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Postpartum depression (PPD) is associated with mood disorders and elevated

inflammation. Studies have evidenced the activation/inhibition of autophagy and

excessive activation of microglia to have a close relationship with depression.

C57 and microglia-specific autophagy-deficient mice (Cx3Cr1Cre/+ATG5loxp/loxp) were

employed to establish the chronic unpredicted mild stress depression mice model

from embryonic day 7 (E7) to embryonic day 16 (E16). Fluoxetine was administered

for 3 weeks (commencing from 1 week after birth). Behavioral tests (open field,

forced swimming, and sucrose preference tests) were implemented. Western blot and

immunofluorescence staining were employed to assess the brain-derived neurotrophic

factor (BDNF) expression level, autophagy-associated proteins, and inflammatory

factors. Depressive behavior was reversed following fluoxetine treatment; this was

evidenced via open field, sucrose preference, and forced swimming tests. Both BDNF

and autophagy-associated proteins (ATG5, Beclin-1, and LC3II) were upregulated

following fluoxetine treatment. Inflammatory factors including nuclear factor kappa

B and inducible nitric oxide synthase were reduced while anti-inflammatory factor

interleukin-10 (IL-10) was increased after fluoxetine treatment. Microglia-specific

autophagy-deficient mice (Cx3Cr1Cre/+ATG5loxp/loxp) showed a curtailed autophagy

level, higher inflammatory level, and reduced BDNF expression when compared with

C57 mice. Autophagy inhibition in microglia contributes to inflammation, which further

instigates PPD. Fluoxetine might mediate its antidepressant effect in PPD through the

autophagic pathway while upregulating BDNF expression. In view of this, regulating

BDNF in microglia is a potential novel therapy target for PPD.

Keywords: microglia, fluoxetine, inflammation, chronic unpredicted mild stress, brain-derived neurotrophic factor

(BDNF)

INTRODUCTION

Postpartum depression (PPD) is often accompanied by extreme sadness and hopelessness, low
energy, anxiety, crying episodes, irritability, and infanticide (1, 2). This mental disorder is common,
severe, and experienced by 13–19% of new mothers (3, 4). Occurrence of depressive-like behavior
following childbirth can be pernicious to mothers, fathers, and possibly children if untreated
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(5), subsequently leading to devastating outcomes to family
and society. Numerous factors such as the interaction
effect of genetic and epigenetic susceptibilities combined
with environmental risk factors, such as stress, hormonal
level change, and emotional trauma may account for the
emergence of PPD. Chronic stress during pregnancy is
one of the most important causes of PPD. Maternal stress
exposure and fluoxetine treatment have detrimental effects
on offspring (6). Although neurogenesis stimulation in the
hippocampus of depressed mothers following chronic fluoxetine
administration in the postpartum period has been demonstrated,
the effects of selective serotonin reuptake inhibitors (SSRI)
pertinent to reversing stress-induced behavioral, structural,
and pathological changes in postpartum females have not
been evaluated (7). Presently, there is not a widely convincing
mechanistic hypothesis of PPD; nonetheless, the serotonin and
neurotrophin hypothesis of depression could partly account
for PPD pathology. Brain-derived neurotrophic factor (BDNF)
is a well-known neurotrophic factor whose deregulation is
closely linked to affective disorders (8, 9). Increased levels
of monoamines in relieving depressive symptoms have been
evinced; however, there are no convincing theories linking
serotonin elevation to increased BDNF transcription and, thus,
no elucidation as to how antidepressants such as SSRIs activate
the BDNF pathway (10). A large number of antidepressant
drugs are already available for PPD treatment, with fluoxetine
being one of the most commonly used drugs. Therefore,
investigating its effects on PPD pathogenesis is paramount and
warranted.

