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Accurate detection of Alzheimer’s disease (AD) is of considerable clinical importance.

The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) is the current

research standard for evaluating the quality of studies that validate diagnostic tests;

however, its own construct validity has not yet been evaluated empirically. Our aim was to

evaluate how well the proposed QUADAS-2 items and its domains converge to indicate

the study quality criteria. This study applies confirmatory factor analysis to determine

whether a measurement model would be consistent with meta-analytic data. Cochrane

meta-analyses assessing the accuracy of AD diagnostic tests were identified. The seven

ordinal QUADAS-2 items, intended to inform study quality based on risk of bias and

applicability concerns, were extracted for each of the included studies. The QUADAS-2

pre-specified factor structure (i.e., four domains assessed in terms of risk of bias and

applicability concerns) was not testable. An alternative model based on two correlated

factors (i.e., risk of bias and applicability concerns) returned a poor fit model. Poor factor

loadings were obtained, indicating that we cannot provide evidence that the indicators

convergent validity markers in the context of AD diagnostic accuracy metanalyses, where

normally the sample size is low (around 60 primary included studies). A Monte Carlo

simulation suggested that such a model would require at least 90 primary studies to

estimate these parameters with 80% power. The reliability of the QUADAS-2 items to

inform a measurement model for study quality remains unconfirmed. Considerations for

conceptualizing such a tool are discussed.
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INTRODUCTION

Alzheimer’s disease (AD), singly or in combination with
other neuropathological processes, is responsible for the
majority of dementia cases worldwide. In part because of its
frequent co-occurrence with other conditions (1), and its own
marked phenotypic variability (2), precise diagnosis remains
challenging (3). Significant progress has been made in the
development of AD biomarkers, including medial temporal
lobe atrophy on magnetic resonance imaging (MRI) (4, 5),
temporoparietal hypometabolism or hypoperfusion on positron
emission tomography (PET) (6, 7), alterations in cerebrospinal
fluid amyloid, tau, and phosphorylated tau levels (8), amyloid-
ligand PET (9), and most recently tau-ligand PET (10, 11).
Despite these advances, diagnosis remains reliant on clinical
assessment. Biomarkers are supportive, rather than diagnostic,
and their incorporation into the newest generation of diagnostic
criteria has been inconsistent.

The National Institute of Neurological Disorders and Stroke–
Alzheimer Disease and Related Disorders (NINCDS–ADRDA)
criteria (12), served as the research standard until it was
superseded by the National Institute on Aging—Alzheimer’s
Association (NIA-AA) (13). Its companion criteria was the
Diagnostic and Statistical Manual of Mental Disorders, fourth
edition (DSM-IV-TR) (14), itself recently revised in the
Diagnostic and Statistical Manual of Mental Disorders, fifth
edition (DSM-V) (15). Although not formally designed for
clinical use, both have heavily informed the medical diagnosis of
AD. They have since been joined by the International Working
Group (IWG) criteria (16–18). The NIA-AA uses biomarkers
in a supportive role, the DSM-V does not require them at all,
and the IWG considers them mandatory. These differences in
approach reflect lingering uncertainty regarding the validity of
AD diagnostic tests. However, diagnosis must move beyond
clinical features alone in order to provide a more cogent linkage
between nosology and biological mechanisms. There is therefore
a crucial need for validation studies examining the accuracy of
AD diagnostic tests.

When examining diagnostic accuracy studies, it is important
to discriminate between the accuracy of the proposed diagnostic
test, and any methodological issues that could inflate or
underestimate the reported results, including uniform
assessment of study quality (19). The Quality Assessment
of Diagnostic Accuracy Studies (QUADAS) was developed
specifically to assess the methodological rigor of diagnostic
accuracy studies in systematic reviews (20).

