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Marijuana is the most commonly used drug of abuse among adolescents. Considerable
clinical evidence supports the hypothesis that adolescent neurodevelopmental
exposure to high levels of the principal psychoactive component in marijuana,
-delta-9-tetrahydrocanabinol (THC), is associated with a high risk of developing
psychiatric diseases, such as schizophrenia later in life. This marijuana-associated risk is
believed to be related to increasing levels of THC found within commonly used marijuana
strains. Adolescence is a highly vulnerable period for the development of the brain,
where the inhibitory GABAergic system plays a pivotal role in the maturation of regulatory
control mechanisms in the central nervous system (CNS). Specifically, adolescent
neurodevelopment represents a critical period wherein regulatory connectivity between
higher-order cortical regions and sub-cortical emotional processing circuits such as
the mesolimbic dopamine (DA) system is established. Emerging preclinical evidence
demonstrates that adolescent exposure to THC selectively targets schizophrenia-related
molecular and neuropharmacological signaling pathways in both cortical and sub-cortical
regions, including the prefrontal cortex (PFC) and mesolimbic DA pathway, comprising
the ventral tegmental area (VTA) and nucleus accumbens (NAc). Prefrontal cortical
GABAergic hypofunction is a key feature of schizophrenia-like neuropsychopathology.
This GABAergic hypofunction may lead to the loss of control of the PFC to regulate proper
sub-cortical DA neurotransmission, thereby leading to schizophrenia-like symptoms. This
review summarizes preclinical evidence demonstrating that reduced prefrontal cortical
GABAergic neurotransmission has a critical role in the sub-cortical DAergic dysregulation
and schizophrenia-like behaviors observed following adolescent THC exposure.
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INTRODUCTION

Marijuana is the most widely used illicit drug in the world (1).
With more jurisdictions looking to legalize cannabis, there is
potential for increasing rates of regular use and dependence
within the general population. While cannabis strains popular in
the 70’s contained much lower levels of its naturally psychoactive
compound, A9-tetra-hydrocannabinol (THC) (~2-4%), current
popular street strains such as “sinsemilla” have been reported
to contain THC concentrations of up to 12-18% (2). However,
it is still a matter of debate if this increasing content of THC
found within popular street strains of cannabis is emerging
as a factor in THC-related psychiatric risk; especially if used
during adolescence. Indeed, more and more preclinical and
clinical studies highlight that adolescent chronic exposure to
THC can increase the risk of onset of psychiatric diseases
later in life, including schizophrenia (3-7). Chronic marijuana
use before the age of 17 and elevated THC concentration in
current popular street strains are factors that can increase this
risk of developing schizophrenia. Why is this the case? Because
adolescence is a period of vast neuronal, maturational, and
morphological changes throughout the brain. Specifically, the
adolescent central nervous system (CNS), in particular the frontal
cortex (8, 9), is in a state of extreme vulnerability due to
myelination, synaptic pruning, volumetric growth, changes in
receptor distribution, and programming of neurotrophic levels
(10-13). Nevertheless, given the specific vulnerability of the
adolescent brain to THC-induced neuropsychiatric risk, it is
critical to identify and characterize the specific mechanisms and
neuroanatomical circuits by which exposure to chronic THC may
set-up the developing brain for later onset of serious mental
health disorders, such as schizophrenia.

The prefrontal cortex (PFC), one of the last areas to reach
maturity in the adolescent brain (14), undergoes immense
synaptic remodeling and consolidation of neural circuitry
between cortical and subcortical structures. This neuronal
remodeling of the PFC results in the refinement of the
excitatory-inhibitory balance essential for the maturation of
normal adult behaviors and cognition (15-17). Importantly,
cannabinoid type 1 receptors (CBI1Rs), principally localized
on PFC GABAergic circuits, are essential for the maturation
of the PFC. Specifically, CB1Rs play a crucial role in the
maintenance of cortical oscillatory states via homeostatic
regulation of the excitatory/inhibitory neuronal activity within
the PFC (18-20). Therefore, the action of THC on CBIRs
during neurodevelopment can impair PFC-CBIR signaling and
associated GABAergic functionality leading to dysregulation of
the normal prefrontal maturation process. These observable
deficits in PFC functionality can induce long-term impairments
of prefrontal inhibition and synchronized cortical activity states
leading to psychopathological disease (16, 21). As a result,
the increased susceptibility to affective disorders and mental
illnesses, such as schizophrenia, may be due to disturbances in
the maturation process of the PFC during adolescence (15).

