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People with Insomnia Disorder (ID) not only experience abundant nocturnal mentation,

but also report altered spontaneous mental content during daytime wakefulness, such

as an increase in bodily experiences (heightened somatic awareness). Previous studies

have shown that resting-state EEG can be temporally partitioned into quasi-stable

microstates, and that these microstates form a small number of canonical classes that

are consistent across people. Furthermore, the microstate classes have been associated

with individual differences in resting mental content including somatic awareness. To

address the hypothesis that altered resting mental content in ID would be reflected in

an altered representation of the corresponding EEG microstates, we analyzed resting-

state high-density EEG of 32 people with ID and 32 age- and sex-matched controls

assessed during 5-min eyes-closed wakefulness. Using data-driven topographical k-

means clustering, we found that 5 microstate classes optimally explained the EEG

scalp voltage map sequences across participants. For each microstate class, 3 dynamic

features were obtained: mean duration, frequency of occurrence, and proportional

coverage time. People with ID had a shorter mean duration of class C microstates, and

more frequent occurrence of class Dmicrostates. The finding is consistent with previously

established associations of these microstate properties with somatic awareness, and

increased somatic awareness in ID. EEG microstate assessment could provide objective

markers of subjective experience dimensions in studies on consciousness during the

transition between wake and sleep, when self-report is not possible because it would

interfere with the very process under study. Addressing somatic awareness may benefit

psychotherapeutic treatment of insomnia.

Keywords: high-density EEG, resting state, microstate, insomnia disorder, wakefulness, mental content, somatic
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INTRODUCTION

Insomnia Disorder (ID) is a chronic disorder characterized
by both nighttime and daytime symptoms. Nighttime
symptoms include difficulty falling asleep, frequent or prolonged
awakenings during the night, and early morning awakening.
Daytime symptoms refer to fatigue, impaired concentration,
mood disturbances, or other subjective complaints on daytime
functioning (1). Themaintenance of insomnia symptoms is likely
to involve a host of cognitive factors including various forms
of spontaneous mental activity as well as dysfunctional beliefs
and attentional biases (2–4). A recent study found that people

suffering from ID markedly differ from those without sleep
complaints in several dimensions of spontaneous awareness,

thoughts, and feelings (5) quantified using the Amsterdam
Resting State Questionnaire (ARSQ) (6). The neural bases of
the altered cognitive processes in ID are currently not well
understood. As subjective mental states are increasingly viewed
as arising from the interactions between distributed brain
networks (7–9), studying the collective dynamic organization of
brain network activity might reveal key mechanisms underlying
the altered awareness, thoughts, feelings, and other mental states
in ID.

Electroencephalography (EEG) is a relatively cost-efficient
and non-disruptive means to measure brain activity and has been
widely utilized in research on mental processes. EEG microstate
analysis is a particularly valuable methodology for quantifying
the rapid dynamics of large-scale brain networks not captured by
the limited temporal resolution of functional magnetic resonance
imaging (fMRI) (10, 11). EEG microstates are defined as quasi-
stable scalp voltage configurations which on average last for tens
of milliseconds. Transitions between microstates are assumed
to reflect dynamic activation of distributed brain networks at
sub-second timescales (12, 13). Resting-state EEG microstates
during eyes-closed wakefulness aremost commonly grouped into
4 classes (conventionally labeled as microstate classes A, B, C, and
D) through topographical clustering techniques (10), although in
a recent study up to 7 distinct microstate classes were identified
(14). Combined EEG-fMRI has been utilized to confirm that
the blood-oxygen-level dependent (BOLD) correlates of the 4
canonical microstate classes exhibit spatial patterns of well-
known resting-state networks (15). Specifically, intra-individual
fluctuations of class A, B, C, and D microstates were linked to
activation of the “auditory,” “visual,” “salience,” and “attention”
networks, respectively. In addition, studies using electric source
imaging have provided complementary information about the
neural substrates of EEG microstates, such as sources common
to all microstates which cannot be detected with BOLD fMRI
(14, 16).

