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In the wake of recent advances in scientific research, personalized medicine using

deep learning techniques represents a new paradigm. In this work, our goal was to

establish deep learning models which distinguish responders from non-responders,

and also to predict possible antidepressant treatment outcomes in major depressive

disorder (MDD). To uncover relationships between the responsiveness of antidepressant

treatment and biomarkers, we developed a deep learning prediction approach resulting

from the analysis of genetic and clinical factors such as single nucleotide polymorphisms

(SNPs), age, sex, baseline Hamilton Rating Scale for Depression score, depressive

episodes, marital status, and suicide attempt status of MDD patients. The cohort

consisted of 455 patients who were treated with selective serotonin reuptake inhibitors

(treatment-response rate = 61.0%; remission rate = 33.0%). By using the SNP

dataset that was original to a genome-wide association study, we selected 10

SNPs (including ABCA13 rs4917029, BNIP3 rs9419139, CACNA1E rs704329, EXOC4

rs6978272, GRIN2B rs7954376, LHFPL3 rs4352778, NELL1 rs2139423, NUAK1

rs2956406, PREX1 rs4810894, and SLIT3 rs139863958) which were associated with

antidepressant treatment response. Furthermore, we pinpointed 10 SNPs (including

ARNTL rs11022778, CAMK1D rs2724812, GABRB3 rs12904459, GRM8 rs35864549,

NAALADL2 rs9878985,NCALD rs483986, PLA2G4A rs12046378, PROK2 rs73103153,

RBFOX1 rs17134927, and ZNF536 rs77554113) in relation to remission. Then, we

employed multilayer feedforward neural networks (MFNNs) containing 1–3 hidden

layers and compared MFNN models with logistic regression models. Our analysis

results revealed that the MFNN model with 2 hidden layers (area under the receiver

operating characteristic curve (AUC) = 0.8228 ± 0.0571; sensitivity = 0.7546 ±

0.0619; specificity = 0.6922 ± 0.0765) performed maximally among predictive models

to infer the complex relationship between antidepressant treatment response and
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biomarkers. In addition, the MFNN model with 3 hidden layers (AUC = 0.8060 ±

0.0722; sensitivity = 0.7732 ± 0.0583; specificity = 0.6623 ± 0.0853) achieved best

among predictive models to predict remission. Our study indicates that the deep MFNN

framework may provide a suitable method to establish a tool for distinguishing treatment

responders from non-responders prior to antidepressant therapy.

Keywords: antidepressant, deep learning, genome-wide association studies,major depressive disorder,multilayer

feedforward neural networks, personalized medicine, single nucleotide polymorphisms

INTRODUCTION

Personalized medicine, an emerging paradigm of medicine,
is developing into the cornerstone of healthcare practice
in terms of medical decisions and treatments tailored to
the individual patient (1, 2). More precisely, patients are
partitioned into subgroups by genetic and clinical characteristics,
thereby medications could be tailored to specific patients with
comparable genetic and clinical biomarkers (3). More broadly,
personalized medicine promises to offer accurate diagnostic and
therapeutic approaches in a patient-specific manner during all
stages of patient care, including prevention, diagnosis, prognosis,
treatment, and follow-up (4). The usage of genetic and clinical
biomarkers has highlighted a key role in personalized medicine
in the field of chronic diseases such as psychiatric or mental
disorders (5, 6). Although the integration of personalized
medicine into clinical decision making is still emerging, symbolic
progress has recently been made by using genetic and clinical
information to facilitate better predictions of patients’ responses
to targeted therapy (7). For instance, several genome-wide
association studies (GWAS) have been carried out to pinpoint
susceptible genetic loci influencing antidepressant treatment
response as an entity (5, 6, 8). Moreover, accumulating evidence
implicates that carefully chosen single nucleotide polymorphisms
(SNPs) could be utilized as genetic biomarkers to infer clinical
treatment outcomes and adverse drug reactions in patients with
major depressive disorder (MDD) treated with antidepressants
(5, 6, 8).

Recent advances in deep learning have demonstrated its power
to learn and recognize complex non-linear hierarchical patterns
based on large-scale empirical data (9). In general, the objective
of deep learning is to facilitate an algorithm to learn a hierarchical
representation of the data via multiple layers of abstraction
such as multi-layer feedforward neural networks (MFNNs) (10).
Due to new techniques such as the deployment of General-
Purpose Computing on Graphics Processing Units, deep learning
has carried out state-of-the-art performances on a wide variety
of applications such as molecular biology (11). In the generic
terms, the workflow for a deep learning algorithm is comprised
of three portions including the model building from example
inputs, evaluation and tuning of the model, and then the model
production in prediction-making (12). In other words, a deep
learning algorithm for classification applications such as medical
diagnosis in personalized medicine is a procedure for choosing
the best hypothesis from a set of alternatives that fit a set of
observations (13).