The QUADAS was conceived in 2003, by a panel of nine
experts in the field of diagnostics that, using a Delphi procedure
(21), who evaluated 55 studies investigating the effects of bias
and variation on measures of test performance. It was considered
that sources of bias best supported by empirical evidence
were: variation by clinical and demographic subgroups, disease
prevalence/severity, partial verification bias, clinical review bias
and observer/instrument variation (22). Initially a list of 28 items
(22, 23) was produced, which was later reduced to 14 items in
a Likert scale format with three categories of answers (high risk,
unclear, low risk). A revised scale, the QUADAS-2, was proposed

in 2011 to “measure the degree to which individual study criteria
match the review question” (24), which includes seven of the
original 14 items. At that time, the authors emphasized that
further research would be necessary to determine the usability
and validity of the instrument (22).

Since 2011, the QUADAS-2 has been adopted widely and
applied in reviews of diagnostic accuracy studies across many
different medical areas, raising some concerning questions
regarding QUADAS-2 by some authors. Schueler et al. (25)
indicated a limitation associated with calculating inter-rater
agreement only on the domain questions. Cook et al. (24) felt
that the tool was not able to discriminate between poorly and
strongly designed studies, and that the QUADAS-2 offered no
obvious advantage over to the original 14-item QUADAS. Other
authors have criticized the purposively qualitative nature of the
QUADAS-2, which does not recommend scoring a study using a
numeric value, a fundamental quality of assessment scales (24).

Because the QUADAS-2 proposes to assess quality using
observed items, it is important to consider not only the validity
of those items (i.e., content validity) and additionally, whether
the items inform an underlying construct (i.e., construct validity).
The seven QUADAS-2 items were designed to assess the risk
of bias associated with, and/or the applicability to the general
population of, four methodological points (patient selection,
the index test, the reference standard used, and the flow
of patients through the study or timing of the index test
and reference standard) (25). Although all seven items have
content validity (26–28), their validity to inform the underlying
construct of quality has not been tested. This type of validity
is tested empirically to determine if the items function as
reliable indicators of their supposed underlying constructs (29).
If the indicators cannot be assessed reliably between studies,
the perceived quality of evidence may be inaccurate. Therefore,
it remains to be determined, in a practical sense, whether the
QUADAS-2 items, individually or taken as a whole, offer a valid
measurement of methodological quality in studies of diagnostic
tests for AD.

Confirmatory factor analysis (CFA) is an indispensable
analytic tool for construct validation (also called factorial validity
or internal consistency) (30). The technique is ideally suited to
determine how well each of the seven items measure the two
proposed domains (i.e., Risk of Bias and Applicability Concern).
CFA might be used to evaluate how well the proposed items
and domains converge to indicate the study quality criteria
(i.e., convergent validity). This study applies CFA to determine
whether a two-factor factor model (bias, application) for the
QUADAS-2 is consistent with the (meta-analytic) data in AD
diagnostic accuracy studies.

METHODS

This study was approved by the Ethics Committee of Research of
the Federal University of São Paulo (UNIFESP) under protocol
number 2613240615. The Cochrane Library was searched for (1)
meta-analyses of (2) diagnostic accuracy studies where (3) the
subject was AD. Studies reporting on other types of Dementia
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and Cognitive impairment were excluded. Primary studies that
were assessed using the QUADAS-2 were identified and any
duplicate primary study entries across the meta-analyses were
removed. The Reviewers’ assessments of each of the seven
QUADAS-2 items were recorded.

CFA, a structural equation modeling technique, was used
to evaluate the construct validity of QUADAS-2. As previously
defined Bollen (29), p. 182, “a measurement model specifies
a structural model connecting latent variables to one or
more measures or observed variables” (also called indicators,
represented by squares in Figures 1, 2). Domains are latent
variables not directly observed (represented by ovals/circles) but
rather informed by the observed indicators. In the context of
structural equation modeling (a statistical technique which deals
with non-observed phenomenon), the risks of bias might not be
measured directly and therefore are called latent. In other words,
a construct or latent (in this case, risk of bias) represents what is
common within observable variables the seven criteria used by
Cochrane to measure bias.