Although EEG microstates have been hypothesized to
represent the building blocks of mentation, or “atoms of thoughts
and emotions” (17), efforts to directly test the relationship
between microstate properties and subjective mental content
have only recently emerged. An experimental study adopting a
within-subjects task manipulation reported increased presence
of class A and B microstates while participants were engaged
in visual and verbal thinking tasks, respectively (18). A second

study correlated microstate properties during the eyes-closed
resting state with each dimension of the ARSQ across participants
(19). The most robust finding of this study was a negative
association between the proportional coverage time of class C
microstates and the “somatic awareness” dimension of the ARSQ.
The mean duration of class C microstates also showed a negative
association with somatic awareness. In addition, the proportional
coverage time and mean duration of class B microstates were
positively associated with the “comfort” dimension of the ARSQ.
Properties of class D microstates showed rather nonspecific
associations with multiple ARSQ dimensions, while those of class
Amicrostates were not systematically associated with any specific
ARSQ dimension.

Given these observed associations between subjective mental
content and microstate properties during the eyes-closed wake
resting state, we hypothesized that people with ID would exhibit
altered microstate dynamics in line with their altered resting
mental content (5). The present study utilized 256-channel high-
density EEG (HD-EEG) in a sample of 32 patients and 32
matched controls to verify the hypothesis. To our knowledge, this
is the first study on EEG microstate dynamics in ID.

MATERIALS AND METHODS

Participants and EEG Recordings
We analyzed resting-state HD-EEG recordings of 32 people
meeting the DSM-5 (20) criteria for ID (25 female, age
range 21–67 y) and 32 age- and sex-matched controls (CTRL)
without sleep complaints (26 female, age range 22–70 y) from
a previously reported study (21). Participants were recruited
through advertisement and the Netherlands Sleep Registry
and were screened by telephone followed by a face-to-face
structured interview. Exclusion criteria for all participants were:
(1) diagnosed sleep apnea, restless legs syndrome, narcolepsy, or
other somatic, neurological, or psychiatric disorders; (2) use of
sleep medications within the prior 2 months; (3) overt shifted
or irregular sleep–wake rhythms, assessed using 1 week of
actigraphy (Actiwatch AW4, Cambridge Neurotechnology Ltd.,
Cambridge, United Kingdom or GENEActiv Sleep, Activinsights
Ltd., Kimbolton, United Kingdom) supplemented by sleep
diaries; (4) scores above the minimal to mild range of anxiety or
depression symptom severity, as evaluated by either the Hospital
Anxiety and Depression Scale (HADS) (22), or the Beck Anxiety
Inventory (BAI) (23) and Beck Depression Inventory (BDI-IA)
(24). Furthermore, all patients had Insomnia Severity Index (ISI)
(25) scores above 10, and all controls had ISI scores less than 8.
The study was approved by the ethics committee of the VU
University Medical Center, Amsterdam, The Netherlands. All
participants provided written informed consent.

HD-EEG was acquired in a laboratory setting using a 256-
channel HydroCel Geodesic Sensor Net (Electrical Geodesic Inc.,
Eugene, OR) connected to a Net Amps 300 amplifier (input
impedance: 200 M�, A/D converter: 24 bits), with the ground
electrode placed at the centro-parietal midline and reference at
the vertex. Electrode impedances were kept below 100 k�. Signals
were online band-pass filtered between 0.1–100Hz and digitized
at 1000Hz.
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Protocol
On the recording days, participants were asked to refrain from
alcohol and drugs, as well as to limit consumption of caffeinated
beverages to a maximum of 2 cups, which were allowed only
before noon. Wake resting-state HD-EEG was recorded during
the evening (between 19:00 and habitual bedtime) while the
participant was seated upright. The original protocol consisted
of eyes-open (EO) followed by eyes-closed (EC) conditions of
5-min duration each (21). Vigilance level was monitored in
real-time during recording by laboratory staff. In the occasional
cases where signs of falling asleep were observed (e.g., slow eye
movements, attenuation of alpha waves), the participant was
alerted and recording of the 5-min assessment was restarted.
Since so far validation of the reliability of microstate properties
has been carried out only in EC (11), and only the links between
mental content and microstate properties during EC have been
demonstrated (18, 19), we here restricted analyses to the EC data.

