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Posttraumatic stress disorder (PTSD) is a prevalent, chronic disorder with high psychiat-
ric morbidity; however, a substantial portion of affected individuals experience remission 
after onset. Alterations in brain network topology derived from cortical thickness cor-
relations are associated with PTSD, but the effects of remitted symptoms on network 
topology remain essentially unexplored. In this cross-sectional study, US military veterans 
(N = 317) were partitioned into three diagnostic groups, current PTSD (CURR-PTSD, 
N = 101), remitted PTSD with lifetime but no current PTSD (REMIT-PTSD, N = 35), and 
trauma-exposed controls (CONTROL, n =  181). Cortical thickness was assessed for 
148 cortical regions (nodes) and suprathreshold interregional partial correlations across 
subjects constituted connections (edges) in each group. Four centrality measures 
were compared with characterize between-group differences. The REMIT-PTSD and 
CONTROL groups showed greater centrality in left frontal pole than the CURR-PTSD 
group. The REMIT-PTSD group showed greater centrality in right subcallosal gyrus than 
the other two groups. Both REMIT-PTSD and CURR-PTSD groups showed greater cen-
trality in right superior frontal sulcus than CONTROL group. The centrality in right subcal-
losal gyrus, left frontal pole, and right superior frontal sulcus may play a role in remission, 
current symptoms, and PTSD history, respectively. The network centrality changes in 
critical brain regions and structural networks are associated with remitted PTSD, which 
typically coincides with enhanced functional behaviors, better emotion regulation, and 
improved cognitive processing. These brain regions and associated networks may be 
candidates for developing novel therapies for PTSD. Longitudinal work is needed to 
characterize vulnerability to chronic PTSD, and resilience to unremitting PTSD.

Keywords: posttraumatic stress disorder, remission, structural covariance network, cortical thickness, centrality

inTrODUcTiOn

Posttraumatic stress disorder (PTSD) is common, typically chronic, and associated with high rates 
of psychiatric comorbidity. In about 30–50% of patients with PTSD, marked symptoms persist 
after treatment (1) and severely impact quality of life (2, 3). However, a sizable minority of veterans 
who initially experience prominent symptoms of PTSD eventually experience remission (4, 5).  
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A reassessment after 40 years of veterans who participated in the 
National Vietnam Veterans Readjustment revealed that while 
PTSD symptoms worsened for theater veterans with PTSD as a 
whole, there were 7.6% who showed significant clinical improve-
ment (4). A similar large-scale longitudinal re-examination of 
the Vietnam era twins after 20  years identified 17% of theater 
veterans developed PTSD early and experienced early symptom 
remission, and 7.4% who developed PTSD early and experienced 
late symptom remission (5). These results clearly highlight 
relapse and remission in PTSD (6, 7). Some recent studies have 
investigated the neural changes associated with the remission of 
PTSD in response to specific therapeutic interventions (8–10). 
However, our understanding of the associated neurostructural 
and network correlates of remission is still limited.

A wealth of research demonstrates that PTSD is associated 
with an array of functional and anatomical changes at specific 
anatomical loci in the brain, including amygdala, hippocam-
pus, insula, ventral/dorsal medial/lateral prefrontal cortex, and  
anterior/posterior cingulate cortex (11–14). However, the human 
brain is organized into complex networks (15) supported by long 
range connections (16) that may be modified by exposure to 
traumatic events, precipitate alterations in network topology, and 
ultimately in behavior/symptoms (17, 18). Changes in network 
topology can be conveniently quantified by graph theoretical 
measures to understand changes in associated behavior and neu-
ropsychiatric symptoms (i.e., dysfunctional behaviors) (19–21). 
Network architecture can be inferred from various neuroimaging 
methods including functional resting or task-based functional 
magnetic resonance imaging (fMRI), fiber connectivity from 
diffusion tensor imaging of white-matter tracts, and structural 
brain network derived from between-subject regional correlation 
of cortical thickness (22). Among them, cortical morphometric 
network analyses (23) are based on inferences about structural 
covariance between pairs of cortical regions that covary with 
respect to cortical thickness or subcortical regions that covary 
with respect to volume (24). The dependence between brain areas 
is postulated to derive from structural or functional associations 
between these regions (22, 24–26). The brain structural network 
method is relatively immune to a range of noisy components 
that accompany task-based and resting state fMRI, and purport-
edly reflects a highly choreographed developmental process of 
neuronal growth and migration throughout the cortical mantle 
(24, 27).