The application of CFA assumes that studies have an
underlying intrinsic quality, and that this quality causes
the studies to have more favorable design and reporting
characteristics. This representation of a latent phenomenon is
called a reflective model. In contrast, a formative model would
characterize the studies by multiple markers of quality that may
be correlated but not necessarily causally related to each other
or to an underlying attribute, which together could be used
to summarize aggregate quality. Formative models, in which
a composite variable is modeled as weighted sum of the item
scores [see (31) for an introduction to formative versus reflective
models], have specific requirements for the identification of
its measurement models but, if met, then a formative model
would be identified. Some authors describe formative models as
hardy to identify [for major details see (32)]. Moreover, because
cause indicators are exogenous, their variances and covariances
are not explained by a formative measurement model, which
makes it more difficult to assess the validity of a set of cause
indicators (29). Here we use a reflective model to explicitly test
whether the items inform the underlying latent construct of study
quality.

Following the theoretical definition given by the Cochrane
Collaboration that defines quality as “both the risk of bias
and applicability of a study” (20) and the assertion that the
QUADAS-2 that “. . . comprises four domains: patient selection,
index test, reference standard, and flow and timing. Each domain
is assessed in terms of risk of bias, and the first 3 domains are
also assessed in terms of concerns regarding applicability” (20),
hence, a multitrait-multimethod CFA could reproduce the above
description in term of CFA. Another more parsimonious way to
transpose the QUADAS-2 description in terms of CFA’s models
is with only two factors. Such a solution might be reasonably
evaluated due to identification rules below described.

Sample Size and Heterogeneity
To conduct CFA, our sample size constituted 58 primary
accuracy studies within the five following systematic reviews
(33–37), included primary accuracy studies from 1946 to 2013.

The systematic reviews aimed to determine the diagnostic
accuracies (from neuropsychological tests to biomarkers as
PET imaging with the 11C-labeled Pittsburgh Compound-B
and cerebrospinal fluid). No language or date restrictions were
applied to the electronic searches and methodological filters
used in the systematic reviews, maximizing sensitivity and given
heterogeneity to the sampling. There was no selection process
specific to AD instruments, using all the available systematic
reviews from Cochrane Library. The tests evaluated in these
five systematic reviews include the main techniques used to
detect AD. Details about the limitations of QUADAS-2 use under
different sample sizes in the context of systematic reviews will be
discussed below in the statistical analysis subheading.

Statistical Analysis
As an initial inspection, a simple correlation between the seven
items was done using a polychoric matrix; it is similar to
Pearson correlation matrix, but because the QUADAS-2 items
are categorical the correlation are based on polychoric point
estimation.

FIGURE 1 | Multitrait-multimethod conceptual model for QUADAS-2. RoB,

risk of bias; AC, applicability concern; PS, patient selection; IT, index test; RS,

reference standard; FT, flow and timing.

FIGURE 2 | Correlated-factor model for QUADAS-2 with standardized factor

loadings and standard errors in parenthesis. RoB, risk of bias; AC, applicability

concern.
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Because the QUADAS-2 items are ordered-categorical (i.e.,
low risk, unclear, and high risk), the weighted least squares
mean- and variance-adjusted (WLSMV) estimator was used. This
estimator offers more precise estimates of the factor loadings (38)
for categorical observed indicators (items), and it is the default
estimator in Mplus (39). Due to the complex sampling structure
(i.e., 58 original accuracy studies nested in five systematic
reviews), standard errors were computed by a sandwich estimator
and chi-square test of the model fit took into account the non-
independence of observation; for major details and discussion
about such implementation see (40, 41). The adopted statistical
significance level was 0.05.

The following fit indices were used evaluate the model fit
for CFA: chi-square, comparative fit index (CFI), Tucker-Lewis
Index (TLI), root mean square error of approximation (RMSEA),
and weighted root mean square residual (WRMR). For both the
CFI and TLI, values >0.90 and 0.95 were considered acceptable
and optimal fits to the data, respectively. For the RMSEA,
values <0.06 were considered reasonable and optimal fit to
the data, respectively. For WRMR, values near or below 0.90
were considered adequate (42). To evaluate the magnitude of
correlation between the latent response variables for QUADAS-
2 items and the factors, we used the factor loadings. To overcome
the disadvantages of Cronbach’s alpha (43), scale reliability for
QUADAS-2 model was estimated via factor loadings of CFA as
described by Jöreskog (44).