The use of personalized medicine in terms of predicting
antidepressant treatment response is still in its infancy. Scant
human studies have investigated methods to build prediction
models for estimating antidepressant treatment response. A
study by Kautzky et al. suggested that a random forest
prediction model for treatment outcome correctly identified
25% of responders by using 3 SNPs (including BDNF rs6265,
PPP3CC rs7430, and HTR2A rs6313) and a clinical variable
(that is, melancholia) (14). The following study by Patel et al.
reported that an alternating decision tree model estimated
treatment response with 89% accuracy by using structural
imaging, age and mini-mental status examination scores (15).
Moreover, another study by Chekroud et al. implicated that
a machine learning model predicted clinical remission by
using 25 variables with 59% accuracy (16). Iniesta et al. also
demonstrated that regularized regression models based on
clinical and demographical characteristics can predict response
with clinically meaningful accuracy (17). Finally, a recent study
by Maciukiewicz et al. showed that a support vector machine
model forecasted treatment response with 52% accuracy by using
SNPs (18).

In light of the aforementioned considerations, we
hypothesized that it could be feasible and effective to use deep
learning to build predictive models of antidepressant treatment
outcome. To the best of our knowledge, no previous studies have
been performed to evaluate predictive models for drug efficacy
of antidepressants by using deep learning techniques. First, we
explored for susceptibility loci by conducting a GWAS study with
antidepressant treatment response per se in a hypothesis-free
manner. Then, we combined genetic and clinical variables to
optimize prediction of antidepressant treatment outcome using
deep MFNN models. We selected the deep MFNN models
because these models can be commonly utilized to solve complex
applications in classification and predictive modeling and these
models possess the benefits of fault tolerance, non-linearity,
integrality, and real-time operations (19, 20).

MATERIALS AND METHODS

Study Population
The study cohort is comprised of 455 patients, 268 patients
from NHRI (The National Health Research Institutes) and 187
patients from TVGH (Taipei Veterans General Hospital), who
were diagnosed with MDD in two central institutes in Taiwan.
Subjects were part of the International SSRI Pharmacogenomics
Consortium (ISPC) project encompassing 7 member sites from
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5 countries (21). The diagnosis was assessed by board-certified
psychiatrists who interviewed outpatients and obtained medical
records. The inclusion criteria were that (1) subjects were
Taiwanese with a minimum baseline score of 14 on the 21-
item Hamilton Rating Scale for Depression (HRSD), and (2)
either subjects were first-episode cases or had withdrawal of
antidepressants for more than 2 weeks prior to entry into
the study. Exclusion criteria were additional current DSM-
IV Axis I diagnoses (including substance abuse, generalized
anxiety disorders, panic disorders, or obsessive compulsive
disorders), personality disorders, pregnancy, recent suicide
attempt, and major medical and/or neurological disorders. These
patients were treated with selective serotonin reuptake inhibitors
(SSRIs), which include escitalopram (38.5%), paroxetine (38.5%),
fluoxetine (18.3%) and citalopram (4.8%). Patients were assessed
repeatedly at baseline and week 2, 4, and 8 using the 21-item
HRSD.

Experiments were conducted in accordance with the
Declaration of Helsinki and approved by the Institutional
Review Board of Taipei Veterans General Hospital (VGHIRB
No.: 2014-06-001B). Written informed consent was obtained
from all participants ensuring adequate understanding of the
study.

Measurement
Measurements of treatment response were obtained for
participants as follows (22). First, we measured the sum score
of 21-item HRSD at the 8th week of antidepressant treatment
and recoded the results as “non-remitted” if the sum score was
greater than 7 and as “remitted” otherwise. Second, we measured
the percentage change of HRSD (that is, %1HRSD) and recoded
the results as “non-response” if the percentage change was greater
than−50% and as “response” otherwise.

Genotyping Data and Quality Controls
For all participants, SNP genotyping was carried out using
Illumina HumanOmniExpressExome BeadChips in the
International SSRI Pharmacogenomics Consortium. A total
of 455 subjects were genotyped with 951,123 SNPs.

First, we performed quality control procedures with each
individual, including kinship, sample quality, and population
stratification (23). Then, plate-wise genotyping biases were
checked. Samples with plate pass rate greater than 97% were
retained for the subsequent analyses. We removed a total of 18
samples (11 from NHRI and 7 from TVGH) during this step.
Secondly, the inbreeding coefficient and identity by state (IBS)
were examined, and thereby we eliminated samples with strong
kinship. In total, 9 subjects (4 from NHRI and 5 from TVGH)
were removed due to the similarity measures far away from the
clustering (that is, outliers in terms of the IBS distance). Thirdly,
a multidimensional scaling analysis method was utilized with the
genome-wide IBS pairwise distance to eliminate outliers. Our
results showed that none was away from the clustering on the
scatter plot. Finally, 7 patients treated with sertraline (SSRI) and
venlafaxine (serotonin and norepinephrine reuptake inhibitor)
were excluded. As a result, 421 MDD patients were retained for
the subsequent analyses.