EEG Preprocessing
Preprocessing and signal analyses were performed in MATLAB
8.3 (The Mathworks Inc., Natick, MA). EEG data were
preprocessed using the MEEGPIPE toolbox (https://github.com/
meegpipe/meegpipe). The preprocessing procedure involved
several automatic and manual steps as detailed previously (21).
Briefly, voltage drifts within channels were estimated by local
polynomial approximation (26) and subtracted. The signals
were downsampled to 250Hz and band-pass filtered at 0.5–
62.5Hz. Modified z-score (27) criteria applied to the standard
deviation, range, and gradient of the voltage signals were used to
marked noisy EEG channels and sporadic noisy segments. Noisy
channels were linearly interpolated from neighboring channels.
Sporadic noisy segments were excluded from analyses. The
remaining segments were submitted to independent component
decomposition (28). Components of power-line noise, eye
movement, pulse wave, and cardiac field artifacts were identified
through visual inspection of their time courses and topographical
distribution and projected out of the data. The total duration
of artifact-free data did not differ between groups (mean ±

standard deviation: ID = 289.4 ± 50.2 s, CTRL = 289.2 ± 21.4 s,
p= 0.98).

Microstate Analysis
The method for identifying the microstate classes closely
followed previous studies that used the same 256-channel
HydroCel Geodesic Sensor Net (29, 30). The preprocessed EEG
signals from 204 electrodes overlying the scalp area (excluding
electrodes at the cheeks and the nape) were further band-
pass filtered at 1–40Hz and re-referenced to the common
average. Momentary topographies at the local maxima of the
global field power (GFP) were submitted to k-means clustering
based on their absolute spatial correlations (ignoring polarity
differences). The k-means clustering routine was run multiple
times for each participant with the pre-defined number of clusters
varying from 3 to 11. The optimal number of clusters for
each individual, k∗i , was then determined by the Krzanowski–
Lai criterion which identifies the point of maximal normalized
curvature on the dispersion curve (31). The normalized cluster-
mean topographies from all participants were then submitted

to group-level k-means clustering, which was also run multiple
times with the pre-defined number of clusters varying from 3
to 11. A constraint was imposed such that the k∗i clusters from
an individual had to be assigned to min

(

k∗i , k
)

distinct group-
level classes, where k is the pre-defined number of group-level
clusters (viz. classes) in a particular run. Finally, the Krzanowski–
Lai criterion was applied again to determine the optimal number
of group-level clusters, k∗.

The average topographies of the group-level microstate classes
were fitted back to individual EEG recordings competitively.
Each momentary topography at the GFP local maxima was
assigned to the microstate class with which the highest absolute
spatial correlation was attained. Consecutive GFP local maxima
assigned to the same microstate class were merged into one
microstate, with start and end times of each microstate defined
as midpoints to the neighboring GFP local maxima (11, 18).
Microstates whose start or end times could not be estimated (i.e.,
those at the very beginning and very end of the recording and
those bordering noisy segments) were omitted from analyses.
From the resulting sequences of alternating microstates, we
calculated the following standard dynamic features for each
microstate class for each participant (11, 12, 19): (1) Mean
Duration—the mean duration in milliseconds of the microstates
of a particular class. (2) Frequency of Occurrence—the number
of microstates of a particular class per second. (3) Proportional
Coverage Time—the percentage of time spent in a particular
microstate class.

It has been suggested that fitting microstate classes only at
the GFP local maxima, thus ignoring the fine-grained dynamics
between GFP local maxima, might be suboptimal (13). However,
we found that almost perfectly correlated feature values were
produced by fitting microstate classes either only at the GFP
local maxima or at every timeframe (Supplementary Table 1). In
other words, fitting microstate classes at either timescale provides
essentially equivalent information, at least as far as the dynamic
features we studied here are concerned.