Importantly, post-mortem analyses of brain tissue extracted
from the cortex of patients with schizophrenia showed a decrease
in GABA function in the PFC (22). A reduction in mRNA

and protein expression of the glutamic acid decarboxylase-67
(GAD67), the enzyme synthesizing GABA neurotransmitter, is
observed in the dorsolateral PFC of patients with schizophrenia
(23-27) and is associated with a decrease in GABAergic
parvalbumin (PV) interneurons. Increased expression levels of
prefrontal cortical GABA-A receptor a2 subunits and reduced
levels of the al and § subunits (28-30) have also been
observed in schizophrenia. This attenuated GABAergic function
in the PFC may cause abnormalities in the synchronization
of gamma-band, prefrontal neuronal activity, and sub-cortical
dopaminergic (DAergic) transmission, which may in turn lead
to schizophrenia-like symptoms such as hallucinations as well as
pathological affective and cognitive deficits (31, 32).

ADOLESCENCE AND MATURATION OF
THE PREFRONTAL GABA SYSTEM

The adolescent period is associated with the maturation of
cognitive functions, such as working memory, decision-making,
and impulsivity control. These cognitive functions are dependent
on proper PFC maturation and function, and are essential
for the acquisition of adaptive adult behaviors and cognitive
processing (11, 15, 33). The human PFC continues to develop
throughout adolescence before reaching complete adult maturity
at approximately 30 years of age (34). During adolescence,
the PFC undergoes massive functional remodeling including
refinement of GABAergic functionality and modifications in
the excitatory-inhibitory neuronal balance (16, 17). This strong
remodeling of brain areas during adolescence is associated with a
specific developmental window wherein environmental factors,
such as exposure to psychotropic drugs, can profoundly affect
the normal trajectories of cortical circuit development, making
adolescents highly vulnerable to drug-related developmental
disturbances (11, 13, 35).

At the neurochemical level, a variety of neurotransmitter
systems undergo major developmental changes in the PFC
during adolescence. For example, a massive pruning in the
glutamatergic system characterized by a decrease in density
of spines on pyramidal cells and synapse elimination of
glutamatergic excitatory input is observed in the adolescent
PEC (11, 36). In addition, DAergic inputs to the PFC and
the activity of the enzyme catechol-O-methyl transferase
(COMT) increase during adolescence and decrease thereafter
(8, 11, 37, 38). Most importantly, adolescent PFC GABAergic
transmission also endures important functional remodeling
and plays a key role in the maturation of the PFC (39). Indeed,
prefrontal GABAergic maturation during adolescence is a
key proponent for consolidation of adult neuronal circuitry
in the PFC via a change in the balance of excitatory-
inhibitory activity (15, 39, 40). During the transition from
adolescence to adulthood in humans, evidence suggests a
strong decrease in synaptic activity on GABAergic interneurons
within the PFC (11). The most substantial changes in the
function of the adult brain involve reorganization of local
GABAergic interneurons in the PFC (17, 39). Specifically, the
prefrontal GABAergic subpopulation of interneurons expressing
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calretinin (CR) and parvalbumin (PV) continue to differentiate
and mature in the dorsolateral PFC during adolescence
(41, 42). Populations of CR- and PV-GABAergic interneurons
display opposing developmental patterns characterized by
a decrease in CR-GABAergic expression and an increase
in PV-GABAergic interneurons expression (17). Given
that PV-GABAergic neuronal expression is dependent on
glutamatergic transmission (39), it is believed that the increase
in PV expression might be associated with the increase in
glutamatergic excitatory inputs selectively projecting on
fast-spiking PV-GABAergic interneurons during adolescence
(17, 39).