In addition, we performed quality control procedures as
follows for SNP exclusion from further analyses (24). We
removed SNPs which failed the Hardy-Weinberg tests with a
P-value less than 0.0001, genotype missing rate greater than
5%, minor allele frequency (MAF) smaller than 0.05, or bad
calling ones in clustering (for example, heterozygous genotypes
were falsely called as homozygous, or homozygous genotypes
were incorrectly called as heterozygous). After performing the
aforementioned quality control procedures, a total of 647,030
SNPs in the samples were retained for the subsequent imputation
analysis. The genotyping call rate was 99.9% for all subjects.

Imputation
Imputation was carried out using IMPUTE2 v3 (25), with
haplotype reference panels (https://mathgen.stats.ox.ac.uk/
impute/data_download_1000G_phase1_integrated_SHAPEIT2.
html) released in March/April 2012 from the 1000 Genomes
Project on the basis of HapMap build 37. Only imputed SNPs
with high genotype information contents (that is, IMPUTE
information score> 0.5) were used in the subsequent association
analyses. In total, 30,040,257 SNPs were imputed with high
confidence for each individual in the samples. Then, we removed
markers which failed the Hardy-Weinberg tests with a p-value
less than 0.0001, genotype missing rate greater than 5%, MAF
smaller than 0.05, or bad calling ones in clustering. As a result,
a total of 4,241,701 SNPs were retained for the subsequent
analyses.

Statistical Analysis
The Student’s t-test was conducted to measure the difference in
the means of two continuous variables. We performed the chi-
square test for categorical data. In order to evaluate the relation
of the investigated SNPs with antidepressant treatment outcome,
we conducted a logistic regression analysis to evaluate the odds
ratios (ORs) and their 95% confidence intervals (CIs), adjusting
for covariates including age, sex, and site (26). Multiple testing
was adjusted by the Bonferroni correction. The criterion for
significance was set at P < 0.05 for all tests. Data are presented
as the mean± standard deviation.

To investigate SNP-SNP interactions, we leveraged the
generalized multifactor dimensionality reduction (GMDR)
method (27). We tested two-way interactions using 10-fold
cross-validation. The GMDR software provides some output
parameters, including the testing accuracy and empirical P-
values, to assess each selected interaction. Moreover, we provided
age, sex, and site as covariates for SNP-SNP interaction models in
our interaction analyses. Permutation testing obtains empirical
P-values of prediction accuracy as a benchmark based on 1,000
shuffles.

Predictive Model Algorithms
In this study, we employed a key deep learning technique,
MFNNs. Logistic regression analysis, the standard method for
clinical classification (10), was employed to compare with the
MFNN models. The Waikato Environment for Knowledge
Analysis (WEKA) software (10) was utilized to perform these
predictive models.
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An MFNN model consists of one input layer, one or multiple
hidden layers and one output layer. The MFNN model is one
category of artificial neural network algorithms where networks
between entities construct no directed cycles (28). In other words,
a loop or cycle does not occur in the network because the data
only relays in an onward direction from the input neuron panel,
through various panels of the hidden neuron portions (if any),
and then to the output neuron panel.

Moreover, the principal operation of the MFNN model is
subdivided into the learning and retrieving stages in terms of an
algorithmic point of view (19). In the learning stage of theMFNN
model, the back-propagation algorithm (29) is leveraged for the
learning strategy. Additionally, in the retrieving stage, theMFNN
model repeats via all the panels to carry out the retrieval process
at the output panel in keeping with the inputs of test patterns.
On the other hand, from a structural point of view, the MFNN
model is an iterative and spatial neural network that possesses
various panels of hidden neuron portions among the input and
output neuron panels (19).

Here, to train the MFNN models, WEKA’s parameters
were chosen as follows: the momentum = 0.01, the learning
rate = 0.001, the batch size = 100, and the number of
epochs= 500.

Evaluation of the Predictive Performance
The receiver operating characteristic (ROC) methodology was
employed and the area under the ROC curve (AUC) was
calculated to evaluate the performance of predictive models
(30–32). The AUC of a predictive model can be viewed as
the probability that the predictive model will rank a randomly
selected positive sample higher than a randomly selected negative
one (32). Because AUC is a better performance metric than
accuracy, most researchers have adopted AUC for estimating
predictive capability of predictive models nowadays (32). The
better the prediction model, the higher the AUC (30, 32). In the
present work, we utilized AUC to evaluate the performance of
various prediction models on a dataset. Additionally, sensitivity
(i.e., the proportion of correctly predicted responders of all
tested responders) and specificity (i.e., the proportion of correctly
predicted non-responders of all the tested non-responders) were
measured.

