, lamo-
trigine, olanzapine) for at least 3 weeks prior to inclusion. The 
mean duration of illness was 10.3 years with a SD of 9.8 years.

Healthy controls did not comply with any of the DSM-IV-TR 
diagnoses included in the M.I.N.I., had no history of any psy-
chiatric or neurological disorder nor head trauma with loss of 
consciousness. All participants provided a written informed 
consent complying with the Declaration of Helsinki and the study 
was approved by the University’s Ethics Committee.

Mr scanning
The scanning of the participants was performed on a 3-T MRI 
system (GE Discovery 750w) and included a high resolution 
structural scan (Sag 3D T1 FSPGR, slice thickness 1 mm, matrix 
256 × 256, TR (relaxation time)—7.2 ms, TE (echo time)—2.3, flip 
angle 12°,), and a functional scan [2D Echo Planar Imaging (EPI), 
slice thickness 3 mm, 36 slices, matrix 64 × 64, TR—2,000 ms, 
TE—30 ms, flip angle 90°, 192 volumes]. Before the EPI sequence 
subjects were instructed to remain as still as possible with eyes 
closed and not to think of anything in particular.

fMri Data analysis
Data were analyzed using the SPM 12 (Statistical Parametric 
Mapping, http://www.fil.ion.ucl.ac.uk/spm/) software running 
on MATLAB R2015 for Windows. The functional images were 
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Table 1 | Demographic and clinical characteristics.

healthy 
controls 
(n = 20)

Patients 
(n = 20)

significance

Age (mean, SD) 43.5 ± 12.9 46.1 ± 13.9 0.308a

Sex (M/F) 7/13 7/13 1.00b

Education (secondary/higher) 7/13 11/9 0.204b

MADRS score (mean, SD) 1.1 ± 2 32 ± 6.1 *0.000a

aIndependent samples t-test.
bχ2 test.
MADRS, Montgomery–Åsberg Depression Rating Scale.
*p < 0.05.

Table 2 | Connections significantly different from 0 in healthy controls.

nodes Mean sD significancea

ACC⊃ −0.594 0.355 0.000**
ACC → FEF 0.054 0.076 0.008
ACC → HPC 0.106 0.159 0.012
AI⊃ −0.298 0.481 0.018
AI → MFG 0.507 0.379 0.000**
AMY⊃ −0.338 0.504 0.011
FEF → ACC −0.224 0.398 0.029
FEF → AMY 0.222 0.402 0.031
FEF⊃ −0.268 0.447 0.021
FEF → MFG 0.405 0.267 0.000**
FEF → SPL 0.275 0.397 0.009
MFG⊃ −0.325 0.362 0.001
HPC → ACC −0.488 0.534 0.001
HPC⊃ −0.234 0.352 0.012
HPC → IFG −0.402 0.483 0.003
IFG → ACC 0.285 0.387 0.006
IFG → HPC 0.123 0.211 0.024
IFG⊃ −0.214 0.389 0.032
SPL⊃ −0.348 0.414 0.002

aOne sample t-test.
p < 0.05, **p < 0.001.
⊃, self-inhibitory connection, AI, anterior insula, IFG, inferior frontal gyrus, MFG, middle 
frontal gyrus, FEF, frontal eye field, ACC, anterior cingulate cortex, SPL, superior 
parietal lobe, AMY, amygdala, HPC, hippocampus.
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realigned, co-registered with the structural images, normalized to 
Montreal Neurological Institute (MNI) space, and smoothed with 
a 6-mm full-width-at-half-maximum Gaussian kernel.

First-level, resting state analysis was conducted using a gen-
eral linear model applied to the time series. Nuisance covariates 
included the six rigid body motion parameters, average white 
matter and cerebrospinal fluid signal time series. BOLD timeseries 
were extracted for eight predefined regions of interest of 6-mm 
radius spheres, which were all located in the right hemisphere. 
These were the following regions with their MNI coordinates: 
anterior insula (AI) [38, 22, 3], IFG [50, 26, 16], MFG [36, 42, 28], 
FEF [31, −5, 58], ACC [5, 45, 12], SPL [24, −54, 68], amygdala 
(AMY) [24, 3, −16] and hippocampus (HPC) [30, −11, −17]. 
BOLD signal from some of the ROIs (amygdala) was lacking in 
one patient and two control subjects which lead to their exclusion 
from further analysis.