At the postsynaptic level, the subunit composition of
GABA-A receptors plays a critical role in the adolescent
PFC (15, 17, 40). The expression of GABA-A receptors
in human subcortical structures reaches levels of maturity
at age 14, however, in the frontal cortex and PFC the
receptors do not reach adult levels until 18 and 19.5 years of
age, respectively (42, 43). Interestingly, distinct developmental
patterns of specific GABA-A receptor subunit distribution have
been observed at both the mRNA and protein levels in the
cortex (44). For example, a shift from GABA-A receptors a2-
to al-subunits, characterized by an increase in al subunit
expression levels and a concomitant decrease in both «2
and o5 subunits expression levels, occurs in the PFC during
adolescence (45, 46). The specific functionality of al subunits
is to evoke faster decay times and subsequent fast synaptic
inhibition (15). Thus, this shift from a2-a1 GABA-A receptor
subunits may promote a profound biological effect during
adolescent development. Studies in rodents and non-Human
primates analyzing the “inhibitory postsynaptic current (IPSC)
frequencies onto pyramidal neurons and local field potential
recordings of GABA-A-mediated prefrontal responses to afferent
drive in vivo” confirmed that PFC GABAergic function increases
during adolescence (16, 40, 47, 48). According to the authors,
this suggests that adolescent PFC inhibition is mostly mediated
by fast-spiking GABA interneurons because of their functional
prevalence over non-fast spiking GABA interneurons (15,
39).

Human studies show that working memory and executive
control, both PFC-dependent cognitive processes, reach adult
capacity at the age of ~19 years (49, 50). By controlling the
PFC pyramidal neuronal activity, PV-GABAergic interneurons
are essential key players in the regulation of working memory,
executive functions, and transmission of information between
cortical areas (51-53). For example, there is an observed
correlation between executive functional performance and
maturation of PV-GABAergic neurons in non-human primate
models (54-56). Thus, alteration of the GABAergic system during
adolescence has the potential to lead to enduring cognitive
abnormalities persisting into adulthood. Given the role of PFC
GABAergic function during adolescence, any direct or indirect
insults that can compromise the role of prefrontal GABAergic
interneurons during this critical period might prevent the
acquisition of normal PFC inhibitory function and lead to
behavioral and physiological abnormalities.

SCHIZOPHRENIA AND ASSOCIATED
GABAERGIC NEURONAL ALTERATIONS

Schizophrenia is a psychiatric disorder affecting approximately
1% of the population. This devastating psychopathology is
characterized by positive symptoms (paranoia, agitation,
depersonalization,  hallucinations, delusions, dysphoria),
negative symptoms (anhedonia, social withdrawal), and
cognitive impairments (disorganized thinking, working memory
deficits, difficulty concentring, sensorimotor gating deficits).
Several lines of evidence demonstrate that dysfunction of PFC
GABAergic neurotransmission is a cardinal feature of the
pathophysiology of schizophrenia (57). A reduction of GAD
67 mRNA and protein levels is observed in layers 1 through
5 of post-mortem dorsolateral PFC brain tissue from patients
with schizophrenia (23, 24, 45, 58, 59). The subpopulation
of GABA inhibitory neurons that seems to be particularly
involved in schizophrenia is PV-GABAergic neurons (i.e.,
chandelier and basket neurons) (Figure 1). Indeed, 50% of the
PV-GABAergic neurons display strong reduction in GAD67
mRNA expression (24). This reduction in GAD67 mRNA is
concomitant with an overall decrease in PV mRNA expression
(24, 25). Conversely, the density of PV-and CR-GABAergic
neurons (24, 61, 62), as well as CR mRNA expression are
unaffected in schizophrenia (24, 63). This suggests that the
decrease of PV mRNA expression is not associated with a
decrease in the density of PV-GABAergic neurons. The activity
of prefrontal pyramidal neurons is strongly inhibited by PV-
GABAergic basket and chandelier neurons which establish
synapses at the soma and axon initial segment (AIS) of the
pyramidal neurons, respectively. As for the double bouquet
cells, they mostly establish synapses at the distal dendrites;
providing a weaker inhibitory regulation of the pyramidal
neurons compared to both basket and chandelier PV-GABAergic
neurons (64) (Figure 1). Therefore, a reduction of GAD67 in
PV-GABAergic neurons might alter neuronal activity between
pyramidal and GABAergic neurons, thus impacting the proper
regulatory function of prefrontal excitatory/inhibitory balance
(Figure 1).