Moreover, the repeated 10-fold cross-validation method was
employed to investigate the generalization of the predictive
algorithms generated by the aforementioned models (30,
33). Firstly, we randomly split the whole dataset into 10
separate segments. Secondly, in order to evaluate the predictive
performance, we trained the predictive model using nine-tenths
of the data and tested the predictive model with the remaining
tenth of data. Next, we repeated the previous step nine more
times by leaving out distinct nine-tenths of the data as training
data and a distinct tenth of data as testing data. Finally, we
reported the average estimation over all runs by processing the
aforementioned regular 10-fold cross-validation for 10 times
with distinct batches of data. We estimated the performance
of all predictive models using repeated 10-fold cross-validation
testing.

RESULTS

A total of 421 MDD patients (mean age of 43.7 years and
28.7% of males) were retained for the following analyses after
we removed the subjects with missing or incomplete data.
Table 1 describes the demographic and clinical characteristics
of the study population, including 257 antidepressant treatment
responders and 164 treatment non-responders. The treatment-
response rate in our cohort was 61.0%. Additionally, the
remission rate was 33.0%. Six clinical biomarkers were used in
the subsequent deep learning analyses, including age at time of
consent, sex, marital status (or in a long-term relationship), the
number of depressive episodes until time of study enrollment, 21-
itemHRSD at baseline, and the status of whether the patients had
previously attempted suicide. There was a significant difference
in the number of depressive episodes (P = 0.039) and 21-item
HRSD at baseline (P = 0.013) between the treatment response
and non-response subjects (Table 1). Furthermore, there was a
significant difference in 21-item HRSD at baseline (P = 0.022)
between the remitted and non-remitted subjects (Table 1).

First, we investigated the association between antidepressant
treatment response and 4,241,701 SNPs assessed in a GWAS
study. None of these SNPs reached the genome-wide significance
level (P < 1.2 × 10−8) after Bonferroni correction for
the multiple comparisons. For further investigation in the
subsequent deep learning analyses, we identified 10 key
SNPs showing an evidence of association with antidepressant
treatment responders per se with the criterion of a significant
level of P < 7.5 × 10−5 (Table 2). The top-rated SNPs
encompass rs4917029 adjacent to the ATP binding cassette
subfamily A member 13 (ABCA13) gene, rs9419139 adjacent
to the BCL2 interacting protein 3 (BNIP3) gene, rs704329 in
the calcium voltage-gated channel subunit alpha1 E (CACNA1E)
gene, rs6978272 in the exocyst complex component 4 (EXOC4)
gene, rs7954376 adjacent to the glutamate ionotropic receptor
NMDA type subunit 2B (GRIN2B) gene, rs4352778 in the
LHFPL tetraspan subfamilymember 3 (LHFPL3) gene, rs2139423
in the neural EGFL like 1 (NELL1) gene, rs2956406 in the
NUAK family kinase 1 (NUAK1) gene, rs4810894 adjacent
to the phosphatidylinositol-3,4,5-trisphosphate dependent Rac
exchange factor 1 (PREX1) gene, and rs139863958 adjacent
to the slit guidance ligand 3 (SLIT3) gene. For example,
as demonstrated in Table 2 for the rs4810894 SNP of the
PREX1 gene, there was an indication of an association with
antidepressant treatment response after adjustment of covariates
such as age, sex, and site for the dominant model (OR = 2.70;
95% CI = 1.78–4.10; P = 3.20 × 10−6). Similarly, there was
an indication of an association with antidepressant treatment
response among the subjects after adjustment of covariates for
the dominant model for the rs7954376 SNP of the GRIN2B gene
(OR= 0.29; 95% CI= 0.17–0.49; P = 3.96× 10−6).

In addition, we pinpointed 10 key SNPs showing an evidence
of association with remission per se with the criterion of a
significant level of P < 9.9 × 10−5 (Table 3) for further
investigation in the subsequent deep learning analyses. The
top-rated SNPs encompass rs11022778 in the aryl hydrocarbon
receptor nuclear translocator like (ARNTL) gene, rs2724812 in
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TABLE 1 | Demographic and clinical characteristics of study subjects.

Characteristic All Treatment

responder

Treatment

non-responder

P-value Remission Non-remission P-value

No. of subjects (n) 421 257 164 139 282

Age at time of consent (years) 43.7 ± 14.6 44.7 ± 14.4 41.9 ± 14.9 0.057 43.8 ± 13.6 43.5 ± 15.2 0.849

Sex (male/n; %) 121; 28.7% 79; 30.7% 42; 25.6% 0.257 39; 28.1% 82; 29.1% 0.828

Patient married or in a long-term

relationship (n; %)

242; 57.5% 154; 59.9% 87; 53.0% 0.165 80; 57.6% 161; 57.1% 0.928

Number of depressive episodes

until time of study enrollment

1.4 ± 1.0 1.4 ± 0.9 1.5 ± 1.2 0.039 1.4 ± 0.7 1.5 ± 1.1 0.250

21-item HRSD at baseline 24.4 ± 5.1 24.9 ± 5.0 23.6 ± 5.2 0.013 23.6 ± 5.1 24.8 ± 5.1 0.022

Suicide attempt (n; %) 12; 2.9% 7; 2.7% 5; 3.0% 0.845 4; 2.9% 8; 2.8% 0.981

HRSD, Hamilton Rating Scale for Depression.