Mueller et  al. (28) showed PTSD-associated alterations of 
structural brain networks, demonstrating an enhanced role of the 
left insula and right orbitofrontal cortices (betweenness centrality)  
and a diminished role of left orbitofrontal and anterior cingulate 
cortices (degree centrality) within the network. Centrality is a 
mathematical measure from graph theory that characterizes the 
importance of a particular region within a network of connec-
tions (edges) between brain regions (nodes). We investigated 
the network characteristics of remitted PTSD (lifetime but not 
current diagnosis) by comparing the centralities of structural 
networks to those in patients with current PTSD and trauma-
exposed control subjects without lifetime PTSD. Our goal was to 
identify structural network characteristics associated with PTSD 
and its remission. Such knowledge may help identify potential 

targets for interventions to ameliorate chronic PTSD by facilitat-
ing remission. The disorder is characterized by symptoms and 
behaviors that produce cognitive impairment particularly with 
attention and memory (29); difficulty with regulating emotions, 
particularly in response to threat and fear (30); avoidance, often 
in the form of social anxiety (31) and hypervigilance, among 
others (11). Thus, we hypothesized between-group differences of 
network centrality in cortical regions associated with cognitive 
function, emotion regulation, fear processing, social cognition, 
and inhibitory control, by focusing on the prefrontal cortex 
including anterior cingulate cortex, specifically subcallosal gyrus 
(32, 33), frontal pole, and superior frontal areas (34, 35) that have 
been associated with PTSD.

MaTerials anD MeThODs

Participants
Participants (n = 317) recruited from a repository (Mid-Atlantic 
MIRECC Post-Deployment Mental Health Repository, Durham, 
NC, USA) (36, 37) of Iraq and Afghanistan era military service 
members underwent structural MRI scans. Participants were 
screened for inclusion/exclusion criteria based on information 
available in the repository. Important exclusions included major 
axis I diagnosis (other than major depressive disorder or PTSD), 
contraindication to MRI, traumatic brain injury, substance 
dependence, neurological disorders, and age over 65 years. This 
study was carried out in accordance with the recommendations 
of the Institutional Review Boards at Duke University and the 
Durham VA Medical Center with written informed consent 
from all subjects. All subjects gave written informed consent in 
accordance with the Declaration of Helsinki. The protocol was 
approved by the Institutional Review Boards at Duke University 
and the Durham VA Medical Center. Participants previously 
completed questionnaires upon entering the repository that were 
available for this study to assess traumatic life events [Traumatic 
Life Events Questionnaire (TLEQ) (38)], combat exposure 
[Combat Exposure Scale (CES) (39)], depressive symptoms 
[Beck Depression Inventory-II (BDI-II) (40)], and serotonergic 
antidepressant medication use (Med_5HT). Diagnosis of PTSD 
was performed with the Clinician-Administered PTSD Scale to 
determine three groups (1) current PTSD who met diagnostic 
criteria based on symptoms experienced in the past month 
(CURR-PTSD; n = 101), (2) lifetime PTSD but no current PTSD 
for participants who met diagnostic criteria before the last month 
but not since (REMIT-PTSD; n  =  35), and (3) those without 
PTSD who never met diagnostic criteria (CONTROL; n = 181). 
Comorbid psychiatric diagnoses were ascertained upon entering 
the repository with the Structured Clinical Interview for DSM-IV 
(SCID). Childhood trauma (child-trauma) was coded from the 
number of trauma categories experienced before age 18 (e.g., 
physical abuse, sexual abuse, and serious accident) as reported 
in the TLEQ (41).

Mri acquisition and analyses
All images were acquired on 3-T scanners equipped with an 
8-channel headcoil. The majority (90.6%) of images was acquired 
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on two GE scanners using high-resolution T1-weighted whole-
brain axial images with 1-mm isotropic voxels with array spatial 
sensitivity encoding technique and fast spoiled gradient recall 
(3D-FSPGR). Image parameters were optimized for contrast 
between white matter, gray matter, and CSF on the (i) GE Discovery 
MR750 (n = 156, including 79 CONTROL, 21 REMIT-PTSD, and 
56 CURR-PTSD) (TR/TE/flip angle  =  7.484  ms/2.984  ms/12°, 
FOV  =  256  mm, 1  mm slice thickness, 166 slices, 256  ×  256 
matrix, 1 excitation) and (ii) GE Signa EXCITE (n = 132, includ-
ing 80 CONTROL, 11 REMIT-PTSD, and 41 CURR-PTSD) 
(TR/TE/flip angle  =  8.208  ms/3.22  ms/12°, FOV  =  256  mm, 
1-mm slice thickness, 166 slices, 256  ×  256 matrix, 1 excita-
tion). The remaining images (9.4%) were collected on a Philips 
Ingenia scanner (n  =  29, including 22 CONTROL, 3 REMIT-
PTSD, and 4 CURR-PTSD) using higher in-plane resolution 
0.9375 mm × 0.9375 mm × 1.0 mm 3D turbo field echo pulse 
sequence with contrast enhancement and SENSE (TR/TE/flip 
angle  =  8.148  ms/3.728  ms/8°, FOV  =  240  mm, 1-mm slice 
thickness, 170 slices, 256 × 256 matrix, 1 excitation). Chi-square 
test showed that the group distribution is independent of scan-
ner (χ2 = 8.725, df = 4, p = 0.068). All T1 images were visually 
inspected to assure sufficient quality for automated segmentation 
and labeling, which were performed using the FreeSurfer image 
analysis suite (version 5.3.0; http://surfer.nmr.mgh.harvard.edu/) 
and its library tool recon-all. Details of FreeSurfer parcellations 
have been previously described (12, 42–45). Thickness measures 
were calculated for 148 cortical regions (74 per hemisphere) using 
the aparc.a2009s template (44) through the FreeSurfer software.