Besides GAD67, evidence also demonstrates that the GABA
transporter GAT-1 plays a role in schizophrenia. For example,
GAT-1 mRNA and protein expression are reduced in GABAergic
neurons in the dorsolateral PFC of patients with schizophrenia
(65, 66). Considerable evidence indicates that reduced GAT-
1 levels associated with schizophrenia occur in PV-GABAergic
chandelier neurons (57, 60, 66) (Figure1). First, reduction
of GAT-1 mRNA expression levels are found in the same
cortical layers where the density of PV-GABAergic neurons is
found to be decreased (ie., layers 2 through 5) (66, 67). In
addition, patients with schizophrenia display reduced density
of GAT-1 containing PV-chandelier GABAergic neurons within
the dorsolateral PFC. The strategic presynaptic localization of
GAT-1 confers the role of GABA reuptake in the synapse
(66, 68) and regulates the duration and efficacy of extracellular
GABA levels (69). In addition, GAT-1 actively participates in
GABA-A receptor-mediated phasic and tonic inhibition on
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FIGURE 1 | Prefrontal GABAergic function alteration in schizophrenia. GAD67 mRNA expression levels are decreased in PV-GABAergic neurons (i.e., chandelier and
basket neurons) in the PFC. GAT-1 mRNA expression levels are reduced in the PV-GABAergic chandelier neurons. GABA-A a2 receptor subunits are increased in the
AIS of pyramidal neurons and GABA-A a1 subunits are reduced at synapses from PV-GABAergic basket neurons, as a compensatory response to reduced GABA

synthesis and extracellular GABA concentrations. Figure modified from (60).

Double bouquet cell

Pyramidal neuron

neuronal activity (69). Therefore, changes in GAT-1 function
in the PFC can undoubtedly lead to alteration of synaptic
GABAergic neurotransmission; contributing to schizophrenia
psychopathology.

The comprehension of the postsynaptic GABA-A receptor
expression levels will help with understanding the consequences
of these presynaptic cortical alterations. At the postsynaptic level,
most of the physiological actions of GABA are induced by the
GABA-A receptors (70). GABA-A receptors are ligand-gated
chloride ion channels. They are pentameric receptors composed
of al-6, B1-3, y1-3, 3, &, 7, and 6 (71) subunits. The most
common pentameric subunits are comprised of 2a, 28, and
1y or 18 subunits (72). In the GABAergic synapses, GABA-
A 02 subunits are mostly localized on the AIS of pyramidal
neurons (60, 73). GABA-A «2 subunits which possess a high
affinity for GABA neurotransmitter, are characterized by fast
activation and slow deactivation (74). Thus, the functions and
specific localization of GABA-A «2 subunits on the AIS of
pyramidal neurons have a crucial role for inhibiting pyramidal
neuron activity (75). An upregulation of the GABA-A a2 receptor
subunit has been found in the AIS of pyramidal neurons in
schizophrenia (72) (Figure 1). Interestingly, in schizophrenic
individuals the increased expression of GABA-A a2 receptor
subunits is correlated with GAT-1 reductions (76) and seems
to be unrelated to recent use of antipsychotic medications (77).
PV-GABAergic neurons, which project on the AIS of pyramidal
neurons, display decreased expression levels of GAD67 and GAT-
1 mRNAs in schizophrenia (60). Reductions in GAD67 lead to
reduced GABA synthesis and GABA release (78, 79). Therefore,
it is believed that this increase in GABA-A «2 subunit density at
the AIS of pyramidal neurons and the reductions in GAT1, and
PV at the presynaptic level, may be a compensatory mechanism

in response to reduced GABA synthesis and GABA release from
PV-GABAergic chandelier cells (Figure 1). Importantly, these
changes in GABA-A o2 expression are not found in subjects
suffering from other psychiatric disorders and seem to be specific
to schizophrenia psychopathology (77). Furthermore, post-
mortem studies of recently deceased patients with schizophrenia
showed that GABA-A «l and § subunits were reduced in
the dorsolateral PFC. These reductions were not associated
with a recent use of antipsychotic medication (80). Given that
GABA-A al subunit receptors are predominant at synapses
from mature PV-GABAergic basket cells (72), this reduction of
GABA-A al subunits observed in schizophrenia confirm the
weaker GABAergic synaptic transmission from those cells (72).
Importantly, the reduced levels of GAD67, PV, GAT-1, and the
GABA-A receptor subunits al and 3 levels in schizophrenia are
found, not only in dorsolateral PFC, but also in other brain
regions such as the primary visual cortex, anterior cingulate,
and primary motor cortices (72, 81). This indicates that GABA
neurotransmission dysfunction may underlie the diverse range of
symptoms of schizophrenia that comprise a cluster of perceptual,
motor, and cognitive symptoms (72, 82).