Microglia is a group of neuroglia located in the brain and
the spinal cord. As the resident macrophage population of the
central nervous system (CNS), microglia act as a first and main
guard of active immune defense, closely related to inflammation
(11). There are ample evidences indicating the neurotoxicity
of overreactive microglia (12, 13). Microglial activation has
two main phenotypes: M1 and M2. The M1 phenotype is
associated with increments in interleukin-1β (IL-1β) and tumor
necrosis factor-α (TNF-α), while the M2 phenotype is associated
with the release of anti-inflammatory cytokines such as IL-10
(13). Though studies have shown microglial activation to be
evident in psychiatric conditions, authoritative research linking
microglial activation to the occurrence of mood disorders
is lacking (14). Nonetheless, microglia might be a good
target in the development of novel antidepressant drugs for
PPD.

Autophagy is an intracellular bulk degradation process
responsible for the clearance of damaged proteins and
organelles and hence an important regulator of homeostasis
and functions in the CNS. An increasing number of studies
indicate the relationship between impaired autophagy and
affective disorders (15). Autophagy is considered to have
evolved as a stress response, interfacing with most cellular
stress-response pathways such as immune response and
inflammation (16). Autophagy and autophagy-related proteins
are essential components that modulate the inflammatory
response either directly by acting on the stability or secretion of
inflammatorymediators or indirectly by suppressing intracellular
stressors (17).

Since the role of autophagy in PPD pathogenesis is ambiguous,
this study investigates whether the inhibition of autophagy
in microglia arouses inflammation, further influencing the usage
of antidepressants in PPD treatment. Considering that the
neuroprotective role of the BDNF pathway has been reported in
previous studies and combining evidence from other depression
studies, we hypothesized that the inhibition of autophagy in
microglia may have a detrimental effect on fluoxetine treatment
for PPD through upregulation of inflammation and reduced
BDNF expression.

MATERIALS AND METHOD

Animals
Adult female C57 mice and microglia-specific autophagy-
deficient mice (Cx3Cr1Cre/+ATG5loxp/loxp) descripted as ATG5
KO in the following test were used in this experiment. A total
of 30 female mice were randomized into six groups. They
weighed 20 g ± 2 g and were obtained from Zhejiang Provincial
Academy of Medical Sciences. Preceding the experiment, the
mice were reared in the experimental animal facility for a
week so as to acclimatize them to the new environment.
Temperature was set between 24 ± 1◦C with humidity at 55%
coupled with a 12 h light–dark cycle. Standard food pellets
and tap water were made available at all times during the
experiments. All experiments were conducted following the
National Institutes of Health Guide for the Care and Use
of Laboratory Animals. The Ethics Committee for Animal
Research at Zhejiang University approved the experimental
procedures.

Drug Administration
Fluoxetine (Patheon, France) was dissolved in 0.9% normal
saline. Fluoxetine and normal saline were administered from
postnatal day 7 (P7) to postnatal day 28 (P28) at a dose of 18
mg/kg/d (18).

Chronic Unpredictable Mild Stress (CUMS)
Procedure
CUMS modus operandi was modified from that used by
Kiryanova et al. (6). From embryonic day 7 (E7) of pregnancy,
dams were subjected to the regimen of CUMS. Embryonic day
16 (E16) was the last day the stressors were administrated
(Table 1). Stressors included restraint stress (mice were subjected
to chronic-restraint stress by placement in 50ml conical tubes
with holes for air flow for 2 h), restricted access to food (food was
removed from animal’s house for 6 h), forced swimming (5min
per mouse), continuous lighting overnight, foreign object in cage
(a novel plastic object), cage tilting (home cage tilted 30◦), white
noise (played at 80 dB), and soiled cage (100ml of clean water
spilled on bedding).

Experiment Design
A total of 30 pregnant female mice were randomly assigned to
six groups: (1) C57(Normal)+CUMS+ Pregnancy, Fluoxetine
(N+C+P-FLX) (n = 5); (2) C57+CUMS+ Pregnancy, saline
(N+C+P-con) (n = 5); (3) C57+ Pregnancy (N+P) (n = 5);
(4) ATG5KO+CUMS+ Pregnancy, Fluoxetine (A+C+P-FLX)
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TABLE 1 | Chronic unpredictable mild stress schedule used on pregnant mouse dams from E7–E16.