Lastly, based on the obtained estimates (e.g., factor loadings
reported in the Figure 2), we conducted a Monte Carlo
simulation analysis to evaluate the power and other related
parameters for different sample sizes of meta-analyses. Ten
thousand replications were considered to ensure the stability
of the results (e.g., average of the parameter estimates across
replications). The following criteria, as described by Muthén and
Muthén (45), were considered for the evaluation of the adequacy
of the sample size: (1) the proportion of replications for which the
95% confidence interval contains the true population parameter
value should between 0.91 and 0.98 and (2) the power for each
parameter must be superior to 0.80, as largely used (46). The
analysis were implemented in Mplus version 8.0.

RESULTS

Table 1 shows the proportions and counts for the seven ordinal
items of QUADAS-2.

Testing QUADAS-2 Models:
Multitrait-Multimethod Model
The four domains representation of QUADAS-2’s structure
might be depicted by multitrait-multimethod model (Figure 1),
where at the same time there are the four groups of items and
concomitantly they are measuring risk of bias and applicability
concerns. However, such a model structure is not identified,
because models with more than one domain must have at least
two indicators per domain (29, 47, 48). This limitation of the
QUADAS-2 precludes assessment under such methodology.

TABLE 1 | Proportions and counts for the seven items of QUADAS-2 (n = 58).

Items Answers Proportions Counts

Item 1 (Risk of bias: patient selection) High risk 0.224 13.000

Unclear 0.448 26.000

Low risk 0.328 19.000

Item 2 (Risk of bias: inex test) High risk 0.466 27.000

Unclear 0.121 7.000

Low risk 0.414 24.000

Item 3 (Risk of bias: reference standard) High risk 0.103 6.000

Unclear 0.552 32.000

Low risk 0.345 20.000

Item 4 (Risk of bias: flow and timing) High risk 0.241 14.000

Unclear 0.172 10.000

Low risk 0.586 34.000

Item 5 (Applicability concerns: patient

selection)

Unclear 0.069 4.000

Low risk 0.931 54.000

Item 6 (Applicability concerns: index

test)

Unclear 0.121 7.000

Low risk 0.879 51.000

Item (Applicability concerns: reference

standard)

High risk 0.052 3.000

Unclear 0.086 5.000

Low risk 0.862 50.000

Two Correlated Factors Model
An alternative representation, a two correlated factors model
(Figure 2) is testable; however, Item 5 (Applicability concerns
related to Patient Selection) was almost perfectly correlated
(polychoric correlation = −0.987) with Item 7 (Applicability
Concerns related to the Reference Standard). This occurs due to
bivariate empty cells (i.e., zero values in a 3× 3 cross tab between
some pairs of items in the polychoric correlation matrix) and
as consequence such a solution (the seven indicators together)
for QUADAS-2 is inadmissible; therefore, we tested a reduced
version without one of the QUADAS items involved in the high
correlation.

Removing Item 5, the following fit indices were obtained
[χ²(8) = 7.883, p = 0.445, CFI of 1.00, TLI of 1.044, RMSEA of
0.000 and WRMR of 0.493; Figure 2].

A naïve interpretation of above fit indices would conclude that
the model has excellent fit indices. However, a model cannot be
retained based solely on values of global fit statistics; the residuals,
such as standardized, normalized, correlation, or covariance
residuals, must also be considered. The magnitudes of the factor
loadings were very low (Figure 2). Examining the correlations
among the individual items (Table 2), with the exception of the
correlation between Item 3 (Risk of Bias of Reference Standard)
and Item 7 (Applicability Concerns of Reference Standard), the
correlations between the items were also very low. As mentioned
above, it is equally important to consider the size of the model’s
parameter estimates as it is to consider the model goodness of the
fit in determining the factor load (30).
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TABLE 2A | Polychoric correlation matrix (standard errors in parenthesis).