CONSEQUENCES OF ALTERED
GABAERGIC FUNCTION IN PV-NEURONS
IN THE DORSOLATERAL PFC IN
SCHIZOPHRENIA

It is well established that working memory impairments are
core cognitive deficits in schizophrenia (83). Working memory
performances are associated with proper prefrontal GABAergic
signaling from PV-GABAergic neurons projecting on the

Frontiers in Psychiatry | www.frontiersin.org

July 2018 | Volume 9 | Article 281


https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles

Renard et al.

Adolescent THC, GABA and Schizophrenia

perisomatic region of pyramidal neurons (79). Therefore,
reduced prefrontal PV-GABAergic neuronal activity can lead
to working memory deficits, a core symptom of schizophrenia
pathology (84). In addition, the interaction between PV-
GABAergic neurons (both chandelier and basket neurons)
and pyramidal neurons in healthy brains is essential for the
induction of synchronized gamma oscillations, at frequencies
comprised between 30 and 80 HZ (83, 85-87). Neural oscillations
and synchronization of cortical networks permit proper
communication between cortical structures and represents an
essential mechanism to support synaptic plasticity and diverse
higher-order cognitive functions, such as learning and memory,
executive functions, attention and, consciousness (88). Increasing
evidence shows that altered PFC gamma oscillations is a cardinal
pathological feature of schizophrenia. For example, impaired
PFC gamma oscillations are observed in the first psychotic
episode of schizophrenia (89). In addition, schizophrenic
patients present abnormal synchronization between cortical
areas and attenuated gamma band oscillations (frequency
range between 30 and 200 Hz) during visual perception and
during higher order cognitive tasks analyzing working memory
and executive functions (55, 88, 90-93). The reduced gamma
oscillatory activity was correlated with reduced performances
in the different cognitive tasks. Patients with schizophrenia also
present attenuated oscillations in the beta and theta frequency
ranges during the 3 phases of working memory processes (i.e.,
encoding, maintenance, and retrieval) (72, 82). Conversely, other
studies have reported that patients with schizophrenia display
enhanced gamma oscillatory activity during working memory
tasks (94, 95), which may be associated with reduced GABAergic
interneuron transmission in cortical circuits and altered function
of PV-positive interneurons (96-98).

It is believed that abnormal gamma band oscillations
are associated with the severity and nature of the different
symptoms of schizophrenia. Indeed, enhanced cortical gamma
band oscillatory activity in schizophrenia may be correlated
with increased positive symptoms such as hallucinations and
reality distortion (99, 100). Conversely, attenuated cortical
gamma band oscillatory activity in schizophrenia may be
correlated with negative symptoms of schizophrenia such as
affective, emotional, and social cognition disturbances (101, 102).
Overall, considerable evidence demonstrates that dysregulated
gamma band oscillatory activities, resulting from impaired
regulation of pyramidal cell firing synchronization from PV-
GABAergic inhibitory neurons, may lead to diverse symptoms
of schizophrenia, including episodic and working memories
deficits, as well as affective and social behavior impairments.

ADOLESCENCE CANNABIS USE,
GABAERGIC SYSTEM AND
SCHIZOPHRENIA

The use of high-THC marijuana strains is correlated with
elevated rates of transient psychotic episodes and poorer clinical
outcomes in psychiatric patient populations (103). A case-
control study showed that daily use of high-THC marijuana