Statistical Analyses
Randomized permutation tests for topographical differences
(conventionally referred to as TANOVA) (11, 31) were used to
compare microstate topographies between ID and CTRL. Group
differences in microstate dynamic features (mean duration,
frequency of occurrence, and proportional coverage time for
each class) were expressed in Cohen’s d and their significance
was further assessed by means of linear regression modeling
with two-tailed Wald z-tests, performed using R (32). Linear
mixed-effects regression models with Gaussian random effects
(33) were set up for mean duration and frequency of occurrence
and Dirichlet regression (34, 35) for proportional coverage
time, as the latter better models compositional data which sum
up to 100% within each participant.1 All regression models
included age and sex as covariates in addition to group contrasts
and the within-subjects factor (microstate class). In total, 3k∗

group effects were tested (3 dynamic features for each of the

1In particular, the proportional coverage time correlates mostly negatively between

microstate classes, while the mean duration, as well as frequency of occurrence,

correlates positively between microstate classes.
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TABLE 1 | Characteristics of participants (mean ± standard deviation).

Control

(n = 32)

Insomnia disorder

(n = 32)

p

Age, y 46.8 ± 15.0 48.5 ± 14.1 0.64

Sex, female/male 26/6 25/7 1

ISI 2.00 ± 1.97 17.19 ± 3.75 < 0.0001

BAI 2.00 ± 2.33 6.42 ± 4.93 0.06

BDI-IA 2.00 ± 1.85 4.75 ± 3.84 0.11

HADS—Anxiety 4.33 ± 2.10 5.75 ± 2.38 0.06

HADS—Depression 1.88 ± 1.65 3.60 ± 3.30 0.09

ISI, Insomnia Severity Index; BAI, Beck Anxiety Inventory; BDI-IA, Beck Depression

Inventory IA; HADS, Hospital Anxiety and Depression Scale.

p-values are determined by Fisher exact test for sex and by Wilcoxon rank-sum tests for

the other variables.

k∗ identified microstate classes). Following Rieger et al. (36),
the group contrasts for proportional coverage time were not
considered independent tests because the values of proportional
coverage time could be deduced from mean duration and
frequency of occurrence. Therefore, the p-value threshold 0.05

(2k∗)
for controlling the family-wise error rate (FWER) was employed.

RESULTS

Demographic and Clinical Characteristics
Demographic and clinical characteristics of patients and
controls are summarized in Table 1. As expected, patients had
significantly higher ISI scores and tended to report higher BAI,
BDI-IA, and HADS scores than controls.

Microstate Topographies
At the individual level, the Krzanowski–Lai criterion suggested
4–6 as the optimal number of clusters for all participants
(mean ± standard deviation: ID = 4.38 ± 0.55, CTRL = 4.31
± 0.47, p = 0.63). At the group level, the Krzanowski–Lai
criterion suggested a 5-class model as optimal either for ID,
for CTRL, or for all participants combined. Figure 1 shows
the overall dispersion (i.e., within-cluster global dissimilarity)
for different numbers of group-level clusters, as well as the
corresponding mean percentages of global variance explained
when the cluster topographies were fitted back to the GFP local
maxima in individual EEG recordings. The global explained
variance derived from the optimal 5-class model did not
differ significantly between the two groups (mean ± standard
deviation: ID = 65.68 ± 8.57 %, CTRL = 66.16 ± 6.77 %,
p= 0.80).2

Figure 2 shows the average topographies for the 5 identified
microstate classes in both groups. The average topographies for

2We here report global explained variance calculated according to the formula

given in Murray et al. (31). Studies that explicitly mentioned to have used the same

formula reported a similar amount of global variance explained by the microstates

(11, 30). However, when we examined the source code of a few open source

software packages for microstate analysis, we found that the implementation

therein deviates from this definition. The difference in definition may be one of

the reasons accounting for the discrepancy between studies regarding the global

variance explained by 4 microstate classes which has been recently noted (13).

