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Baclofen, a GABA-B receptor agonist, is a promising treatment for alcohol use disorder

(AUD). Its mechanism of action in this condition is unknown. GABA-B receptors

interact with many biological systems potentially involved in AUD, including transduction

pathways and neurotransmitter systems. Preclinical studies have shown that GABA-B

receptors are involved in memory storage and retrieval, reward, motivation, mood and

anxiety; neuroimaging studies in humans show that baclofen produces region-specific

alterations in cerebral activity; GABA-B receptor activation may have neuroprotective

effects; baclofen also has anti-inflammatory properties that may be of interest in

the context of addiction. However, none of these biological effects fully explain the

mechanism of action of baclofen in AUD. Data from clinical studies have provided a

certain number of elements which may be useful for the comprehension of its mechanism

of action: baclofen typically induces a state of indifference toward alcohol; the effective

dose of baclofen in AUD is extremely variable from one patient to another; higher

treatment doses correlate with the severity of the addiction; many of the side effects

of baclofen resemble those of alcohol, raising the possibility that baclofen acts as a

substitution drug; usually, however, there is no tolerance to the effects of baclofen during

long-term AUD treatment. In the present article, the biological effects of baclofen are

reviewed in the light of its clinical effects in AUD, assuming that, in many instances,

clinical effects can be reliable indicators of underlying biological processes. In conclusion,

it is proposed that baclofen may suppress the Pavlovian association between cues and

rewards through an action in a critical part of the dopaminergic network (the amygdala),

thereby normalizing the functional connectivity in the reward network. It is also proposed

that this action of baclofen is made possible by the fact that baclofen and alcohol act on

similar brain systems in certain regions of the brain.

Keywords: GABA receptor b, reward network, amygdala, Pavlovian associations, substitution (morphine,

methadone, buprenorphin)

INTRODUCTION

Baclofen is a gamma-aminobutyric acid (GABA) analog that activates the GABA-B
receptor subtype, and is used worldwide in neurology for the treatment of spasticity due to
its myorelaxant properties (1). Many preclinical [see (2), for review] and clinical studies have
demonstrated the efficacy of baclofen in the treatment of several addictive disorders, including
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alcohol use disorder (AUD) (3–10), even though negative
results have also been published (11, 12). While it is clearly
established that the myorelaxant properties of baclofen are
related to a dampening of the spinal motor reflex (13),
its potential mechanism of action in AUD remains elusive.
Central GABA-B receptors are involved in the regulation of
a large number of systems and functions, including several
neurotransmitter systems (dopamine, serotonin, norepinephrine,
glutamate), transduction pathways, memory, and other cognitive
functions, as well as inflammation. All these systems and
functions are possibly involved in the anti-addictive effects of
baclofen. In the present paper, the biological effects of baclofen
are reviewed in the light of its clinical effects, assuming that,
in many instances, clinical effects can be reliable indicators of
underlying biological processes.

The effects of baclofen in the treatment of alcohol dependence
have been thoroughly described by a physician suffering from
AUD, Olivier Ameisen, who reported the cure of his alcohol
dependence with a high dose of baclofen, first in an article
published in 2005, then later in a book published in 2008
(3, 14). He reported that, in his case, the dose of 270 mg/day
produced a state of “complete indifference” toward alcohol.
Indifference is not an operational concept in addictology. It is
nevertheless a concept that should be taken into consideration.
It is characterized by an effortless suppression of craving, but
goes beyond it. In people indifferent to alcohol, the experience
of drinking or seeing alcohol cues has changed completely, as
if alcohol had no meaning to them anymore. Those who are
indifferent to alcohol can drink a glass of an alcoholic beverage,
they do not finish the glass, they do not want to continue
drinking, they feel nothing, while they remain unchanged for
other aspects of their life, which they enjoy normally. The state of
indifference is not transitory when the effective dose of baclofen
is maintained: on the contrary, it is very long lasting, and people
completely indifferent to alcohol can generally stop baclofen after
one or a few years of treatment, and they most often do not
relapse (as if all memories associated with alcohol had vanished).
This differs from those who have been cured by using other
methods, for whom abstinence most generally requires a lot of
effort, and for whom craving for alcohol often returns when they
resume some alcohol drinking or see alcohol cues. However, all
AUD patients treated with baclofen do not reach such a state
of complete indifference. My experience (more than a thousand
patients treated with a high-dose of baclofen over the last 10
years) is that about one third of the patients reach this state of
complete indifference; while another third experiences a clear
decrease in craving, but not its complete suppression (these
patients drink very significantly less, but still have moments
of desire for alcohol); in the last third of patients baclofen
treatment is ineffective despite often reaching very high doses.
In these latter patients, the dose increase may have been limited
by adverse effects, but it happens that some patients reach very
high doses (superior to 400 mg/day) without achieving a state of
indifference. In any event, a state of indifference can be reached
in a substantial number of patients, and one of the aims of the
present article is to try to address the concept of indifference in
biological terms.