strains increases the risk of developing a psychotic disorder
by five compared to non-users of cannabis (104). Clinical
studies have showed that THC and other cannabinoids can
induce transient positive and negative symptoms and mimic
some of the neurophysiological and cognitive schizophrenia-
like abnormalities. For example, intravenous administration
of THC to healthy adult subjects caused schizophrenia-like
positive and negative symptoms (105). The perceived THC-
induced positive symptoms included euphoria, paranoia, feelings
of unreality depersonalization, thought disturbances, conceptual
disorganization, illusion, and sensorimotor gating deficits.
The perceived THC-induced negative symptoms included
attenuation of emotional responses, emotional withdrawal, and
lack of motivation. In addition, administration of THC to
healthy adult individuals induced various cognitive deficits in
working memory, verbal fluency, memory recall, attention,
and inhibitory control (105, 106). Finally, administration of
THC to patients with schizophrenia intensifies their positive
and cognitive symptoms (107). On the other hand, it is
important to note that the major non-psychoactive component
of cannabis, cannabidiol (CBD), can induce opposite effects
to THC and has demonstrated antipsychotic and antiepileptic
properties. Indeed, recent clinical and preclinical evidence
have demonstrated that CBD 1is able to prevent THC-
induced psychotic-like effects and improve positive symptoms
of schizophrenia without inducing the well- known deleterious
side effects provoked by classical antipsychotics (108-116).
CBD has also been shown to be an effective treatment for
epilepsy, with very few adverse effects (117). However, the
phytochemical profile of illicit cannabis has profoundly changed
over the past three decades: with THC content dramatically
increasing along with a relative decrease in CBD content
(2).

Importantly, from a neurodevelopmental perspective,
increased exposure to high-THC cannabis strains among
teens is of crucial significance given that several large
epidemiological studies have reported increased risk of
developing severe cognitive deficits and psychiatric disorders
in adulthood, including schizophrenia (7). This risk appears
to be higher if the use of cannabis occurs before age of 17.
What neuropharmacological processes underlie these effects?
THC, the primary psychoactive component of cannabis acts
on CBIRs, which play a crucial neurodevelopmental role
in the maturation of the adolescent CNS and contribute
to the emergence of adaptive adult cognition and affective
regulation (19, 20). It is therefore possible that THC-induced
dysregulation of CB1R signaling during adolescence may impact
CBI1R-mediated neural maturational processes, leading to
persistent deleterious consequences on adult brain function.
As discussed previously, adolescent brain development in
humans and animals involves massive synaptic remodeling
and pruning (10, 11, 13). This critical period also involves the
formation of new neural pathways between cortical regions
and sub-cortical areas, such as the limbic/mesolimbic systems
which are responsible for emotional, cognitive, and affective
processing and wherein CB1Rs are found in abundance
(19, 20, 118). Therefore, THC-induced disruption of this
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cortical-subcortical neurodevelopmental interplay may underlie
long-term neuropsychiatric disturbances in adulthood.
Consistent with this clinical data, we and others have
previously demonstrated in rodent neurodevelopmental models
that adolescent exposure to THC or other CBIR agonists
produce several behavioral abnormalities persisting into
adulthood, similar to symptoms observed in psychiatric diseases,
notably schizophrenia. These behavioral abnormalities included
significant social interaction and social cognition deficits,
memory impairments, cognitive filtering deficits, and increased
anxiety (119-129) (Figure 2). Interestingly, the administration
of a mixture of both CBD and THC in adolescent male mice was
able to prevent the persistent behavioral abnormalities induced
by THC (130). Importantly, many of the extant preclinical
studies have been conducted exclusively on male rodents. Given
that the deleterious effects of THC can vary depending on sex,
particularly in measures of emotional and cognitive function
(131, 132), future studies are required to better understand the
possible mechanistic role(s) of sex differences in these effects.

We have demonstrated previously that the behavioral deficits
induced by THC are associated with a profound hyper-
DAergic neuronal state in the ventral tegmental area (VTA),
characterized by hyperactive frequency and bursting levels in
A10 DA neurons, consistent with mesolimbic dysregulation
found in schizophrenia. In addition, we have observed long-
term molecular alterations in several schizophrenia-related
PFC signaling pathways, including profound reductions in the
glycogen-synthase-kinase-3 (GSK-3), p70S6-kinase, Akt (protein
kinase B), and mammalian target of rapamycin (mTOR)
molecular phosphorylation cascades (122, 123), which have been
consistently associated with dysregulation of DAergic function
and neuropsychiatric disorders (108, 116, 133-136) (Figure 2).
However, what specific neurodevelopmental mechanisms may
underlie the development of these abnormal behavioral, molecular,
and neuronal phenotypes following exposure to chronic THC?