Data are presented as mean ± standard deviation.

TABLE 2 | Odds ratio analysis with odds ratios after adjustment for covariates

between treatment response and the top 10 SNPs.

Gene SNP Chr A1 A2 Dominant or recessive model

OR 95% CI P

ABCA13* rs4917029 7 T C 0.26 0.14–0.50 4.34 × 10−5

BNIP3* rs9419139 10 T C 0.29 0.16–0.51 2.42 × 10−5

CACNA1E rs704329 1 A G 2.27 1.51–3.41 7.46 × 10−5

EXOC4 rs6978272 7 A T 0.29 0.17–0.50 6.81 × 10−6

GRIN2B* rs7954376 12 T C 0.29 0.17–0.49 3.96 × 10−6

LHFPL3 rs4352778 7 T A 3.22 1.89–5.47 1.63 × 10−5

NELL1 rs2139423 11 T G 2.49 1.65–3.78 1.68 × 10−5

NUAK1 rs2956406 12 C T 2.39 1.56–3.66 5.89 × 10−5

PREX1* rs4810894 20 A G 2.70 1.78–4.10 3.20 × 10−6

SLIT3* rs139863958 5 C T 0.42 0.27–0.63 4.32 × 10−5

A1, minor allele; A2, major allele; Chr, chromosome; CI, confidence interval; OR, odds

ratio.

Analysis was obtained after adjustment for covariates including age, sex, and site.

*Adjacent gene.

the calcium/calmodulin dependent protein kinase ID (CAMK1D)
gene, rs12904459 adjacent to the gamma-aminobutyric acid type
A receptor beta3 subunit (GABRB3) gene, rs35864549 adjacent to
the glutamate metabotropic receptor 8 (GRM8) gene, rs9878985
in the N-acetylated alpha-linked acidic dipeptidase like 2
(NAALADL2) gene, rs483986 in the neurocalcin delta (NCALD)
gene, rs12046378 adjacent to the phospholipase A2 group IVA
(PLA2G4A) gene, rs73103153 adjacent to the prokineticin 2
(PROK2) gene, rs17134927 in the RNA binding fox-1 homolog
1 (RBFOX1) gene, and rs77554113 adjacent to the zinc finger
protein 536 (ZNF536) gene. For instance, as shown in Table 3

for the rs77554113 SNP of the ZNF536 gene, there was an
indication of an association with remission after adjustment of
covariates such as age, sex, and site for the dominant model
(OR = 4.81; 95% CI = 2.54–9.13; P = 1.49 × 10−6). Similarly,
there was an indication of an association with remission among
the subjects after adjustment of covariates for the dominant
model for the rs12904459 SNP of the GABRB3 gene (OR = 2.53;
95% CI= 1.64–3.90; P = 2.58× 10−5).

TABLE 3 | Odds ratio analysis with odds ratios after adjustment for covariates

between remission and the top 10 SNPs.

Gene SNP Chr A1 A2 Dominant or recessive model

OR 95% CI P

ARNTL rs11022778 11 G T 2.52 1.59–4.00 9.09 × 10−5

CAMK1D rs2724812 10 C T 3.50 1.88–6.52 7.88 × 10−5

GABRB3* rs12904459 15 C T 2.53 1.64–3.90 2.58 × 10−5

GRM8* rs35864549 7 C A 3.28 1.81–5.94 8.68 × 10−5

NAALADL2 rs9878985 3 T C 0.42 0.28–0.65 8.23 × 10−5

NCALD rs483986 8 T A 3.92 2.01–7.62 5.99 × 10−5

PLA2G4A* rs12046378 1 A T 2.36 1.53–3.63 9.56 × 10−5

PROK2* rs73103153 3 T C 2.87 1.70–4.85 8.58 × 10−5

RBFOX1 rs17134927 16 C T 2.65 1.66–4.22 4.14 × 10−5

ZNF536* rs77554113 19 A G 4.81 2.54–9.13 1.49 × 10−6

A1, minor allele; A2, major allele; Chr, chromosome; CI, confidence interval; OR, odds

ratio.

Analysis was obtained after adjustment for covariates including age, sex, and site.

*Adjacent gene.