AUD is a chronic relapsing disorder characterized by an
increased motivation to seek alcohol and drink compulsively,
with an increasing loss of control over drinking, progressing from
impulsivity to compulsivity (15). In clinical research, the concept
of compulsion is generally not used: the word compulsion is
absent from the DSM-5 AUD section, where the term craving,
defined as “a strong desire or urge to use alcohol” (16), seems to
encompass the compulsion to drink. According to the DSM-5,
AUD is commonly associated with anxiety, depression, psychotic
disorders, cognitive disorders and sleep disorders. Impulsivity
is cited as a vulnerability factor for AUD. Regarding biological
research, addiction models use the concept of craving (associated
with those of preoccupation/anticipation), and add the concepts
of positive and negative reinforcement to those of impulsivity
and compulsivity. In positive reinforcement, cues and contexts
associated with drinking acquire incentive salience after repeated
association with drinking, and increasing strength of salience
progressively leads to compulsive alcohol seeking and drinking.
In negative reinforcement, craving is induced by the motivational
value of the negative states of alcohol withdrawal. This leads to a
state of preoccupation/anticipation where craving is intensified
by the anticipation of access to alcohol resulting in compulsive
alcohol seeking and drinking. A challenge in alcohol research is
to explain how specific cues or contexts are paired with states of
craving, while explaining which mechanisms of brain encoding
are involved in these associations. It is hypothesized that the
understanding of how specific neuronal ensembles encode and
mediate the recall of learned associations among the cues,
contexts, and behaviors during alcohol seeking and drinking will
be helpful for the comprehension of how baclofen works in the
treatment of AUD (17).

As mentioned above, baclofen is a selective GABA-B receptor
agonist. GABA-B receptors are heterodimeric metabotropic
receptors consisting of one GABA-B receptor-1 subunit
(GABBR1) and one GABA-B receptor-2 subunit (GABBR2).
GABA-B receptors are coupled via G-proteins to potassium
and calcium channels, and to adenylate-cyclase (18). Studies
have shown that GABA-B receptors are highly expressed all
throughout the brain, some regions having a very high density
of receptors, other regions a low or a very low density, and some
regions insignificant densities. The variable densities of GABA-B
receptors may have important implications regarding the use of
baclofen in the treatment of AUD, given that, when a patient
takes baclofen activation of regions with high densities should
have clearer and more immediate physiological and behavioral
consequences than the activation of regions with low densities.
Binding and expression of GABA-B receptors have been studied
in rodents. The Chu et al. binding study (using baclofen) showed
highest densities of GABA-B receptors in the medial habenula,
thalamus, cerebellum, cortex and colliculus; while ventral
tegmental area and mesolimbic dopaminergic projections were
among the structures with the lowest binding (19). Bowery et al.
reported highest densities of GABA-B binding in the cerebellum,
interpeduncular nucleus, frontal cortex, and thalamus (20),
and highest GABBR1 mRNA transcripts in the hippocampus,
thalamus, and cerebellum (21). Billington et al. (22), using
immunohistochemistry targeting GABBR1 and GABBR2, found
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receptor colocalization in the cerebellum, hippocampus, cortex,
thalamus, and basal ganglia; the raphe nucleus was strongly
stained for GABBR1 and weakly for GABBR2; there was no
significant staining in the VTA and mesolimbic dopamine
projections. Lu et al. reported strong expression of GABBR1 in
the medial habenula, hippocampus, hypothalamus (supraoptic
and suprachiasmatic nuclei), and cerebellum; intermediate
expression in thalamus and brainstem nuclei containing
monoaminergic neurons; and low expression in globus pallidus,
ventral pallidum, and substantia nigra pars reticulata (23). Li
et al. (24) reported strong expression of both GABBR1 and
GABBR2 in medial habenula, cingulate and piriform cortex,
cerebellum, and hippocampus; moderate expression in thalamic
nuclei, amygdala, and other parts of the cortex; low expression
in the basal ganglia and hypothalamus; insignificant expression
in the ventral mesencephalon, where the VTA is located (24).
Conversely, a study using immunohistochemistry and focusing
selectively on midbrain monoaminergic nuclei showed that
GABA-B receptors are present in neurons of the VTA and raphe
nuclei (no comparison in terms of density of receptors was made
with other parts of the brain) (25). Besides, acute treatment
with baclofen in rats produces an activation of a number of
brain nuclei, mostly in the hypothalamus, the amygdala, and
the brainstem, and has no detectable effect in reward-relevant
regions such as the nucleus accumbens, striatum, or ventral
tegmental area (26). In conclusion, despite some discrepancies
between these studies and despite the fact that it is not known
to what extent observations made in rodents are relevant to
humans, it is likely that, when given to patients, baclofen action is
much stronger in brain structures that contain high or very high
densities of GABA-B receptors, such as the cerebellum, medial
habenula, hippocampus, some nuclei of the hypothalamus and
thalamus, and certain parts of the cortex, than in dopaminergic
structures.