Day1 Day2 Day3 Day4 Day5

9 a.m. Restricted access to food

10 a.m. Restraint Stress 9 a.m.−3 p.m. Cage Tilt(30◦) Restricted access to food

11 a.m. 10 a.m.−12 p.m. Restraint Stress 10 a.m.-5 p.m. 10 a.m.−5 p.m.

12 p.m. Force Swim 11 a.m.−1 p.m.

1 p.m. White noise

2 p.m. 12 p.m.−3 p.m.

3 p.m.

4 p.m.

5 p.m. Paired housing Continuous lighting Foreign object in cage Paired housing Soiled cage

5 p.m.−9 p.m. overnight 5 p.m.−10 a.m. 5 p.m.−10 p.m. 5 p.m.−10 p.m.

Day6 Day7 Day8 Day9 Day10

9 a.m. Restricted access to food

10 a.m. Restraint Stress 9 a.m.−3 p.m.

11 a.m. 10 a.m.−12 p.m. Restraint Stress

12 p.m. Force Swim 11 a.m.−1 p.m.

1 p.m.

2 p.m.

3 p.m.

4 p.m.

5 p.m. Continuous lighting Cage Tilt(30◦) Paired housing Continuous lighting Foreign object in cage

Overnight 5 p.m.−10 a.m. 5 p.m.−9 p.m. overnight 5 p.m.−10 a.m.

(n = 5); (5) ATG5KO+CUMS+ Pregnancy, saline (A+C+P-
con) (n= 5); (6) ATG5KO+ Pregnancy (A+P) (n= 5).

Figure 1 illustrates experimental design.

Behavioral Test
Forced Swimming Test (FST)
Mice individually placed in a cylinder of water (24 ± 1◦C) swam
for 6min under normal light. Water depth was set to prevent the
animals from touching the bottom with their tails or hind limbs.
Animal behaviors were videotaped from the side. Immobile time
during the last 5min of the test was evaluated by two observers
blinded to animal treatment. Immobile time was considered
as the time when the mice remained floating or motionless
with only small movements necessary to keep balance in
water.

Open Field Test (OFT)
A novel open field environment (comprising 45 cm × 45 cm ×

45 cmwhite Plexiglas arena) was employed to test the exploratory
locomotion of mice, with each test lasting 5min. Each mouse
was placed in the center of arena at the beginning and allowed
to freely move and its movement was recorded by an overhead
camera. The behavior of the mouse was analyzed with an
automatic behavior-tracking system (Video Track, Viewpoint
Inc., France). Total distance (horizontal activity) and small
distance movements as well as the number of rearing (vertical
activity) and time spent in the central zone (25× 25 cm) were
recorded (19). The chamber was cleaned with 75% ethanol after

each mouse was tested. The ratio of small distance to whole
distance was analyzed, depicting exploratory ability.

Sucrose Preference Test (SPT)
Mice were single housed and habituated with two bottles of
water for a day, followed by two bottles of 2% sucrose for a
day. Following that, mice were water deprived for 23 h and then
exposed to one bottle of 2% sucrose and one bottle of water
for 2 h in the dark phase (bottle positions switched after 1 h).
Total consumption of both water and sucrose were measured,
and sucrose preference was recorded as the average sucrose
consumption ratio during the first and second hours. The
sucrose consumption ratio was calculated by dividing the total
consumption of sucrose by the total consumption of both water
and sucrose (20).