network analyses
We generated interregional partial correlation matrices for each 
participant group by calculating partial correlation coefficients 
for all regional pairings of cortical thickness across group mem-
bers. The partial correlation between two regions represents their 
relationship after partialing out the effects of potential influences 
of age, sex, IQ, BDI-II, TLEQ, CES, child-trauma, and Med_5HT. 
These confounding factors have previously been associated with 
brain structural volumetry (46, 47). A threshold was imposed 
on the partial correlation matrices to create a binary graph with 
connections (edges) between regions (19, 48). Using the same 
threshold for group comparisons may give the results that reflect 
not only topological differences but also connectivity strength 
differences. We were interested in topological differences only 
and thus adopted group-specific thresholds to ensure that the 
graphs of all groups had an equal number of edges or wiring cost 
defined as the number of edges present divided by maximum 
possible number of edges. This method has been successfully 
utilized in the recent published works on maltreatment (48) and 
PTSD (28). We calculated the minimum wiring cost required to 
produce a fully connected network for each group and chose the 
largest minimum wiring cost (i.e., 0.4987, which was from the 
CONT group; minimum wiring costs were 0.0868 for REMIT-
PTSD and 0.2075 for CURR-PTSD) across groups to derive the 
corresponding threshold for each group. This method ensured 
that all nodes were in the network while minimizing the number 
of redundant paths. We only kept the positive suprathreshold 
partial correlations in the networks due to the observation that 

only positive thickness correlations were mediated by direct 
fiber pathways (24). The network analyses were conducted using 
in-house Matlab (R2016b) scripts running on an iMac computer 
(macOS Sierra, version 10.12.6) (49).

centrality Measures
A large array of network topology measures can be calculated 
for a given network and some provide very similar information 
to other measures. For ease of comparison to previous studies, 
we analyzed four types of centrality using Brain Connectivity 
Toolbox [BCT (50)]: (1) degree centrality—number of connec-
tions that a node has, (2) betweenness centrality—frequency 
with which a node falls between pairs of other nodes when 
traveling along their shortest interconnecting path, (3) close-
ness centrality—normalized number of steps required to access 
every other node from a given node in a network (adapted from 
the distance function in BCT), and (4) eigenvector centrality—
a spectral centrality measure based on the idea that the 
importance of a node is recursively related to the importance 
of the nodes associated with it. Graph theory postulates that 
nodes with high centrality play an important role in com-
munication and information transfer within a network (20, 28, 
48). Naturally, the various centrality constructs are sometimes 
correlated but still reflect different aspects in nodal roles of a 
brain networks.

statistics
The variance in the groups’ measures was determined to be equal 
despite the disparate sample sizes of the three groups (51). We 
detected four cortical regions showing unequal variances (left lat-
eral sulcus, right frontal pole, right anterior transverse temporal 
gyrus, and right temporal pole) through two-sample F tests for 
equal variances (at the 1% significance level) and excluded them 
from further analysis. Furthermore, we tested the reliability of 
the centrality measures with the Jackknife resampling method 
(52) to calculate the 99% confidence interval (CI). The Jackknife 
resampling method has been successfully utilized in analyzing the 
network derived from partial correlations (48). Finally, to assess 
between-group differences, we employed permutation testing to 
compute the probability that the difference in centrality measures 
between two groups occurred by chance. The permutation testing 
was based on 10,000 network comparisons derived by randomly 
permuting the group label of subjects (20, 53). To control for 
type 1 error, we followed the procedure by Teicher et al. (48) and 
employed a more conservative threshold that deems a node dif-
fers in centrality between groups only if the permutation-derived 
p-values are ≤0.05 for at least three of four centrality measures, 
which very conservatively reduces the odds of chance occurrence 
to ≤0.000125 (0.05 × 0.05 × 0.05). The more conservative thresh-
old was used because we were comparing among three groups 
while Teicher et al. (48) only compared between two groups. For 
a  priori cortical regions, the nodal between-group differences 
were considered significant when the permutation-derived 
p-values are ≤0.05 for at least two of four centrality measures. 
The statistical analyses were conducted using in-house Matlab 
scripts. The code for permutation testing was modified from the 
GRETNA toolbox (54).
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FigUre 1 | Between-group differences of centrality measures. Left column, REMIT-PTSD (lifetime but no current PTSD group) group showed larger centrality in 
right subcallosal gyrus (R Sub) than both CURR-PTSD (current PTSD group) and CONTROL (control group with trauma exposure) groups. Middle column, both 
REMIT-PTSD and CONTROL groups showed larger centrality in left frontal pole (L FP) than CURR-PTSD group. Right column, both REMIT-PTSD and CURR-PTSD 
groups showed larger centrality in right superior frontal sulcus (R SFS) than CONTROL group. For observation purpose, the regions of interest (red), their connected 
nodes (blue), and the connections (gray) were shown. Node size was scaled by degree centrality.