Dynamic causal Modeling
Dynamic causal modeling was performed as spectral DCM 
(spDCM) with these eight regions of interest. The spDCM 
model was a fully connected model where each node was con-
nected to each other node. In contrast to a stochastic DCM 
on resting state fMRI data, a spectral DCM estimates effective 
connectivity from the cross spectra of the fluctuations in neu-
ronal states rather from their time courses directly (7). Further, 
the individual spDCM models were not separately but jointly 
estimated, using the Parametric Empirical Bayes framework, 
implemented in SPM12.2. This was followed by Bayesian model 
reduction to restrict the number of parameters. Finally, connec-
tivity strengths (A-matrix) were extracted from the estimated 
spDCM models.

statistical analysis
Statistical analysis of the demographic and clinical characteris-
tics of the participants as well as of the connectivity strengths 
of the spDCM model were performed by means of SPSS 22.0 
for Windows. The level of significance was set to p  <  0.05 for 
all tests. Student’s t-test was employed for continuous variables 
and Chi-square test—for categorical ones. In addition, we used 
non-parametric correlation analysis on MADRS scores and con-
nectivity strengths in the patient group.

resUlTs

Demographic and clinical characteristics
There were no statistically significant differences in age, sex, and 
education level between the patients and the healthy controls. 
Expectedly, patients had significantly higher MADRS scores (see 
Table 1).

effective connectivity in healthy controls
One sample t-test was employed to identify the connections that 
were significantly different from 0 in the group of healthy con-
trols. As it can be seen in Table 2, the main nodes involved were 
ACC, FEF, hippocampus, and IFG. In addition, all eight nodes 
demonstrated significant self-inhibitory connections.

Differences between Patients and control 
subjects
In order to explore the differences between the two groups, 
independent samples t-tests comparing the mean connectivity 
strengths were performed. The coupling strengths of six pairs of 
nodes had significantly different means (ACC → IFG, AI → MFG, 
AMY → AI, MFG → AI, MFG → SPL, SPL → FEF) but four of 
them were not significantly different than 0 in either group (see 
Table 3 for details). The AI → MFG connectivity strength was 
significantly higher in healthy subjects than in depressed patients 
while the AMY  →  AI connectivity was higher in depressed 
patients but not significantly different than 0 in control subjects. 
An illustration of these results is presented in Figure 1.

correlations between connectivity 
strengths and MaDrs scores
The non-parametric correlation analysis of the MADRS scores 
and the connectivity strengths in the patient group identified two 
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FigUre 2 | Significant correlations between connectivity strengths and 
depression severity. MFG, middle frontal gyrus, HPC, hippocampus, CC, 
correlation coefficient, p, significance, MADRS, Montgomery–Åsberg 
Depression Rating Scale.

FigUre 1 | Connections with significant difference between patients and 
healthy controls. Yellow arrow, connection significantly different between the 
groups but not significantly different than 0; green arrow, connection 
significantly higher in controls; red arrow, connection significantly higher in 
patients; AI, anterior insula; IFG, inferior frontal gyrus; MFG, middle frontal 
gyrus; FEF, frontal eye field; ACC, anterior cingulate cortex; SPL, superior 
parietal lobe; AMY, amygdala.