Considerable clinical and pre-clinical evidence points to
cannabinoid-mediated modulation of GABAergic function as
a critical feature underlying the neuropsychiatric side-effects

Signaling pathway / Plasticity
synaptic markers alterations

BEHAVIOURAL ABNORMALITIES —/
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FIGURE 2 | Chronic THC exposure during adolescence is associated with persistent behavioral disorders in adulthood including social interaction/cognition deficits,
cognitive filtering disturbances, memory deficits and anxiety. These behavioral disorders were accompanied by alterations in signaling pathway and synaptic plasticity
markers and hyperDAergic activity in the mesocorticolimbic pathway, resembling schizophrenia.
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of THC. For example, CBIRs are found in abundance on
the axon terminals of cortical GABA basket neurons, which
selectively target cell bodies of pyramidal neurons (84).
Under basal conditions, activation of CBIRs by exogenous
cannabinoids suppresses GABA release (137), consequently
decreasing inhibition of the PFC. Thus, chronic exposure to
cannabis can induce profound reductions in GABA synthesis
in cortical GABA basket neurons, which can ultimately lead
to increasing the risk and severity of schizophrenia. Moreover,
the strategic location of CB1Rs on PFC GABAergic neurons
confers a crucial role in the maintenance and control of
neuronal network oscillations and homeostatic regulation of
the excitatory/inhibitory neuronal activity of CB1Rs within the
PFC (18-20). Indeed, cannabis users show decreased theta
oscillations that are correlated with working memory deficits
(138). In addition, dose-dependent use of cannabis attenuates
event-related potential amplitudes in an auditory task assessing
attention and cognition, suggesting a decrease in network
responses to a stimulus (139).

In animal models, CBIR activation by acute or chronic
cannabinoids in the PFC induces alterations of cortical
oscillations in theta and gamma bands (140-142). Moreover,
systemic administration of CBIR agonists reduces prefrontal
and hippocampal gamma and theta oscillations, an effect that
is concomitant with spatial working memory impairments
(143). In anesthetized rats, activation of CB1Rs by THC

within the PFC, not only reduces GABA release but also
increases DA and glutamate levels (144). Therefore, similar
to schizophrenia-related neuropathology, CBIR activation by
exogenous cannabinoids can disrupt cortical network dynamics,
and consequently the function of neuronal circuits involved in
higher cognitive functions. Furthermore, reduced GABAergic
inhibitory activity on pyramidal neurons in the PFC can lead
to dysregulated prefrontal pyramidal neuronal networks and
impaired gamma oscillatory activities. This may provoke sub-
cortical dysregulation of DAergic transmission, and associated
schizophrenia-like affective and cognitive deficits (32, 145-147),
such that a loss in intrinsic PFC inhibitory substrates may lead
to hyper-drive of PFC > VTA outputs, resulting in sub-cortical
hyperactivity of mesolimbic DA states. Indeed, given the bi-
directional efferent and afferent relationships between the PFC
and VTA, our previously described molecular adaptations in
the PFC are consistent with subcortical hyperDAergic drive to
the PFC. For example, increased activation of DA D2Rs in
the PFC is associated with profound downregulation of GSK-3
phosphorylation states (111), consistent with our observed PFC
phenotypes following adolescent THC exposure. In addition, we
recently reported that chronic THC treatment in adolescent rats
induced long-term neuronal and behavioral abnormalities into
adulthood that were associated with hypofunction of GABAergic
neurotransmission in the adult PFC (148). Specifically, at the
behavioral level, adolescent THC pre-treated rats displayed
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displayed short-term memory deficits. Microinfusions of MUS within the PFC restored short-term memory deficits as compared to intra-PFC VEH controls in the object
recognition task during adulthood. (B) Adolescent THC pretreated rats displayed deficits in social motivation (left) and social cognition (right). Microinfusions of MUS
within the PFC improved social motivation (left) and social cognition (right) as compared to intra-PFC VEH controls in the social interaction task during adulthood. (C)
Adolescent THC pretreated rats displayed increased anxiety. Microinfusions of MUS within the PFC decreased anxiety levels as compared to intra-PFC VEH controls
in the light dark box task during adulthood. (D) Adolescent THC pretreated rats displayed hypolocomotor activity. Microinfusions of MUS within the PFC normalize
locomotor activity as compared to intra-PFC VEH controls in the open field task during adulthood. Figure modified from Renard et al. (148). *P < 0.05; **P < 0.01.