TaBle 1 | Demographic information.

Test Mean (sD)a t-statistic (p-value)b

reMiT-PTsD 
(n = 35)

cUrr-PTsD 
(n = 101)

cOnTrOl 
(n = 181)

reMiT-PTsD versus 
cOnTrOl

reMiT-PTsD versus 
cUrr-PTsD

cUrr-PTsD versus 
cOnTrOl

Age 40.9 (10.7) 40.3 (10.0) 39.4 (9.9) 0.829 (0.408) 0.299 (0.765) 0.756 (0.450)
Sex 28 (7) 87 (14) 145 (36) 0.000 (0.988) 0.750 (0.386) −1.615 (0.204)
IQ 99.6 (11.6) 95.8 (12.3) 101.8 (9.5) −1.174 (0.242) 1.500 (0.136) −4.440 (0.001)
BDI-II 10.4 (7.8) 22.2 (12.1) 5.1 (7.8) 3.648 (<0.001) −5.336 (<0.001) 14.386 (<0.001)
TLEQ 20.5 (11.5) 23.7 (14.0) 12.2 (10.0) 3.999 (<0.001) −1.138 (0.257) 7.254 (<0.001)
CES 11.1 (11.1) 17.1 (10.6) 6.5 (8.4) 2.572 (0.011) −2.634 (0.010) 8.412 (<0.001)
Child-trauma 1.0 (1.0) 0.7 (1.0) 0.4 (0.8) 3.168 (0.002) 1.161 (0.248) 2.371 (0.019)
Med_5HT 5 (29) 51 (49) 4 (172) −10.738 (0.001) 13.740 (<0.001) −94.888 (<0.001)
AUDIT 4.6 (3.5) 4.2 (5.4) 2.8 (3.4) 2.618 (0.010) 0.362 (0.718) 2.414 (0.017)
CAPS_curr 19.4 (13.9) 68.2 (22.4) 7.0 (11.1) 5.451 (<0.001) −11.437 (<0.001) 29.119 (<0.001)
CAPS_life 63.5 (21.0) 83.5 (29.6) 14.7 (15.8) 14.885 (<0.001) −3.462 (0.001) 24.160 (<0.001)
DAST 0.7 (1.5) 1.1 (2.5) 0.4 (0.8) 1.404 (0.162) −0.923 (0.357) 3.295 (0.001)
DTS 26.3 (24.5) 68.6 (33.7) 9.8 (18.7) 4.145 (<0.001) −6.324 (<0.001) 17.023 (<0.001)

aValues outside/inside brackets are number of either males/females for “sex” or yes/no for “Med_5HT.”
bStatistical values are from chi-square tests for “sex” and “med_5HT.”
CONTROL, control group with trauma exposure; CURR-PTSD, current PTSD group; REMIT-PTSD, lifetime but no current PTSD group; IQ, intelligence quotient; BDI-II; Beck 
Depression Inventory-II; TLEQ, trauma life events questionnaire; CES, Combat Exposure Scale; Child-trauma, categories of trauma exposure as child/adolescent; Med_5HT, 
serotonergic medication; AUDIT, Alcohol Use Disorders Identification Test; CAPS_curr, Clinician-Administered PTSD Scale reflecting symptoms in the last 30 days; CAPS_life, 
Clinician-Administered PTSD Scale reflecting symptoms in the worst 30-day period of subject’s life; DAST, Drug Abuse Screening Test; DTS, Davidson Trauma Scale; PTSD; 
posttraumatic stress disorder; TLEQ; Traumatic Life Events Questionnaire.
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resUlTs

Demographic and clinical 
characteristics
Participants’ age, sex, and other demographic and clinical infor-
mation are summarized in Table  1. The three groups did not 
significantly differ with respect to age and gender.