Furthermore, we integrated the aforementioned 6 clinical
biomarkers with the top 10 SNPs of treatment response to build
the predictive models for antidepressant treatment response
by using the deep MFNN framework. Table 4 summarizes the
results of repeated 10-fold cross-validation experiments by deep
MFNN models and logistic regression using 16 biomarkers
including the aforementioned 10 SNPs of treatment response and
6 clinical biomarkers. For deep MFNN models, we performed
a series of different architectures containing 1, 2, and 3 hidden
layers. Figure 1 shows an example of architecture of the MFNN
model with 3 hidden layers. To measure the performance of
predictionmodels, we used the ROCmethodology and calculated
the AUC, sensitivity, and specificity for these four predictive
models using 16 biomarkers. As indicated in Table 4, the average
values of AUC for the deep MFNN prediction models of
1, 2, and 3 hidden layers were 0.8211 ± 0.0571, 0.8228 ±

0.0571, and 0.8220 ± 0.0570, respectively. Of all the MFNN
prediction models, the deep MFNN model with 2 hidden layers
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TABLE 4 | The results of repeated 10-fold cross-validation experiments for predicting treatment response using multilayer feedforward neural networks (MFNNs) and

logistic regression with 16 biomarkers and 6 clinical biomarkers only.

Algorithm AUC Sensitivity Specificity Number of biomarkers

MFNN with

1 hidden layer

0.8211 ± 0.0571 0.7496 ± 0.0579 0.6775 ± 0.0731 16

MFNN with

2 hidden layers

0.8228 ± 0.0571 0.7546 ± 0.0619 0.6922 ± 0.0765 16

MFNN with

3 hidden layers

0.8220 ± 0.0570 0.7535 ± 0.0611 0.6951 ± 0.0731 16

Logistic Regression 0.8168 ± 0.0553 0.7493 ± 0.0626 0.7066 ± 0.0785 16

MFNN with

1 hidden layer

0.5597 ± 0.0808 0.6081 ± 0.0113 0.3919 ± 0.0113 6

MFNN with

2 hidden layers

0.5606 ± 0.0836 0.6081 ± 0.0113 0.3919 ± 0.0113 6

MFNN with

3 hidden layers

0.5571 ± 0.0788 0.6081 ± 0.0113 0.3919 ± 0.0113 6

Logistic Regression 0.5374 ± 0.0762 0.5881 ± 0.0432 0.4112 ± 0.0418 6

AUC, the area under the receiver operating characteristic curve.

Data are presented as mean ± standard deviation.

gave better performance than the other two models in terms
of AUC. Among all four predictive models, the deep MFNN
model with 2 hidden layers performed best, outperforming the
logistic regression model (AUC = 0.8168 ± 0.0553) in terms
of AUC. For comparison, we also built the predictive models
for antidepressant treatment response using only 6 clinical
biomarkers. The models with 16 biomarkers performed better
than the ones with only 6 clinical biomarkers (Table 4).

Moreover, we combined the aforementioned 6 clinical
biomarkers with the top 10 SNPs of remission to construct
the predictive models for remission by using the deep MFNN
framework. Table 5 summarizes the results of repeated 10-fold
cross-validation experiments by deep MFNNmodels and logistic
regression using 16 biomarkers including the aforementioned
10 SNPs of remission and 6 clinical biomarkers. For deep
MFNN models, we achieved a series of different architectures
containing 1, 2, and 3 hidden layers. As indicated in Table 5, the
average values of AUC for the deep MFNN prediction models
of 1, 2, and 3 hidden layers were 0.8042 ± 0.0729, 0.8047 ±

0.0727, and 0.8060 ± 0.0722, respectively. Of all the MFNN
prediction models, the deep MFNN model with 3 hidden layers
gave better performance than the other two models in terms of
AUC. Among all four predictive models, the deep MFNN model
with 3 hidden layers performed best, outperforming the logistic
regression model (AUC = 0.7985 ± 0.0772) in terms of AUC.
For comparison, we also built the predictive models for remission
using only 6 clinical biomarkers. The models with 16 biomarkers
performed better than the ones with only 6 clinical biomarkers
(Table 5).

Finally, the GMDR analysis was used to assess SNP-SNP
interactions between the top 10 SNPs in antidepressant treatment
response including age, sex, and site as covariates. Table 6

summarizes the results obtained from GMDR analysis for
SNP-SNP interaction models with covariate adjustment. As
shown in Table 6, there was a significant SNP-SNP interaction

involving BNIP3 rs9419139 and PREX1 rs4810894 (P < 0.001) in
influencing antidepressant treatment response. We also assessed
SNP-SNP interactions between the top 10 SNPs in remission
including age, sex, and site as covariates. As shown in Table 6,
there was a significant SNP-SNP interaction involving ARNTL
rs11022778 and ZNF536 rs77554113 (P < 0.001) in influencing
remission.