Western Blot
Total proteins of the hippocampal brain tissue were extracted
from each group using ice-cold RIPA buffer, with added
protease and phosphatase inhibitors. After grinding with liquid
nitrogen and centrifuging at 12,000 rpm for 30min at 4◦C,
supernatant proteins were collected and preserved at −80◦C
in the fridge. The concentration of samples was determined
with BCA kits (KeyGEN) and unified to 2µg/µL. SDS-
PAGE loading buffer (protein sample:loading buffer = 4:1)
was added and the protein sample boiled in 100◦C water.
A total of 20 µg protein of each sample was subjected to
electrophoresis on 15% SDS-PAGE gel using a constant voltage
(200V). Afterwards, the separated proteins were transferred
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FIGURE 1 | Couse of the study.

into a polyvinylidene difluoride (PVDF) membrane using Bio-
Rad Transblot apparatus. This process was performed under
a constant voltage of 100V for 70min. PVDF membranes
were blocked with 5% skim milk diluted by TBST for 3 h at
room temperature. The membranes were then incubated with
different antibodies overnight at 4◦C. Primary antibodies used
were: rabbit polyclonal antibody against GAPDH (Cell Signal
Technology, 1:1,000), ATG5/ATG12 (Abcam, 1:1,000), LC3II
(NOVUS, 1:1,000), BDNF (Abcam, 1:1000), Beclin-1 (Cell Signal
Technology, 1:1,000), inducible nitric oxide synthase (iNOS)
(BOSTER, 1:1,00), IL-10 (BOSTER, 1:100), and nuclear factor
kappa B (NF-κB) (Cell Signal Technology, 1:1000). After the
incubation of primary antibodies, the membranes were washed
with TBST thrice, each wash lasting 5min. Membranes were
then incubated with goat antirabbit IgG antibody (BOSTER,
1:5,000) at room temperature for 2.5 h. Washing was done again
with TSBT thrice, with each wash lasting 5min. The membranes
were readied for exposure using the ChemiDoc Touch Imaging
System after incubating with enhanced chemiluminescence.
The grayscale value of each band was analyzed by using the
Image Lab program. Each experiment was performed three
times.

Immunofluorescence Staining
Mice were anesthetized with 10% chloral hydrate, cardiac
perfused with 50mL (±) 0.9% normal saline to flush their
vascular blood, and then perfused with 4% paraformaldehyde
in 0.01M phosphate-buffered saline (PBS, pH 7.4). After
perfusion, brain tissue was obtained and conserved in 4%
paraformaldehyde for at least 1 day and the fixation fluid
replaced with 30% sucrose solution. Embedding and frozen
tissue section were performed using a freezing microtome (Leica,
Wetzlar, Germany). Frozen sections of 18µm thick tissue were
dried at 37◦C for 1 h and then blocked with 5% normal goat
serum at room temperature for 1 h. Primary antibodies were
applied overnight at 4◦C: Iba1 (Abcam, ab178847, 1:100), BDNF
(Abcam, 1:1,000), and NeuN (Abcam, 1:1,000). Sections were
rinsed and incubated with secondary antibodies, antirabbit
or antimouse Alexa Fluor594 (1:500, EARTHOX, USA) in
1% BSA and 0.3% Triton X-100 in PBS for 3 h at room
temperature. Sections were then washed again three times
with 0.01M PBS, and a mounting medium containing DAPI

(VECTASHIELD, USA) was added to the slides and then
covered with coverslips for observation. Slides were observed
under a fluorescence microscope (Olympus BX51, NIKON,
Japan) at excitation/emission wavelengths of 547/570 nm (Cy3,
red), 494/520 nm (FITC, Green), and 360/460 nm (DAPI, blue).
Images were taken at 200×magnification.

Statistical Analysis
Data were analyzed with one-way ANOVA using SPSS 20.0
and histograms were generated in GraphPad Prism 5. Data
for behavioral test, western blotting, and immunofluorescence
were expressed as mean ± SEM. Gray values of western
blot results were calculated by using Image Lab software.
Immunofluorescence results of Iba1 were analyzed by using Pro
Image Plus. All results were considered statistically significant
at ∗P < 0.05, #P < 0.05, ∧P < 0.05, ∗∗P < 0.01, ##P < 0.01,
∧∧P < 0.01, &&P < 0.01, ∗∗∗P < 0.001, and ∧∧∧P < 0.001.