Table 3 | Connections demonstrating significant difference between the groups.

nodes Mean cs ± sD Mean Ps ± sD significancea

ACC → IFG −0.051 ± 0.169b 0.044 ± 0.108b 0.048
AI → MFG 0.507 ± 0.379 0.183 ± 0.316 0.008
AMY → AI 0.004 ± 0.151b 0.164 ± 0.283 0.040
MFG → AI −0.067 ± 0.200b 0.067 ± 0.194b 0.047
MFG → SPL −0.063 ± 0.182b 0.111 ± 0.290b 0.036
SPL → FEF 0.105 ± 0.360b −0.111 ± 0.255b 0.049

Mean Cs, mean values in healthy controls, mean Ps, mean values in patients.
aIndependent samples t-test p < 0.05.
bNot significantly different than 0.
AI, anterior insula, IFG, inferior frontal gyrus, MFG, middle frontal gyrus, FEF, frontal eye 
field, ACC, anterior cingulate cortex, SPL, superior parietal lobe, AMY, amygdala.
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significant correlations both of which included the hippocampal 
node. There was one positive correlation of the MADRS score 
with the FEF  →  HPC connectivity (i.e., increasing depression 
severity correlated with increasing strength of the influence of FEF 
over HPC) and one negative correlation with the MFG → HPC 
(i.e., increasing depression severity correlated with decreasing 
causal influence of MFG on HPC). These results are illustrated 
in Figure 2.

DiscUssiOn

In the present study, we found that during resting state fMRI 
in healthy subjects significant effective connectivity, i.e., causal 
interaction in terms of excitatory influence was exerted by the 
ACC on HPC and FEF, by the IFG on ACC and HPC, by the 
FEF on AMY, SPL, and MFG, and by AI on MFG while inhibi-
tory influences were executed by HPC on IFG and ACC and 

by FEF on ACC. All eight nodes were found to have significant 
self-inhibitory connections. The direct comparison of the two 
groups yielded significant difference in the AI → MFG connec-
tion that was higher in the control group and the AMY → AI 
connection that was only significant in the patient group thus 
confirming our hypothesis of disturbed causal influences of 
the insular cortex in depressive disorder. In addition, MADRS 
scores correlated positively with FEF  →  HPC and negatively 
with MFG → HPC connectivity strengths. The results will be 
discussed below in light of current knowledge about the above-
mentioned brain areas and recent research on functional and 
effective connectivity.

The most prominent finding in the present study was the 
significantly reduced effective connectivity of the AI  →  MFG  
(i.e., dorsolateral prefrontal cortex—DLPFC) in the depressive 
group compared to the healthy subjects. Both the SN and the 
ventral frontoparietal network have nodes located in the anterior 
insular cortex with the distinction that the SN is bilateral while 
the FN engages the right AI (28). Since all regions of interest in 
our study were derived from the right hemisphere we have to 
consider both options: (1) that the AI → MFG connection is part 
of the ventral FN which is implicated in stimulus driven bottom-
up attention control as opposed to the dorsal FPN involved in 
top-down attention regulation (29) and (2) that this connection 
is part of the SN. Some authors actually accept this high level of 
overlap between the two systems as evidence that this is just one 
network (30). Whatever the case, our results are supported by 
several lines of previous research.

In major depressive disorder, for instance, decreased func-
tional connectivity within the SN (right AI in particular) was 
demonstrated by Manoliu et  al. (31) along with an association 
of the coupling parameters with symptom severity. Decreased 
functional connectivity between DLPFC and insula was found 
in subjects with subthreshold depression compared to healthy 
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controls (32). We suggest that our results add to this evidence by 
revealing the directionality of this disturbed influence, namely 
from the insular cortex to the DLPFC. Moreover, stochastic DCM 
in melancholic depressed patients identified weaker effective con-
nectivity from the insula to the RFP mode (25) and again our 
finding might be interpreted as both replicating and refining this 
result by outlining the specific connection to the frontal part of 
the ventral attention system.