DISCUSSION

Our analysis is the first study to date to leverage deep learning for
building predictive models of antidepressant treatment outcome
among Taiwanese MDD individuals with the GWAS data. In
this study, we pinpointed that the deep MFNN model with 2
hidden layers outperformed the logistic regression model as well
as other predictive models in terms of AUC for distinguishing
antidepressant treatment responders and non-responders in
MDD. We also found that the deep MFNN model with three
hidden layers exceeded the logistic regression model as well
as other predictive models in terms of AUC for predicting
remission in MDD. Additionally, we identified 26 predictive
variables of antidepressants, including 6 clinical biomarkers, 10
SNPs for treatment response, and 10 SNPs for remission. The
6 clinical biomarkers encompass the patient’s age at time of
consent, sex, marital status (or in a long-term relationship), the
number of depressive episodes until time of study enrollment,
21-item HRSD at baseline, and the status of suicide attempts.
By using the GWAS data, we further tracked down the top 10
SNPs showing an evidence of association with antidepressant
treatment response as well as remission, respectively. Moreover,
we combined the 6 clinical predictors with the 10 genetic
variants to establish the predictive models of antidepressant
treatment outcome as well as remission by using the deep MFNN
framework. Our data also indicated that our deep MFNNmodels
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FIGURE 1 | An example architecture of a multilayer feedforward neural

network (MFNN) model with 3 hidden layers. The MFNN model contains 16

units in the input layer corresponding to 16 biomarkers (including 10 SNPs and

6 clinical predictors). The MFNN model is configured with 2 units in the output

layer corresponding to antidepressant treatment outcome (that is,

antidepressant treatment responders and non-responders).

may provide a suitable approach to create predictive models
for forecasting antidepressant treatment response as well as
remission with clinically meaningful accuracy. Therefore, our
deep MFNN approach is a proof of concept of a deep learning
predictive tool for antidepressant efficacy prior to antidepressant
treatment.

In the present study, we found that 10 potential SNPs
(including ABCA13 rs4917029, BNIP3 rs9419139, CACNA1E
rs704329, EXOC4 rs6978272, GRIN2B rs7954376, LHFPL3
rs4352778, NELL1 rs2139423, NUAK1 rs2956406, PREX1
rs4810894, and SLIT3 rs139863958) may play an important
role in the modulation of antidepressant treatment response
in a Taiwanese population by using a GWAS study. However,
to our knowledge, no studies have been implicated these
SNPs for drug efficacy of antidepressants. The functional
relevance of the effects of these SNPs on antidepressant
treatment response remains to be elucidated. The BNIP3 gene is

located on chromosome 10q26.3 and encodes a mitochondrial
protein which is implicated in several functions linked to
antidepressive effects as well as the action of antidepressants
(34). The ABCA13, PREX1, and SLIT3 genes have been
suggested to link with MDD (35–37). The CACNA1E gene has
been shown to be associated with bipolar disorder (38). The
GRIN2B and EXOC4 genes have been found to be in relation
to schizophrenia (39, 40). The LHFPL3, NELL1, and NUAK1
gene might be connected to the synapse function, mental
development delay, and neuropsychiatric disorders, respectively
(41–43).

Moreover, we identified 10 potential SNPs (including
ARNTL rs11022778, CAMK1D rs2724812, GABRB3 rs12904459,
GRM8 rs35864549, NAALADL2 rs9878985, NCALD rs483986,
PLA2G4A rs12046378, PROK2 rs73103153, RBFOX1 rs17134927,
and ZNF536 rs77554113) to be associated with remission in
a Taiwanese population by using a GWAS study. The ARNTL
gene, located on chromosome 11p15.3, is one of the clock
genes, representing the hallmark of circadian rhythms that have
been shown to influence the behavioral effects of psychoactive
drugs (44). ARNTL rs11022778 SNP has also been suggested
to be involved to in the susceptibility of mood disorders
(both MDD and bipolar disorders) and suicide attempts (45,
46). The GRM8, PLA2G4A, and PROK2 genes were found to
be associated with MDD (47–49). The NCALD and ZNF536
genes have been shown to be linked with bipolar disorder
(50, 51). The CAMK1D, GABRB3, and RBFOX1 genes have
been suggested to contribute to schizophrenia physiopathology
(52–54). The NAALADL2 gene has been implicated to cause
autism spectrum disorder, a neurodevelopmental disorder
(55).

On another note, our deep MFNN framework utilized 6
clinical biomarkers encompassing demographics data (such
as age, sex, marital status), total scores on baseline severity
measures (such as 21-item HRSD at baseline), recurrent episodes
(that is, the number of depressive episodes until time of
study enrollment), and the status of suicide attempts. These 6
clinical biomarkers have been previously tested as predictors
for predicting possible antidepressant treatment outcome in
MDD in other studies (17, 56). However, to the best of our
knowledge, no prior studies have been evaluated for drug efficacy
of antidepressants by combining these clinical predictors with the
SNP information. There are more potential clinical biomarkers
such as body mass index, MDD subtypes, the age of onset
of MDD, social support, previous antidepressant treatments,
and early life stressful events that could possibly influence
antidepressants treatment response (17, 56). However, our study
did not comprise these clinical biomarkers due to lack of data.