centrality Measures
The centrality measures of all nodes were within their correspond-
ing 99% CI, supporting the reliability of the analyses. Significant 
between-group differences of nodal centrality were identified in 
several cortical regions. Specifically, centrality between-group 
differences were detected in anterior cingulate cortex, frontal 
pole and superior frontal areas (see Figure 1).
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TaBle 2 | Centrality between-group comparisons: REMIT-PTSD (lifetime but no current PTSD group) versus CONTROL (control group with trauma exposure).

no. area Degree Betweenness closeness eigenvector

reMiT-PTsD < cOnTrOl
3 L Paracentral lobule and sulcus 41/91 14.0/63.0 0.639/0.803 0.046/0.099

29 L Precentral gyrus 64/117 31.5/194.8 0.718/0.891 0.074/0.119
29 R Precentral gyrus 67/112 60.8/134.7 0.728/0.874 0.073/0.115

reMiT-PTsD > cOnTrOl
32 R Subcallosal gyrus* 67/0 53.9/0.0 0.728/0.000 0.075/0.000
40 R Vertical ramus of the anterior segment of the lateral sulcus 88/7 111.7/0.0 0.799/0.509 0.095/0.008
49 R Superior segment of the circular sulcus of the insula 120/108 264.4/246.4 0.908/0.861 0.124/0.105
54 R Superior frontal sulcus* 101/58 126.6/19.8 0.844/0.690 0.111/0.063
59 R Anterior occipital sulcus 110/70 210.7/42.6 0.874/0.731 0.116/0.076

At least three of four (two of four in a priori areas marked with *) centrality measures showed significant between-group differences in these areas.
“No.” is the label of cortical area in the aparc.a2009s template (44).
L, left; R, right.

TaBle 3 | Centrality between-group comparisons: REMIT-PTSD (lifetime but no current PTSD group) versus CURR-PTSD (current PTSD group).

no. area Degree Betweenness closeness eigenvector

reMiT-PTsD < cUrr-PTsD
29 L Precentral gyrus 64/105 31.5/108.8 0.718/0.857 0.074/0.112
30 R Precuneus 80/119 59.5/202.1 0.772/0.905 0.090/0.121
38 R Middle temporal gyrus 71/112 76.0/137.9 0.741/0.881 0.074/0.118
52 R Inferior frontal sulcus 66/114 41.0/159.0 0.724/0.888 0.075/0.118

reMiT-PTsD > cUrr-PTsD
5 L Transverse frontopolar gyri and sulci 65/18 46.0/1.2 0.721/0.543 0.071/0.011
9 L Posterior-dorsal part of the cingulate gyrus 94/45 154.5/18.5 0.820/0.653 0.097/0.044

21 R Lateral occipito-temporal gyrus 116/83 205.2/97.3 0.895/0.782 0.124/0.081
32 R Subcallosal area* 67/8 53.9/4.0 0.728/0.518 0.075/0.006

At least three of four (two of four in a priori areas marked with *) centrality measures showed significant between-group differences in these areas.
“No.” is the label of cortical area in the aparc.a2009s template (44).
L, left; R, right.
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reMiT-PTsD Versus cOnTrOl
As shown in Table 2, REMIT-PTSD patients (versus CONTROL) 
showed smaller centrality in left paracentral lobule and sulcus 
and bilateral precentral gyrus. They also showed larger centrality 
in right subcallosal gyrus, vertical ramus of the anterior segment 
of the lateral sulcus, superior segment of the circular sulcus of 
the insula, superior frontal sulcus, and anterior occipital sulcus.

reMiT-PTsD Versus cUrr-PTsD
As shown in Table  3, REMIT-PTSD (versus CURR-PTSD) 
patients showed smaller centrality in left precentral gyrus, right 
precuneus, right middle temporal gyrus, and right inferior 
frontal sulcus. They also showed larger centrality in left trans-
verse frontopolar gyri and sulci, left posterior-dorsal part of the 
cingulate gyrus, right lateral occipito-temporal gyrus, and right 
subcallosal area.

cUrr-PTsD Versus cOnTrOl
As shown in Table 4, CURR-PTSD patients (versus CONTROL) 
showed smaller centrality in left transverse frontopolar gyri 
and sulci, left posterior-dorsal part of the cingulate gyrus, left 
postcentral gyrus, left inferior segment of the circular sulcus of 
the insula, and right anterior transverse collateral sulcus. They 
also showed larger centrality in left sulcus intermedius primus  
(of Jensen), right precuneus, right inferior/middle/superior 

frontal sulcus, right lateral orbital sulcus, and right inferior part 
of the precentral sulcus.