Item 1 Item2 Item 3 Item 4 Item 5 Item 6 Item 7

Item 1 1

Item 2 −0.301 (0.15) 1

Item 3 −0.022 (0.17) 0.107 (0.18) 1

Item 4 −0.270 (0.15) 0.217 (0.17) 0.214 (0.18) 1

Item 5 0.096 (1.00) −0.038 (0.38) −0.262 (0.33) 0.117 (0.48) 1

Item 6 −0.313 (0.30) 0.265 (0.37) 0.107 (0.24) 0.202 (0.31) 0.611 (0.25) 1

Item 7 −0.054 (0.20) 0.421 (0.22) 0.661 (0.19) 0.117 (0.25) −0.987 (0.00) 0.437 (0.26) 1

Item 1, Risk of bias-patient selection; Item 2, Risk of bias-index test; Item 3, Risk of bias-reference standard; Item 4, Risk of bias-flow and timing; Item 6, Applicability concerns-index

Test; Item 7, Applicability concerns-reference standard.

TABLE 2B | Model estimated residual correlation.

Item 1 Item 2 Item 3 Item 4 Item 6 Item 7

Item 1

Item 2 −0.180

Item 3 −0.158 0.156

Item 4 −0.218 0.216 0.190

Item 6 −0.172 0.170 0.149 0.207

Item 7 −0.184 0.182 0.160 0.222 0.437

Item 1, Risk of bias-patient selection; Item 2, Risk of bias-index test; Item 3, Risk

of bias-reference standard; Item 4, Risk of bias-flow and timing; Item 6, Applicability

concerns-index Test; Item 7, Applicability concerns-reference standard.

As a result of poor correlations, presented in Table 2A,
the residual variances are greater than the common variances.
Residual variance is that unexplained by the factor that the
indicator is supposed to measure. Table 2B shows the model
estimated correlation residual, where these residuals exceed 0.10
in absolute value. Thus, the model does not explain very well
the observed correlation between their variables; specifically, the
model underpredicts their association.

Standardized factor loadings are also a proxy of item
reliability, where a higher factor loading indicates a more reliable
item. The reliability for risk of bias factor is 0.40 and for
applicability concern is 0.28.

Considering low factor loadings and high residual variances,
we are forced to conclude a lack of evidence to support that the
QUADAS-2 items adequately inform the measurement model
underlying the included studies.

The results of a Monte Carlo simulation, for different sample
sizes of systematic reviews, are presented in Table 4, where only
systematic reviews withmore than 90 primary studies would offer
power higher 0.8 for the majority of the items. The exception
is item 3 (risk of bias: reference standard) which would have a
power of 0.722 given 90 included primary studies.

DISCUSSION

This study offers some evidence evaluating the construct validity
of the QUADAS-2 for assessing the quality of studies supporting

TABLE 3 | Common variance, its standard errors, p-values, and residual variance

for each QUADAS-2 Items.

Indicators Common variances S.E. P-value Residual variance

ITEM1 0.182 0.293 0.535 0.818

ITEM2 0.178 0.230 0.439 0.822

ITEM3 0.137 0.137 0.317 0.863

ITEM4 0.263 0.326 0.420 0.737

ITEM6 0.408 0.357 0.253 0.592

ITEM7 0.468 0.546 0.391 0.532

S.E, Standard error; Item 1, Risk of bias-patient selection; Item 2, Risk of bias-index test;

Item 3, Risk of bias-reference standard; Item 4, Risk of bias-flow and timing; Item 6,

Applicability concerns-index test; Item 7, Applicability concerns-reference standard.

AD diagnostic tests. Although fit indices (CFI, TLI, RMSEA)
were adequate, it is a poor practice to decide on whether to retain
a model based solely on values of global fit statistics instead of
also considering the residuals, such as standardized, normalized,
correlation, or covariance residuals. This is because poor model
fit at the level of the residuals is not always detected by global fit
statistics [e.g., (49, 50)].

The original QUADAS-2 tool included 4 key domains that
pertain to patient selection, index test, reference standard, and
flow and timing (i.e., flow of patients through the study and
timing of the index tests and reference standard).