Remarkably, another intriguing finding was that we further
inferred the epistatic effects between BNIP3 rs9419139 and
PREX1 rs4810894 in influencing antidepressant treatment
response as well as the epistatic effects between ARNTL
rs11022778 and ZNF536 rs77554113 in influencing remission by
using the GMDR approach. To our knowledge, no other study
has been conducted to weigh SNP-SNP interactions between
these SNPs. The ARNTL and BNIP3 gene have been implicated
to influence psychoactive drugs and antidepressants (34, 44). The
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TABLE 5 | The results of repeated 10-fold cross-validation experiments for predicting remission using multilayer feedforward neural networks (MFNNs) and logistic

regression with 16 biomarkers and 6 clinical biomarkers only.

Algorithm AUC Sensitivity Specificity Number of biomarkers

MFNN with

1 hidden layer

0.8042 ± 0.0729 0.7689 ± 0.0579 0.6580 ± 0.0839 16

MFNN with

2 hidden layers

0.8047 ± 0.0727 0.7734 ± 0.0593 0.6643 ± 0.0832 16

MFNN with

3 hidden layers

0.8060 ± 0.0722 0.7732 ± 0.0583 0.6623 ± 0.0853 16

Logistic Regression 0.7985 ± 0.0772 0.7722 ± 0.0645 0.6753 ± 0.0932 16

MFNN with

1 hidden layer

0.6089 ± 0.0848 0.6698 ± 0.0073 0.3302 ± 0.0073 6

MFNN with

2 hidden layers

0.6135 ± 0.0871 0.6698 ± 0.0073 0.3302 ± 0.0073 6

MFNN with

3 hidden layers

0.6116 ± 0.0872 0.6698 ± 0.0073 0.3302 ± 0.0073 6

Logistic Regression 0.5922 ± 0.0878 0.6501 ± 0.0292 0.3330 ± 0.0290 6

AUC, the area under the receiver operating characteristic curve.

Data are presented as mean ± standard deviation.

TABLE 6 | SNP-SNP interaction models identified by the GMDR method with

adjustment for age, sex, and site.

Phenotype SNP-SNP

interaction

model

Testing accuracy (%) P-value

Antidepressant

treatment response

BNIP3 rs9419139,

PREX1 rs4810894

66.92 P < 0.001

Remission ARNTL

rs11022778,

ZNF536

rs77554113

59.69 P < 0.001

GMDR, generalized multifactor dimensionality reduction.

P-value was based on 1,000 permutations. Analysis was obtained after adjustment for

covariates including age, sex, and site.

PREX1 and ZNF536 genes have been shown to be associated with
MDD and bipolar disorder, respectively (37, 50). The biological
mechanisms of these SNP-SNP interactions on antidepressant
treatment outcome remain to be elucidated.

This study has both limitations and strengths. The major
weakness is that the novel findings related to the selected
SNPs were not validated by other independent cohorts and
the MFNN models were not verified by an independent cohort
or dataset. Both the sensitivity and specificity of the model
were also not adequate enough to predict treatment response
in clinical practice. In addition, our study was carried out
using four different SSRI antidepressants and some patients
had concomitant use of alprazolam, lorazepam or clonazepam
for insomnia. Moreover, the present study was underpowered
because of limited sample size, and few replications of the
effects and uncertain biological mechanisms were found for
some selected SNPs on antidepressant treatment outcome.
Therefore, our findings warrant much more research to
evaluate whether the observations are reproducible in various

ethnic populations (57). The use of SNPs in this study serves
as a strategy for building the MFNN models, and these
selected SNPs will need to be replaced with significant SNPs
from much larger and more rigorous studies in the future.
Future clinical trials are needed to facilitate a comprehensive
assessment of the predictive models for antidepressant
treatment outcome with different ethnic populations (57).
By contrast, the main strength of our work is that we utilized
rigorously phenotyped antidepressant response in MDD
patients to assess influential SNPs among the investigated
genes.

CONCLUSIONS

In conclusion, we carried out deep learning predictive models
for assessing antidepressant treatment outcome in Taiwanese
subjects. Our findings demonstrate that our deep MFNN
framework may provide a plausible way to build predictive
models for estimating antidepressant treatment response with
clinically meaningful accuracy. Thus, we could anticipate that the
results of our studies could be generalized for genomics studies
of personalized medicine in predicting treatment response for
human disorders and could be employed to establish molecular
diagnostic and prognostic tools over the next few years. It
is essential to evolve further understandings into the role of
these deep learning predictive models investigated in this study
by using independent replication studies with larger sample
sizes.
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