RESULTS

CUMS Induces Depressive-Like Behaviors
Mental conditions of mice were assessed ahead of the experiment
(Figures 2A,B). There was no significant difference (P > 0.05)
in depressive-like behaviors between C57 (normal) mice and
autophagy-deficient (ATG5KO) mice. After the CUMS paradigm
during pregnancy, mice showed prominent depressive-like
behaviors on postnatal day 7. The OFT showed the activity of
mice in N+C+P and A+C+P groups to be much lower than
in N+P (P < 0.01) and A+P (P < 0.01) groups (Figure 3A).
Behavioral despair was measured by the immobility rate in the
FST. Mice in the N+C+P group showed an increased immobility
rate than that in the N+P group (P < 0.01), and mice in the
A+C+P group showed an increased immobility rate than that in
the A+P group (P < 0.05) (Figure 3B). In the SPT (Figure 3C),
both N+C+P and A+C+P groups showed less sucrose intake
than N+P and A+P groups (both P < 0.01).

Fluoxetine Can Alleviate Depressive-Like
Behaviors
On postnatal day 28, mice were again put through the OFT, FST,
and SPT (Figures 4A–C). The FST showed the immobility time
of N+C+P-FLX and A+C+P-FLX groups to be significantly
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FIGURE 2 | Baseline behaviors of normal and ATG5KO mice before chronic unpredictable mild stress (CUMS) exposure. (A) Immobility rate of normal and ATG5 KO

groups in forced swimming test (FST). (B) Sucrose/water consumption ratio of normal and ATG5 KO groups in sucrose preference test (SPT). Values are expressed as

mean ± SEM (n = 5). Normal vs. ATG5 KO, P > 0.05; ns, not significant.

FIGURE 3 | CUMS-induced depression-like behaviors. (A) Immobility rate of N+C+P, N+P, A+C+P, and A+P groups in FST. (B) Sucrose/water consumption ratio of

N+C+P, N+P, A+C+P, and A+P groups in SPT. (C) Center distance/total distance ratio of N+C+P, N+P, A+C+P, and A+P groups in open field test (OFT). Values

are expressed as mean ± SEM (n = 5). N+C+P vs. N+P, *P < 0.05, **P < 0.01; A+C+P vs. A+P, *P < 0.05, **P < 0.01.

decreased when compared to that of N+C+P-con and A+C+P-
con groups respectively (P < 0.01, P < 0.001). On the contrary,
the immobility time of N+C+P-con and A+C+P-con groups
were significantly increased when compared with that of N+P
and A+P groups (P < 0.01, P < 0.001) (Figure 4A). The
consumption of sucrose consumption ratio showed an increased
sucrose intake in N+C+P-FLX and A+C+P-FLX groups when
compared with that in N+C+P-con and A+C+P-con groups
respectively (Figure 4B) (P < 0.01, P < 0.05). There was

a significant difference in the center/total distance ratio in
N+C+P-FLX and A+C+P-FLX groups (P < 0.05). OFT results
also showed a significant difference between the N+C+P-FLX
and N+C+P-con groups. (P < 0.05) (Figure 4C).

Upregulation of Autophagy-Related
Proteins Following Fluoxetine Treatment
The representative images of Western blot of Beclin-1, Atg5 and
LC3II can be seen in Figure 5A. The gray value of Beclin-1 in the
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FIGURE 4 | Different therapeutic effects of fluoxetine on normal and ATG5KO mice. (A) Immobility rate of N+C+P-FLX, N+C+P-con, N+P, A+C+P-FLX,

A+C+P-con, and A+P groups in FST. (B) Sucrose/water consumption ratio of N+C+P-FLX, N+C+P-con, N+P, A+C+P-FLX, A+C+P-con, and A+P groups in

SPT. (C). Center distance/total distance ratio of N+C+P-FLX, N+C+P-con, N+P, A+C+P-FLX, A+C+P-con, and A+P groups in OFT. Values are expressed as

mean ± SEM (n = 5). N+C+P-FLX vs. N+C+P-con, *P < 0.05, **P < 0.01; N+C+P-con vs. N+P, **P < 0.01, P < 0.001; A+C+P-FLX vs. A+C+P-con, *P < 0.05,