memory impairments, deficits in social interaction and social
cognition, anxiety, and amotivational behavior (148). At the
neuronal level, adolescent THC treatment induced persistent
hyperDAergic activity in the adult VTA, concomitant with
increased bursting and firing neuronal activity of pyramidal
cells and enhanced prefrontal gamma oscillatory activities in
the adult PFC (148) (Figure 3). Chronic THC treatment during
adolescence also induced a profound decrease of GAD67 in
the adult PFC (148) (Figure 3), consistent with the previous
findings from Zamberletti et al. showing that adolescent THC
chronic exposure reduced prefrontal basal GABA levels and
GADG67 expression in PV and cholecystokinin (CCK) GABAergic
neurons in adulthood (129).

Importantly, we demonstrated that activation of GABA-A
receptor with muscimol in the PFC, was able to restore the
behavioral and DAergic neuronal abnormalities induced by
adolescent THC exposure (148) (Figure 4). These novel data
identified a direct mechanism between prefrontal GABAergic
hypofunction and dysregulation of DAergic neurotransmission
in sub-cortical areas; both phenomena being cardinal features
of schizophrenia psychopathology. Consistent with our findings,
another study has demonstrated that the COMT genotype,
in association with adolescent THC exposure, can modulate

both cortical GABAergic and mesocortical DAergic neuronal
structure and function. Specifically, COMT KO mice that
have been exposed to THC during adolescence, showed
more schizophrenia-like neuronal changes as compared to
their WT counterparts, including excessive DAergic activity
in the mesolimbic system as well as increased density of
cortical GABAergic neurons (149). This indicates and confirms
that there are functional interactions between GABAergic
and DAergic systems within the mesocorticolimbic pathway
following adolescent THC exposure. Finally, our recent findings
demonstrated that prefrontal GABAergic hypofunction can
induce persistent disinhibition of the PFC and lead to
pathological abnormalities consistent with PFC dysregulation,
similar to those observed in psychiatric disorders, such as
schizophrenia (148). Similarly, a recent interesting study showed
that adolescent THC exposure in female rats caused reduced
expression of several genes involved in synaptic plasticity within
the PFC, including markers for the glutamatergic and GABAergic
systems (i.e., Grm3, Gabra, Abat, and Dig4 genes) (150).
Interestingly, these genes have been implicated in schizophrenia
and mood disorders (150).

Together, these findings underscore the important functional
role of persistent excitatory/inhibitory neuronal activity
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imbalance within the PFC following adolescent THC exposure.
These PFC-related adaptations following THC exposure likely
serve as critically important mechanisms underlying the affective
and cognitive abnormalities following adolescent THC exposure.

CONCLUSIONS AND FUTURE
DIRECTIONS

Adolescence represents a critical period of neurodevelopment
during which external stimuli can persistently change
brain function. Overstimulation of CBI1Rs by THC during
this sensitive developmental period could interfere with
normal CBI1R-mediated developmental processes and the
maturation of PFC GABAergic neurons, thereby leading to
long-term dysfunction in prefrontal excitatory/inhibitory
(Glutamate/GABA) balance, desynchronization of PFC neuronal
networks, and deficits associated with schizoaffective disorders.
Prefrontal hypofunction of GABAergic signaling is a cardinal
pathological feature of schizophrenia and seems to be a
mechanism underlying the neuronal and behavioral disturbances
induced by chronic THC exposure during adolescence. Thus,
there are profound clinical and public health policy implications
from these studies in terms of limiting adolescents to cannabis
exposure and/or synthetic compounds that act as direct agonists
at the CBI1R. In particular, cannabis strains (e.g., sinsemilla) or
consummation formats (e.g., dabs or shatter) that may contain
particularly high concentrations of THC may be particularly
neurotoxic during adolescent neurodevelopmental windows.
Although most preclinical studies involving adolescent
THC exposure have highlighted the enduring long-lasting
effects of neurodevelopmental THC exposure into adulthood,
our most recent evidence suggests that the detrimental
persistent effects of THC during adolescence on the adult
mesocorticolimbic pathway may be reversed by restoration
of prefrontal GABAergic neurotransmission in adulthood.
Therapeutic benefits of GABAergic compounds have been
demonstrated in clinical studies by their abilities to improve
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