DiscUssiOn

We characterized neuroanatomical networks defined by corti-
cal thickness correlations for comparison between groups with 
current PTSD, remitted PTSD, and trauma-exposed controls. 
Consistent with our a priori hypotheses, significant differences 
between REMIT-PTSD and CURR-PTSD as well as CONTROL 
participants were detected in the right subcallosal gyrus, frontal 
pole (left transverse frontopolar gyri and sulci) and superior frontal 
sulcus. Network connectivity of the frontal pole in REMIT-PTSD 
appeared to assume a connectivity profile that is consistent with 
trauma-exposed controls, whereas the CURR-PTSD group had 
altered frontopolar network connectivity. On the other hand, the 
REMIT-PTSD group demonstrated brain network architecture at 
the superior frontal sulcus that was consistent with CURR-PTSD 
but clearly altered compared with CONTROL despite the lack of 
PTSD symptoms. A precise neurobiological interpretation of the 
between-group differences in the covariance of cortical thickness 
between regions is yet unclear. It is possible that the correlation 
strength increases between regions that are concurrently affected 
by disorder (or recovery) processes, which are perhaps due to 
loss of (or new) input from directly affected regions, and the 
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TaBle 4 | Centrality between-group comparisons: CURR-PTSD (current PTSD group) versus CONTROL (control group with trauma exposure).

no. area Degree Betweenness closeness eigenvector

cUrr-PTsD < cOnTrOl
5 L Transverse frontopolar gyri and sulci 18/68 1.2/56.6 0.543/0.724 0.011/0.073
9 L Posterior-dorsal part of the cingulate gyrus 45/104 18.5/241.0 0.653/0.847 0.044/0.104

28 L Postcentral gyrus 57/92 7.7/52.4 0.686/0.806 0.063/0.101
48 L Inferior segment of the circular sulcus of the insula 51/105 107.4/151.0 0.673/0.850 0.042/0.105
50 R Anterior transverse collateral sulcus 19/62 1.0/26.1 0.557/0.704 0.023/0.068

cUrr-PTsD > cOnTrOl
55 L Sulcus intermedius primus (of Jensen) 47/11 5.9/0.0 0.653/0.514 0.052/0.012
30 R Precuneus 119/91 202.1/48.0 0.905/0.803 0.121/0.100
52 R Inferior frontal sulcus 114/90 159.0/101.0 0.888/0.799 0.118/0.095
53 R Middle frontal sulcus 99/31 150.4/13.2 0.837/0.598 0.100/0.029
54 R Superior frontal sulcus* 115/58 339.8/19.8 0.891/0.690 0.114/0.063
62 R Lateral orbital sulcus 62/14 50.7/1.2 0.711/0.536 0.068/0.014
68 R Inferior part of the precentral sulcus 112/81 183.5/75.3 0.881/0.769 0.117/0.089

At least three of four (two of four in a priori areas marked with *) centrality measures showed significant between-group differences in these areas.
“No.” is the number of cortical area in the aparc.a2009s template (44).
L, left; R, right.
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correlation strength decreases between affected and unaffected 
regions (28). Our result is consistent with previous findings that 
frontopolar cortical thinning is associated with increased PTSD 
symptom severity (35) but to the best of our knowledge this is 
the first published report to directly compare remitted PTSD to 
current PTSD, and trauma-exposed controls.

The REMIT-PTSD and CONTROL groups showed larger cen-
trality in the left frontal pole than the CURR-PTSD group, thereby 
implicating this area in current PTSD symptoms. We posited 
that lower frontal pole centrality in CURR-PTSD is associated 
with non-synchronized cortical thickness changes with regions 
involving cognitive, social, emotional, and most notably self-
referential processing (55). This idea is consistent with previous  
findings that PTSD patients showed altered functional connectivity 
within brain structures associated with default model network 
(DMN), which plays a key role in self-referential processing and 
social cognition (56). The DMN consists of several areas includ-
ing the anterior medial cortices. Interestingly, REMIT-PTSD and 
CONTROL groups did not differ in left frontopolar centrality. 
Clinically, PTSD associates with disturbances in self-referential 
processing whereby trauma undermines a sense of adaptive self-
agency (57). Other closely related cognitive constructs of self-
reference that are negatively impacted by PTSD include shame, 
guilt, self-blame, and a fragmented self-image (58–60). Key 
neural correlates of these self-referential cognitions are situated 
in the frontal pole (12, 55). Accordingly, PTSD exhibits functional 
differences in the frontopolar area for behavioral challenge tasks 
(11) and during the resting state (61). It is yet unclear whether the 
higher centrality in REMIT-PTSD (versus CURR-PTSD) patients 
reflects a recovery of network topology back to a configuration 
that was present before onset of PTSD, or a compensatory re-
organization of network topology to comparable centrality at the 
frontal pole. These interpretations will require testing in future 
studies on the role of the frontal pole in remitted and current 
PTSD and could be explored as a potential target for therapeutic 
intervention. A recent study using transcranial direct current 
stimulation (tDCS) has already targeted ventromedial prefrontal 
cortex for the treatment of PTSD (62). Future clinical intervention 

on PTSD may utilize interventions including tDCS and deep 
brain stimulation targeting frontal pole.