***P < 0.001; A+C+P-con vs. A+P, **P < 0.01, P < 0.001; N+C+P-FLX vs. A+C+P-FLX, ∧P < 0.05; ns, not significant.

A+C+P-FLX group was significantly increased when compared
with that in the A+C+P-con group (P < 0.05); however, it was
lower than that in the N+C+P-FLX group. The expression of
Beclin-1 in both N+C+P-con and N+P groups was significantly
increased when compared with A+C+P-con and A+P groups
(P < 0.05). (Figure 5B). Atg5 expression in both N+C+P-FLX
and N+P groups was significantly higher than in A+C+P-
FLX and A+P groups (P < 0.01); nonetheless, there were no
significant changes after fluoxetine treatment (Figure 5C). LC3II
showed significant increase after fluoxetine treatment in the
N+C+P-FLX group in comparison to that in the N+C+P-con
group (P < 0.05), whereas in the A+C+P-FLX group, there was
an increment but it was not significant when compared to that in
A+C+P-con (P > 0.05) (Figure 5D).

NF-κB, iNOS, and IL-10 Changes Showed
Reduced Inflammation After Fluoxetine
Treatment
NF-κB and iNOS are both key regulators of inflammatory
immune responses and IL-10 can inhibit NF-κB activity. NF-
κB expression in N+C+P-FLX and A+C+P-FLX groups was

significantly lower than in N+C+P-con and A+C+P-con groups
(P < 0.05). However, NF-κB expression in N+C+P-con and
A+C+P-con groups was significantly increased when compared
to that in N+P and A+P groups (P < 0.05) (Figures 6A,B).
There was a significant difference in iNOS expression between
A+C+P-FLX and N+C+P-FLX groups (P < 0.01). The iNOS
expression in the N+C+P-FLX group was significantly lower
than that in the A+C+P-FLX group, with both lower when
compared to iNOS expression in N+C+P-con and A+C+P-
con groups respectively (P < 0.01, P < 0.05) (Figures 6A,C). In
contrast to iNOS, IL-10 expression was significantly increased
after fluoxetine administration in both N+C+P-FLX and
A+C+P-FLX groups when compared to N+C+P-con and
A+C+P-FLX groups respectively (both P < 0.001) (Figure 6D).

BDNF Expression Was Upregulated
Following Fluoxetine Treatment
Following fluoxetine administration, BDNF expression in the
N+C+P-FLX group showed a significant increase in comparison
to that in the A+C+P-FLX group (P < 0.01). BDNF expression
in the N+C+P-FLX group was also significantly increased
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FIGURE 5 | Autophagy-related proteins were upregulated after fluoxetine treatment. (A) Western blot results of Atg5, LC3II, Beclin1, and GADPH. Quantification

analysis of (B) Beclin1, (C) Atg5, and (D) LC3II. Values are expressed as mean ± SEM (n > 5). N+C+P-FLX vs. N+C+P-con, *P < 0.05; A+C+P-FLX vs.

A+C+P-con, *P < 0.05; N+C+P-FLX vs. A+C+P-FLX, ∧∧P < 0.01; N+C+P-con vs. A+C+P-con, &&P < 0.01; N+P vs. A+P, #P < 0.05, ##P < 0.01; ns, not

significant.

when compared to that in the N+C+P-con group (P < 0.01)
(Figures 6A,E).

Alterations in Microglia Numbers Following
CUMS and Fluoxetine Treatment
Microglia activation can be measured by positive microglia
numbers of Iba1 staining. Positive microglia (Iba1-positive)

in the N+C+P-FLX group was significantly less than
in A+C+P-FLX mice (∧∧∧P < 0.001). Iba1-positive
microglia in the N+C+P-con group was also significantly
lower than in the A+C+P-con group (∧P < 0.05), and
it was significantly increased in the A+C+P-FLX group
when compared with the A+C+P-con group (∧P < 0.05).