4 of the identified classes resemble the 4 canonical microstate
topographies reported in previous studies and are labeled
hereafter as microstate classes A, B, C, and D accordingly.
The 5th microstate class resembles microstate class E identified
by Custo et al. (14) in a large sample and therefore we also
label it as microstate class E. Permutation TANOVA performed
separately for each microstate class revealed that the microstate
topographies significantly differed between the two groups for
microstate class A (p = 0.04) but not for the other classes (all
p > 0.15).

Microstate Dynamics
Themean and standard deviation of mean duration, frequency of
occurrence, and proportional coverage time for each microstate
class for each group are presented in Table 2. Linear mixed-
effects regression indicated group differences in the mean
duration of class C microstates (group effect ± standard
error = −7.61 ± 2.68ms, z = −2.84, p = 0.0045) and the
frequency of occurrence of class D microstates (group effect ±
standard error = 0.62 ± 0.26 s−1, z = 2.38, p = 0.018) were
significant at the p < 0.05 level, albeit only the former had a p-
value below the FWER-controlling threshold (0.05/10 = 0.005).
Both differences had medium unadjusted effect sizes (Cohen’s
d = −0.57 and 0.47, respectively). Other group effects on mean
duration or frequency of occurrence did not reach significance
(all p > 0.18). Dirichlet regression revealed no significant group
effect on proportional coverage time for any of the microstate
classes (all p > 0.10), although the differences for microstate
classes C and D were of medium unadjusted effect sizes (Cohen’s
d =−0.42 and 0.51, respectively).

DISCUSSION

The current study systematically examined the dynamics
of brain electric microstates characterizing the resting-state
high-density electroencephalograms of people suffering from
Insomnia Disorder and matched healthy controls. Using a
data-driven approach, we identified 5 representative microstate
classes, similar to those found in previous studies. Between-group
comparison showed specifically that the mean duration of class C
microstates in ID is shortened, and moreover indicated that class
D microstates occur more frequently in ID.

Previous investigations on resting-state EEG microstates
predominantly fixed the number of microstate classes at 4
without verifying it with objective model selection criteria
[reviewed in (10, 13)]. We applied the Krzanowski–Lai criterion
to a hierarchical clustering procedure to determine the optimal
number of microstate classes, an approach taken by some
HD-EEG microstate studies (30, 37). A recent study with a
large sample size used a much more complicated criterion to
determine the number of clusters and found a total number
of 7 microstate classes at the group level (14), among which
the 5 classes with the greatest amounts of global explained
variance resemble the 5 microstate classes we identified. This
would suggest that the 5 topographies (labeled as microstate
classes A, B, C, D, and E) indeed occurred in a sufficient
proportion of the participants, whereas additional microstate
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FIGURE 1 | (A) Group-level dispersion (i.e., within-cluster global dissimilarity) for 3- to 11-class models, displayed separately for people with Insomnia Disorder (ID,

red line), healthy controls (CTRL, blue line), and all participants combined (black line). (B) Mean percentages of global variance explained by all microstate classes

when microstate topographies resulting from 3- to 11-class models were fitted back to individual EEG data, displayed separately for people with Insomnia Disorder

(ID, red line) and healthy controls (CTRL, blue line). Error bars indicate 95% confidence intervals.
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FIGURE 2 | Average topographic maps for the 5 optimal microstate classes (A–E) in people with Insomnia Disorder (ID) and healthy controls (CTRL). Note that by

convention microstate labeling only depends on the spatial configuration while the absolute voltage and polarity are ignored.

clusters might be too idiosyncratic to be reliably detected with
our smaller sample size. Due to the competitive fitting procedure
in microstate analysis, adding or removing a microstate class may
substantially affect the resulting dynamic features. Comparing
results between studies that use differentmodel ordersmight thus
not be tenable. To address this concern, we performed additional
sensitivity analysis adopting the conventional 4-class model
(Supplementary Figure 1). It could be shown that different
methodologies did not substantially affect the observed group
differences of medium effect sizes (Supplementary Table 2). This
allows us to interpret the functional significance of the current
findings within the context of previous studies.