In order to create a testable measurement model in the
context of CFA, we transposed the QUADAS-2 items into two-
correlated factor solution (Figure 2). Although the originally
proposed four factors might be better described using a
multitrait-multimethod model, or even with four-correlated
factor solution, statistically those models would be inadmissible
due to the limited number of items per factor (at least two
items per factor would be necessary (29, 47, 48). Therefore,
in order to produce a “testable” model that could provide
evidence supporting a four-factor tool, additional indicators
would be required. However, the alternativemeasurementmodel,
consisting of two domains informed by seven indicators, was
testable after removing a redundant Applicability Concern
item. The obtained fit indices support the validity of this
model.
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TABLE 4 | Monte carlo simulation study evaluating the proportion of replication and power for different meta-analysis sample size.

Item/Factor correlation N = 60 N = 60 N = 60 N = 60 N = 60 N = 60 N = 60

PR Power PR Power PR Power PR Power PR Power PR Power PR Power

Item1 0.936 0.699 0.941 0.700 0.932 0.754 0.918 0.782 0.934 0.789 0.933 0.828 0.921 0.827

Item 2 0.934 0.660 0.922 0.693 0.932 0.727 0.936 0.754 0.936 0.793 0.924 0.810 0.942 0.819

Item 3 0.947 0.553 0.918 0.590 0.940 0.613 0.938 0.643 0.914 0.659 0.918 0.699 0.927 0.722

Item 4 0.910 0.754 0.903 0.773 0.915 0.816 0.926 0.819 0.916 0.858 0.920 0.898 0.927 0.915

Item 6 0.962 0.848 0.956 0.857 0.952 0.865 0.951 0.889 0.947 0.922 0.965 0.916 0.968 0.938

Item 7 0.966 0.865 0.975 0.878 0.975 0.880 0.957 0.885 0.973 0.930 0.961 0.928 0.982 0.940

Correlation between the factors 0.962 0.744 0.968 0.771 0.961 0.789 0.963 0.817 0.961 0.864 0.953 0.863 0.942 0.869

PR, Proportion of replication.

Although we tested a model that assumes that the QUADAS-
2 items inform an underlying construct of study quality, the
QUADAS-2 might also be considered “critical reading grid” to
which construct validity might not apply. We argue against
this notion for two reasons. First, here we provide empirical
support that the items do inform such an underlying construct.
Second, it is clear that throughout the development of the
QUADAS-2, a theory about what items would be used to evaluate
bias/applicability, and how those items would be grouped
indicated the structure of the model a priori. Although a negative
result would not necessarily bring into question the practical
utility of the tool, or the validity of its content, as a model, the
QUADAS-2 is liable to be tested.

Despite the reduction of QUADAS items from 28 to 7 since
its inception, the empirical evidence provided here, suggests that
two of the extant items remain redundant when assessing the
AD literature. This is particularly problematic because assessors
may be unduly biased if a single underlying quality feature is
represented by 2 out of 7 items. The reduction of QUADAS items
for theQUADAS-2 was performed using aDelphi procedure (51),
which is not based on CFA, or grounded in item response theory,
which are preferred methods to evaluate construct validity (52)
and items selection. A re-examination of the QUADAS-2 items
based on modern item response theory might allow for an
improved measurement model.

The items were poorly correlated and possibly unreliable
(Tables 2A,B) because residual variances were high (Table 3).
Residual variance is the variance unexplained by the factor
that the indicator is intended to measure. A small N and a
small number of items per factor likely contributed to the high
relative percentage bias estimated under WLSMV. Due to these
considerations, some susceptibility to random measurement
errormight have been expected; however, if theQUADAS-2 items
had been more closely related to their underlying factors, more
precise estimates would have been possible [(50), p. 9–10].

The poor factor loadings observed have important
implications for bias assessment in systematic reviews. Here
we were unable to provide evidence that the indicators have
convergent validity of the intended domains. In part, this is
because the sample size (i.e., the number of included primary
studies in most systematic reviews) was too low for the factor
loadings to be estimated properly [see (53)]. In practice, this

means that the generalizability of the clinical findings was not
explicitly evaluable. In our Monte Carlo simulation, the number
of primary studies that would be necessary to achieve a power
of 0.8 was at least 90, given the data in this systematic review.
Because large sample sizes are not often available, it might be
useful to redefine some QUADAS-2 indicators with the intention
that they should be more strongly related to the underlying
domains.