The weaker causal influence of the insular cortex on the DLPFC 
might be an aspect of the pathophysiological mechanism under-
lying the disturbances of some cognitive domains in depression 
such as attention and decision-making given the role of these two 
brain areas. According to recent research, the right dorsal anterior 
insular cortex generates signals that causally influence the DMN 
(internally directed cognition) and the EXC network (externally 
directed cognition), thus supporting the dynamic switching 
between the two major brain networks (33, 34). We can speculate 
that when the influence toward one of the systems is disturbed (as 
in our sample of depressed patients) this balance could be easily 
lost and this would lead to a prevalence of the other system (e.g., 
hyperactivity of the DMN—evidenced in previous studies). Further 
research will be needed in order to explore in detail this hypothesis.

The other significant difference between the healthy controls 
and the patients in our study was related to the AMY  →  AI 
connection that was only significant in the patient group. The 
role of the amygdala in depression has been implied by several 
lines of neuroimaging research with most of the studies dem-
onstrating increased amygdala reactivity primarily to negative 
stimuli (35–37) and disturbed connectivity with frontal regions 
(38–40). The effective connectivity of various prefrontal regions 
(orbitofrontal cortex, dorsolateral prefrontal cortex) toward the 
amygdala was found to be reduced in depressed patients with 
some of the disruptions persisting in remission (40, 41). Since 
both amygdala and anterior insula are considered to be part of 
the SN, our finding might be reflecting the increased activity of 
this network in depression (28). Moreover, we might speculate 
that this increased effective influence of the amygdala over the 
anterior insula could be the cause of the reduced AI  →  MFG 
connection found in our patient sample.

The other compelling findings of the present study were the 
significant correlations between the severity of depression (as 
assessed by MADRS) and the connectivity of the hippocampal 
area. The role of this region has been long implicated in the neuro-
biological mechanisms underlying depression through the links 
with stress and its effects on the hypothalamus–pituitary–adrenal 
axis and the hippocampus (42). Lower hippocampal volumes 
have been found in depressed patients (43) and the reductions 
were associated with the duration of the untreated illness and the 
severity of depressive symptoms (44, 45). In terms of function, 
the hippocampal area is crucial to both cognitive and affective 
processing and impairments in depression are evident on mul-
tiple levels from basic neuropsychological assessment (46, 47) to 
advanced functional neuroimaging of activity and connectivity 
(38, 48). Thus, our findings can be interpreted as an additional 
evidence of the disrupted hippocampal function in depressive 
disorders.

In first episode medication naïve patients, depression severity 
correlated negatively with hippocampal connectivity, i.e., the 
more severe the patient’s illness, the fewer the connections of the 
right hippocampus (49). In our patient sample, the increasing 
depression severity correlated with increasing strength of the 
influence of FEF over HPC and with decreasing causal influence 
of MFG on HPC. One possible explanation might be that the first 
correlation is related to the increased activity of the SN or the AN 
(as the frontal eye filed is part of the visual attention network) 
while the second reflects the reduced top-down cognitive regu-
lation in depression exerted by the DLPFC as part of the EXC 
network (50).

In conclusion, the results from this effective connectivity 
study support and enrich previous data on the role of the 
right anterior insula in the pathophysiology of depression by 
shedding some more light on the possible neurobiological 
mechanisms underlying specific clinical symptoms related 
to affect and cognition. Furthermore, our findings add to the 
growing evidence of an association between depression severity 
and disturbances of hippocampal function in terms of impaired 
connectivity with other brain regions. We suggest that future 
research should try not only to replicate the results but also to 
extend them with for example additional behavioral data on 
the severity of specific symptoms (related to affect and cogni-
tion) thus allowing for direct testing of the abovementioned 
hypotheses.

Several limitations of the present study must be admitted. 
First, the relatively small sample size and the heterogeneity of the 
patient group in terms of diagnosis (major depressive and bipolar 
disorder) may have influenced the results since both common 
and distinct activity and connectivity patterns in those psychiat-
ric disorders have been reported (51, 52). Second, the fact that all 
patients have been on a stable antidepressant medication prior to 
inclusion might have contributed to our findings as evidence of 
“normalization” of the disturbed connectivity patterns following 
successful treatment has been reported (53). Future research 
should address those limitations by increasing the study sample 
and including non-medicated patients.
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