EEG microstates have been widely regarded as the “atoms” of
conscious mentation (10, 13, 17). Since we did not collect data on
subjective mental content, we could only speculate the functional
relevance of our results by comparing with previous studies on
subjective mental content in ID assessed with the ARSQ (5) and
on the associations between microstate properties and ARSQ

scores (19). The study by Pipinis et al. found a robust negative
correlation across people between the proportional coverage time
of class C microstates and somatic awareness, whereas a similar
but slightly weaker negative correlation with somatic awareness
was also reported for the mean duration of class C microstates
(19). Further stepwise regression showed that a combination
of the proportional coverage time of class C microstates and
the frequency of occurrence of class D microstates optimally
explained inter-individual variation in somatic awareness (19).
Thus, among the dimensions of spontaneous mental content
differing between people suffering from ID and people without
sleep complaints (5), the current findings regarding class C and
D microstates may be particularly relevant to elevated somatic
awareness in ID.

Moreover, the salience network, commonly associated with
microstate class C, has been implicated in a wide range
of interoceptive and emotional experiences as well as in
salience filtering, autonomic processing, and executive control
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TABLE 2 | Microstate dynamic features (mean ± standard deviation).

Microstate class Control

(n = 32)

Insomnia disorder

(n = 32)

Cohen’s d p

Mean Duration (ms) A 53.88 ± 7.84 51.45 ± 8.62 −0.30 0.45

B 57.55 ± 11.02 53.54 ± 7.89 −0.42 0.18

C 60.71 ± 16.74 52.69 ± 11.09 −0.57 0.0045

D 60.40 ± 10.60 62.67 ± 15.43 0.17 0.31

E 50.47 ± 7.58 47.30 ± 6.69 −0.44 0.30

Frequency of Occurrence (1/s) A 3.42 ± 0.87 3.64 ± 0.80 0.26 0.47

B 3.71 ± 0.45 3.89 ± 0.86 0.26 0.56

C 3.67 ± 1.18 3.51 ± 1.41 −0.12 0.47

D 3.80 ± 1.61 4.45 ± 1.09 0.47 0.018

E 3.07 ± 0.77 3.02 ± 0.89 −0.05 0.78

Proportional Coverage Time (%) A 18.04 ± 3.47 18.63 ± 4.65 0.14 0.66

B 21.11 ± 3.92 20.50 ± 4.08 −0.15 0.50

C 22.70 ± 10.47 18.74 ± 8.51 −0.42 0.10

D 22.93 ± 9.92 28.02 ± 9.88 0.51 0.44

E 15.23 ± 3.42 14.11 ± 4.14 −0.29 0.34

p-values are determined by linear mixed-effects (for mean duration and frequency of occurrence) and Dirichlet (for proportional coverage time) regression models with Wald z-tests.

(38–40). The fronto-parietal network, commonly associated
with microstate class D, comprises systems typically involved
in orienting and/or stimulus-driven shifts of attention (41,
42). It is therefore reasonable that the coordination between
these networks implements key mechanisms whereby sensory
stimuli arising from the body are gated into awareness. In sum,
these converging lines of evidence suggest that the abnormal
microstate dynamic patterns we find in people with ID could
possibly underpin the heightened level of somatic awareness,
which may in turn underlie their heightened somatization
complaints (43–45).