The REMIT-PTSD group showed larger centrality in right 
subcallosal area than CURR-PTSD and CONTROL groups, 
suggesting the role of subcallosal area in representing the 
specific status of remitted PTSD patients. The subcallosal area 
is located in subgenual anterior cingulate cortex and is strongly 
associated with emotion processing (63). Reduced volume in this 
area was reported in combat-related PTSD patients compared 
with trauma-exposed controls (32) and cortical thinning in 
PTSD remitters compared with non-remitters following treat-
ment with prolonged exposure and trauma-exposed healthy 
volunteers (9). The subcallosal area also connects with several 
cortical and subcortical structures including prefrontal cortex, 
cingulate cortex, amygdala, and hippocampus (64), which have 
been implicated in PTSD based on anatomical and functional 
changes (11, 12, 14). However, our findings demonstrated that 
concurrent changes in cortical thickness in the subcallosal area 
and its structurally correlated regions were present only in the 
REMIT-PTSD group, but not in CURR-PTSD (compared with 
CONTROL). It is possible that a compensatory re-organization 
of network topology with larger centrality at right subcallosal 
area contributes to the resilience after experiencing PTSD 
symptoms by promoting symptom remission. However, we 
cannot exclude the possibility that some patients have special 
network topology with greater centrality in subcallosal area 
that helps with remission from PTSD symptoms. Indeed, US 
Special Forces who demonstrated resilience in the face of severe 
trauma have enhanced subcallosal activity during expectation 
of reward (65).

The REMIT-PTSD and CURR-PTSD groups showed larger 
centrality in right superior frontal sulcus than the CONTROL 
group, possibly implicating an enduring marker of prior PTSD 
even when symptoms remit. Our findings are consistent with 
previous reports that reduced cortical thickness in the superior 
frontal area is associated with PTSD symptom severity (34, 35). 
The superior frontal regions (covering both superior frontal 
sulcus and gyrus) have been associated with high-level cognitive 
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functions such as working memory and inhibition control (66, 67),  
which contribute to downregulating the personal rele vance of 
the negative events (68). Structural and functional connectivity 
methods show that the superior frontal area consists of subre-
gions that connect with nodes of the cognitive executive network 
(including middle and inferior frontal gyrus), default mode net-
work (including anterior and middle cingulate cortex), and motor 
control network (including precentral gyrus, caudate, thalamus, 
and frontal operculum) (69). Thus, our results suggest that a high 
centrality in the right superior frontal sulcus represents lifetime 
PTSD-related neural changes in brain areas typically associated 
with executive, motor, and self-processing. Given that PTSD is a 
chronic relapsing and remitting disorder (4, 70), it is possible that 
some neural changes persist following symptom remission and 
may serve as a biomarker of possible future relapse. It is possible, 
although unlikely, that these network connectivity changes are 
precipitated by trauma in certain individuals given the absence of 
this neural configuration in the trauma-exposed group. However, 
given that childhood trauma that is associated with lasting brain 
changes (71), we cannot exclude the possible influence of higher 
childhood trauma scores in the CURR-PTSD and REMIT-PTSD 
patients.

Our study provided comparable results to previous structural 
network analyses on individuals with PTSD. We found larger 
centrality in right lateral orbital sulcus in individuals with 
CURR-PTSD than in CONTROL subjects, which is consistent 
with Mueller et al. (28) who report larger betweenness centrality 
in the right orbitofrontal area of veterans with PTSD obtained 
from either a whole-brain network analysis or a network analysis 
restricted to prefrontal-limbic areas. These convergent find-
ings suggest that larger centrality in right orbitofrontal area is 
associated with PTSD symptoms. Previous studies have detected 
reduced gray matter volume/concentration in orbitofrontal cor-
tex in patients with either PTSD (72) or depression (73). In line 
with these results, the larger centrality in right orbitofrontal area 
in CURR-PTSD patients may reflect reduced gray matter in both 
right orbitofrontal area and its connected regions. No significant 
differences of centrality in this area were detected between 
REMIT-PTSD group and the other groups.