Immunofluorescence detection also showed neuronal and
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FIGURE 6 | Effect of fluoxetine treatment on BDNF and inflammation levels. (A) Western blot results of NF-κB, IL-10, iNOS, BDNF, and GADPH. Quantification

analysis of (B) NF-κB, (C) iNOS, (D) IL-10, and (E) BDNF. Values are expressed as mean ± SEM (n > 5). N+C+P-FLX vs. N+C+P-con, *P < 0.05, **P < 0.01,

***P < 0.001; N+C+P-con vs. N+P, *P < 0.05; A+C+P-FLX vs. A+C+P-con, *P < 0.05, ***P < 0.001; A+C+P-con vs. A+P, *P < 0.05; N+C+P+FLX vs.

A+C+P-FLX, ∧∧P < 0.01; N+C+P-con vs. A+C+P-con, &&P < 0.01; N+P vs. A+P, #P < 0.05.

microglial colocation alterations. Microglia showed more
colocations with neurons in the dentate gyrus of the
hippocampus after fluoxetine treatment in the A+C+P-
FLX group when compared to the N+C+P-FLX group
(Figures 7A,B).

DISCUSSION

In normal mice, gestating CUMS induces postpartum

depressive-like behavior. This can be reversed by fluoxetine

administration. Microglia-specific autophagy-deficient
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FIGURE 7 | Immunofluorescence results indicated variation of microglia activation after CUMS and fluoxetine treatment. (A) Representative images of Iba1 (red),

NeuN (green), and DAPI (blue). Merged images are shown in the right panel. Bar = 50µm. (B) Quantification analysis of Iba1-positive cells. Values are expressed as

mean ± SEM (n > 5). N+C+P-con vs. A+C+P-con, &P < 0.01; N+C+P-FLX vs. A+C+P-FLX, ∧∧∧P < 0.001, A+C+P-FLX vs. A+C+P-con, *P < 0.05.

mice (Cx3Cr1Cre/+ATG5loxp/loxp) demonstrated lowered
activity when compared to normal mice. This difference can
also be found in microglia and inflammation activation.
Autophagic and BDNF changes were measured for
each group. Finally, we found that autophagy inhibition
in microglia played an important role in regulating

inflammation and BDNF, further attenuating fluoxetine
treatment.

Microglia-specific autophagy-deficient mice were established
with the Cre-loxP system by mating Cx3Cr1Cre/+ male
with ATG5loxp/loxp female. In the CNS, microglial cells are
characterized by a high expression of the chemokine receptor
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CX3CR1 (21). The Atg12–Atg5 conjugate contributes to the
expansion of the autophagosomal membrane, which is important
to the formation of the autophagolysosome (22). Autophagic
protein expressions in the hippocampus measured by the
western blot had results showing significant decreases in
ATG5 (Figure 5C) and subsequently substantiating atg5 to be
successfully knocked out in microglia. The CUMS model is
widely used in depression studies, with the two main methods
of the depression model including stress during pregnancy (7,
22, 23) and stress prior to pregnancy (4). Maternal exposure
to stress has long-lasting, dissociable effects (7). Behavioral
tests (FST and SPT) confirmed the mental condition of mice
before the experiment (Figures 2A,B). The OFT results reflect
the mice’s mobility and exploration capacity. On postnatal
day 7, the activity of the N+C+P and A+C+P groups
after CUMS was significantly decreased when compared to
control groups (Figure 3A). Meanwhile, the FST and the SPT
were performed. Following CUMS, the N+C+P, and A+C+P
groups showed behavioral despair and anhedonia respectively
(Figures 3B,C).