Our findings appear consistent with a growing number of
resting-state fMRI studies showing aberrations involving the
salience and attention networks in ID (46–50). We note that
resting-state fMRI and EEG microstates provide complementary
insights into brain network functioning: Resting-state fMRI
usually studies the correlation strength within or between
networks, while EEG microstates give information about their
temporal activity patterns. Caveats in light of recent research,
however, need to be mentioned in regard to interpreting the
neural substrates of the current results. First, there is still an
ongoing debate on whether EEG microstates represent time
periods during which the associated networks are activated
or inhibited (13, 14, 16). Second, the above discussion has
followed the majority of previous works on EEG microstates by
interpreting the functional roles of the microstate classes with
reference to their intra-individual BOLD correlates in distinct
brain networks reported in a simultaneous EEG-fMRI study (15).
On the other hand, because intra-individual and inter-individual
variations in microstate properties can be driven by different
mental processes (18), other neural sources might be responsible
for the observed differences (14, 16).

Although TANOVA suggested significant between-group
topographical differences for microstate class A, the spatial
correlations between the average topographies of the two groups

were high for all microstate classes (Pearson r = 0.996, 0.998,
0.997, 0.998, and 0.997 for microstate classes A, B, C, D, and E,
respectively). To further explore the topographical differences for
microstate class A, electrode-wise t-tests were carried out. Results
indicated that group differences were mainly circumscribed to
the left lateral parietal region, where the normalized absolute
voltage was lower in ID. This finding might reflect subtly but
systematically different network activity between the groups
contributed by regional sources within a largely intact distributed
network.

The stringent selection criteria the current study employed
ensured that anxiety and depression symptom severity for all
participants was below clinical thresholds, although it could
still be observed that people with ID tended to report higher
levels of anxiety and depression than CTRL. Of note, among
the instruments we used to assess anxiety and depression, the
BDI-IA includes items on sleep and fatigue which overlap
with ID symptomology. The group differences are in line
with previous studies showing that people with ID and no
depression or anxiety disorders are likely to report mild
levels of depression and anxiety (51, 52), and in line with
recently found strong genetic correlations of insomnia with
both anxiety and depression (53, 54). Curiously few studies
have investigated EEG microstate alterations in depression and
anxiety disorders. One study found an increased mean duration
and more proportional coverage time of class A microstates as
well as reduced frequency of occurrence of class C microstates
in patients with panic disorder (55). These effects differ from
the ones we here report for ID. An early study focused
on EEG microstates in depression (56). The methodology of
this study deviates substantially from contemporary microstate
analysis, making the results difficult to be compared with.
More research is needed in order to better disentangle how
microstate properties are related to depression, anxiety, and
insomnia.
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EEG microstate analysis may serve as a valuable paradigm
for future investigations on nocturnal mentation in ID. Previous
studies have shown that insomnia severity is associated with
the frequency of thought-like nocturnal mentation (57) which
might be experienced as wakefulness (58). It is still unclear,
however, whether (and how) distinct nocturnal thought content
contributes differentially to the experience of insomnia (59,
60). While self-report provides a more direct assessment of
mental content, it bears challenging methodological limitations
for nocturnal mentation. Real-time reporting would interfere
with the very process of sleep initiation or maintenance
under study, while responses collected after a night of
sleep are prone to forgetting or recall bias. In comparison,
using EEG to assess the neural correlates of mentation is
less disruptive and not hampered by these limitations. It
awaits future investigations to validate the value of EEG
microstate features and other possible neural correlates of
momentary mental content in evaluating the content of
nocturnal mentation, and in bridging the gaps in current
understanding of ID.

CONCLUSIONS

The current study assessed, for the first time, resting-state
EEG microstate dynamics in people with Insomnia Disorder as
compared to matched healthy controls. It is found that ID is
especially associated with a shorter mean duration of class C
microstates and more frequent occurrence of class Dmicrostates.
These microstate alterations may underlie heightened somatic
awareness in ID. Properties of EEG microstates are promising

objective markers of mental content and could facilitate
future investigations on nocturnal mentation or the subjective

experience during the transition between wake and sleep or
other conditions where self-report of mental content is not
possible or desirable. Addressing somatic awareness could benefit
psychotherapeutic treatment of insomnia, and the development
of effective strategies to do so could profit from assessment of
EEG microstate properties as possible biomarkers of somatic
awareness.
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