Various factors influence remission, including the trauma 
type, chronicity of trauma exposure, comorbid substance use, and 
others (74). In a large meta-analysis of 42 studies with a total of 
81,642 participants, 44% of individuals with PTSD experienced 
spontaneous remission (without specific treatment) at a mean 
follow-up duration of 40 months (75). Given that we did not spe-
cifically assess the antecedents of PTSD remission, it is likely that 
the present sample was comprised of a mix of patients who expe-
rienced spontaneous remission, pharmacotherapeutic remission, 
psychotherapeutic remission, and some combination thereof. 
While spontaneous remission is perhaps of particular interest 
since it represents a form of resilience to PTSD-onset following 
trauma exposure, the ability to remit in response to treatment is 
equally interesting because it represents its own form of resilience 
when contrasted with patients who suffer chronic persistent PTSD 
and are refractory to treatment. Thus, our REMIT-PTSD sample 
represents a resilient sample, albeit heterogeneous, composed of 
a mix of individuals who recovered spontaneously and others 

who responded to treatment. Future research will be required to 
dissect the cortical network changes that are unique to each of the 
various subtypes of remitted patients.

The CURR-PTSD patients showed more severe depres-
sion and PTSD symptoms than REMIT-PTSD individuals, 
suggesting that the differences between CURR-PTSD and 
REMIT-PTSD patients might be confounded with the severity 
of depression and PTSD. However, a recent study showed that 
high depression severity is accompanied with greater central-
ity in ventral medial prefrontal cortex and posterior cingulate 
cortex, and smaller centrality in temporal areas and middle/
inferior frontal areas (76), which are largely contrary to our 
findings of the comparison between CURR-PTSD and REMIT-
PTSD patients. Therefore, depression severity should not be 
a confounding factor when explaining our findings. On the 
other hand, veterans with PTSD were found to be associated 
with decreased degree centrality in medial orbital frontal areas 
and rostral cingulate cortex (28), consistent with our contrast 
between CURR-PTSD and REMIT-PTSD patients. We thus 
cannot reject the hypothesis that patients with less severe PTSD 
symptoms are more amenable to remission. Future studies on 
CURR-PTSD and REMIT-PTSD patients who are matched for 
lifetime PTSD scores should further address this issue.

limitations
There are several limitations in this study. First, our analysis 
was based on the large-scale covariance of cortical thickness. 
Some subcortical regions important to PTSD, such as amyg-
dala and hippocampus (14, 77), were not considered. Recent 
studies have included both cortical thickness and subcortical 
volumes in structural network analyses (28) although the 
reliability of this method still needs validation. Future studies 
should delineate the role of subcortical structures in the brain 
network of REMIT-PTSD patients. Second, the role of indi-
vidual differences on network characteristics is unclear, given 
that a network is defined at the group level. A new approach 
for investigating cortical thickness networks is needed to 
investigate the relationship between cortical thickness-based 
network attributes and individual characteristics (e.g., age 
and gender). An single-subject gray matter graph method has 
been developed in recent years (78, 79) and should be utilized 
in future studies of PTSD and remission. Furthermore, other 
connectivity analyses methods such as resting state fMRI, 
based on interregional relationship across measures within 
each subject, may complement our understanding of the 
effect of individual difference in network topography. Third, 
our study utilized a cross-sectional design, which limits infer-
ences about the causal relationships between PTSD remission 
and cortical thickness network. Future longitudinal studies 
should fill this gap and explore the relationship between brain 
network characteristics and treatment outcomes. Longitudinal 
studies (4, 5) assessing PTSD at two time points to assess the 
course of illness would be more reliable and robust than a 
cross-sectional approach because it does not rely on patients’ 
memories of prior symptoms from the distant past. Last but 
not least, it is a challenge to estimate the sample size appropri-
ate for a structural covariance network analysis. Conventional 
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power analysis makes comparisons of the group means and 
variances of the same measures from individuals. By contrast, 
in our study, no centrality measures can be calculated at the 
individual subject level that can be pooled for group means 
and variances. Moreover, connection topology at each node 
determines the centrality, which means that each graph 
(group) has 148 relevant centrality measures to consider in 
any power or sample size calculation. The centrality at each 
node is not available as a mean and pooled variance that is 
derived from all subjects in that group. Furthermore, the large 
number of nodes at which centrality is compared between 
groups is a separate but related concern about adjusting power 
for multiple comparison testing. At this stage the field of con-
nectomics, which is based on graph theoretical measures is 
yet grappling to develop appropriate corrections for multiple 
comparison testing that may be deployed on graph theoretical 
measures, and is even further from reaching consensus on best 
practices (80).

conclusion
Our methods and results advance our understanding of the 
network configuration defined by structural relationships within 
REMIT-PTSD patients and may offer therapeutic targets for 
PTSD. Cortical thickness networks, specifically centrality of the 
right subcallosal gyrus, left frontal pole, and right superior frontal 
sulcus, differ between remitted PTSD, current PTSD diagnosis, 
and trauma exposure without PTSD. Our findings in REMIT-
PTSD show enhanced structural connectivity that may represent 
a marker of resilience by promoting symptom remission through 
a recovery of network topology to a premorbid configuration 
or a compensatory re-organization of network topology with 
comparable centrality features.
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