The structure of the QUADAS-2 hindered testing its
measurement model; the tool might be augmented with more
indicators per factor. Because the proposed structure of the
model, untestable in a multitrait-multimethod model with four
domains, necessitated transposition into a two-factor oblique
model which may have introduced a loss of information.
Nonetheless, these considerations do not affect the model fit
indices, which offer some evidence of construct validity.

In the case of the first three QUADAS-2 items (residual
variances 0.818, 0.822, and 0.863), nearly the entire factor was
explained by residual variance, which is usually due to random
measurement error and/or rater unreliability. The relevance
of these items as indicators of study quality in AD was not
empirically supported. Among the Applicability Concern items,
the best indicator explained 46% of the common variance,
still less than the residual variance (i.e., 54%). Given the
importance of the parameter estimates (Brown, p. 135–136) as
criteria for the utility of a scale, and the unacceptably high
proportion of variance due to randommeasurement error and/or
rater unreliability, this first attempt to evaluate empirically the
QUADAS-2 items to inform Risk of Bias and Applicability
Concerns in the AD literature does not support their reliability.

While this study focused on AD studies, the QUADAS-2 is
used to assess quality and internal validity of tests to diagnose
many neurological and other disorders including other forms of
dementia (54, 55), Parkinson’s disease (56) and Stroke (57, 58). It
is possible that some QUADAS-2 risk of bias items may be more
difficult to assess or less applicable in AD studies. For instance, in
the AD studies, some difficulties evaluating risk of bias related
to the index test arose from signaling questions related to the
use of a pre-specified cut-off. No consensus exists for 11C-PIB-
PET (37), 18FDG-PET (36), CSF, and serum biomarker (35) cut-
offs, partly because information has been lacking or inconsistent,
and measurements vary considerably between labs. When this
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criterion was applied to those biomarker studies, it may have
contributed to over-estimation of risk of bias. In contrast, pre-
specified cut-offs could have been justified in studies evaluating
the Mini Mental State Examination, and this signaling question
was appropriately applied to evaluate the index test in those
studies.

Throughout the meta-analyses, the majority of criteria
assessed as “high” risk of bias achieved this score based on a
lack of reporting, rather than a confirmed risk of bias due to
inadequate study design per se. Certain metanalyses employed
different thresholds to endorse high vs. unclear risk. For instance,
studies evaluating the Montreal Cognitive Assessment, were
judged to be of “unclear” risk of bias where reporting of pre-
specified cut-offs was absent or unclear (33); however the same
criteria were judged to endorse a high risk of bias among studies
evaluating the Mini Mental State Examination. This discrepancy
in implementation may have contributed to the compromised
reliability of these items in the AD studies.

Some important limitations might be considered. First, we
were only able to use meta-analyses where item-level QUADAS-2
data for each primary study was reported, resulting in some loss
of data (59). Second, the agreement between the judges in the
majority of the publications was not reported, limiting our ability
to comment on the contribution of disagreement or differential
interpretation of the seven items to lack of item reliability.
Third, the sample size was limited and, therefore, the magnitudes
of the factor loadings were not precisely estimated; however,
the sample size is consistent with that of other systematic
reviews, raising an issue about the content of the QUADAS-2
items, and its testability, in the general context of systematic
reviews. Regarding the generalizability of the present findings,
it should be considered that the measurement properties of the
QUADAS-2 might behave differently between different diseases,
or between different diagnostic procedures for the same disease
(59, 60).

In conclusion, although the findings do not necessarily
inform the practical utility of the scale in identifying areas of
weakness within a study, evidence to support the reliability

of the QUADAS-2 items to inform study quality remains
lacking. Further research might evaluate whether the present
findings regarding the QUADAS-2 are specific to AD studies, or
generalizable to other fields of medicine. Additional empirical
evidence and additional analyses based on modern item response
theory would be needed in order to propose a reliable set of study
quality criteria for use in AD diagnostic accuracy studies.
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