Fluoxetine, a traditional antidepressant targeting serotonin
reuptake inhibition, is used as treatment for depression
including that of women with PPD (24–26) and requires
at least 3 weeks to take effect (27). Other antidepressants
like ketamine may have limited preventative benefits in PPD
(28). On postnatal day 28 after fluoxetine administration
for 3 weeks, behavioral tests confirmed the reversal of
depressive-like behaviors. The FST showed that immobility
rate was decreased, indicating a reversion in behavioral
despair (Figure 4A). Microglia-specific autophagy-deficient mice
showed lowered activity in comparison to normal mice. The
OFT evidenced the center/total distance ratio to be increased
in the N+C+P-FLX group while the ratio decreased in the
A+C+P-FLX group (Figure 4B). The SPT showed the sucrose
intake of the N+C+P-FLX group to be increased, indicating
anhedonia alleviation (Figure 4C). The underlying mechanism
of behavioral performance can be explained at the molecular
level. Alcocer-Gómez posited that antidepressants containing
fluoxetine show autophagy dependent-NLRP3-inflammasome
inhibition in major depressive disorders (29). Fluoxetine can
mitigate NLRP3 inflammasome activation through autophagy
activation (30). In our study, Beclin-1 expression in A+C+P-FLX
was increased (Figure 5B). LC3II expression was significantly
upregulated in the N+C+P-FLX group when compared to the
N+C+P-con group, demonstrating that fluoxetine can activate
autophagy-related pathways (Figure 5D). Endogenous and
exogenous stimuli both arouse disorders of microenvironmental
homeostasis in the CNS, with microglia critically determining
the fate of other neural cells (31, 32). Microglial autophagy plays
an important role in the inflammation and survival of microglia.
However, as to whether the activation of microglia autophagy is
proinflammatory or anti-inflammatory remains ambiguous (24).
Garfield and his colleagues had confirmed that PPD is most
often accompanied by an elevated inflammation level (33). In this
study, following fluoxetine administration, inflammatory factors
such as iNOS and NF-κB were significantly upregulated while
anti-inflammatory factors (IL-10) were reduced (Figures 6B–D).

Inflammatory factor alterations in this study thus suggest that
the activation of microglia autophagy is anti-inflammatory.
Fluoxetine administration, in this study, did not induce any
significant changes in both N+C+P-FLX and A+C+P-FLX
groups when compared to N+C+P-con and A+C+P-con
groups (Figures 6B–D). This can be explicated via the time-
dependent effect of inflammatory reaction as inflammatory
factors often act in a short time (34). Microglia activity
was observed via Iba1 staining. Both the active and resting
states of microglia were labeled. Microglia numbers in the
A+C+P-FLX group was increased (Figure 7B), explicating
that the repression of autophagy in microglia culminates
in microglia being activated by fluoxetine administration.
Overactivation of microglia can be noxious to neurons and
aggravate PPD.

The association between PPD and the elevated inflammatory
level has been established (35). Stressful events during pregnancy
can affect the BDNF expression level in the hippocampus,
thus inducing the depressive phenotype. Fluoxetine can increase
BDNF expression (36). Gao found that a close relationship exists
between decreased BDNF serum levels and PPD development
(37). BDNF and its receptor (TrkB) in the hippocampus
play a key role in PPD pathology (38). Our results evince
the BDNF expression level in the N+C+P-FLX group to
be increased after fluoxetine administration. However, there
was no significant difference between A+C+P-FLX and A+C-
P-con groups because the inhibited autophagy in microglia
affects the inflammation level, which can be reflected by
iNOS. BDNF expression in these two groups was both
decreased compared to control, demonstrating that fluoxetine
treatment was influenced by the inflammation level. On the
contrary, microglia-specific autophagy-deficient mice (A+C+P-
FLX group) did not present an increment in BDNF expression
(Figures 6A,E). This corroborates that autophagy deficiency in
microglia has an adverse effect on PPD treatment via elevated
inflammation.

Although our study results address how fluoxetine influences
BDNF expression, downstream signals require further research.
We intend to investigate the time effect of fluoxetine treatment
in different postpartum periods in our future studies. We
will also attempt to probe into autophagic flux alterations
during depression development and its relationship with
neurotransmitters. Our research provides microglia autophagy as
a new target for the clinical treatment of PPD.
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