Adverse effects generally occur before anticraving effects
during baclofen treatment of AUD, especially when baclofen
is used in order to make patients reach a state of complete
indifference, for which high or very high doses are most often
necessary. Many adverse effects may in large part be explained
by an early occurring activation of brain areas containing
high densities of GABA-B receptors. For example, the most
common and early occurring baclofen adverse effects include
fatigue, diurnal somnolence and nocturnal insomnia. Theses
symptoms may be explained by an action of baclofen on GABA-
B receptors in the brainstem and hypothalamus, which are
among the structures most strongly activated by baclofen, and
which control basic states of vigilance (in particular through
the suprachiasmatic nucleus). Frequently occurring adverse
sensory effects (tinnitus, paresthaesias, blurred vision, etc.)
may be explained by the high density of receptors in the
thalamus, and memory problems by the high density of receptors
in the hippocampus. Baclofen can also frequently promote
anxiolysis; this could possibly be explained by an early occurring
effect of baclofen on serotonin neurons and on the amygdala.
Hyperactivity of serotonin raphe neurons or hyperactivity of the
amygdala are mechanisms known to produce anxiety; baclofen
acutely inhibits serotonin neurons and serotonin release (27, 28)

while short-term baclofen treatment inhibits amygdala reactivity
to incentive cues (29). Most importantly, it has recently been
shown that alcohol addiction is associated with impaired GABA
clearance in the amygdala, with an increase in GABA tone
associated with higher anxiety-like behavior (30). Baclofen could
possibly improve anxiety through a rapid normalizing effect on
amygdala GABA tone. Clinical studies have shown that baclofen
has anxiolytic effects in patients with AUD (31) and it has been
hypothesized that the anticraving effects of baclofen could be
related to an anxiolytic effect (5, 6, 32). A study by Morley
et al. showed no anticraving effect in AUD patients, but a
secondary analysis showed that baclofen was effective in the
group of anxious patients included in the study (33). Given
that craving for alcohol is closely related to states of stress
(34, 35), the stress-relieving effects of baclofen may contribute to
reduce craving in AUD patients. In addition, activation of GABA-
B receptors could normalize the abnormal GABA tone in the
amygdala and have significant therapeutic effects (36). However,
adverse and anxiolytic effects generally occur during the first days
or weeks of treatment, while a state of complete indifference
most often occurs much later, after one or several months of
treatment (depending on the dose needed and the protocol of
dose increase). This could imply that complete indifference to
alcohol does not result from an immediate or short-term effect
of baclofen on GABA-B receptors, but is rather the result of
long-term plastic remodeling of certain brain systems.

Preclinical studies have highlighted such plastic effects
of baclofen or other GABA-B agonists on brain systems
after chronic treatment. Keegan et al. have shown that rats
treated chronically with baclofen have significant decreases
in G-protein-dependent signal transduction (measured by
GTP-gamma-S binding) in the frontal cortex, septum, amygdala,
and parabrachial nucleus (37). Such decreases demonstrate
a general desensitization of G-protein-dependent systems.
But chronically treated rats also show signaling alterations
via kinase cascades, including increases in activation of focal
adhesion kinase (FAK) and of activated glycogen synthase
kinase 3 (GSK3ß), and elevations in phosphorylated dopamine-
and cAMP-regulated phosphoprotein-32 (DARPP-32), in
several brain structures, which could indicate an absence of
desensitization in these structures (i.e., no tolerance). According
to Keegan et al. neuroadaptation mediated by G-proteins
correlates with tolerance, while signaling alterations via kinase
cascades shows cross-talk between GABA-B receptors and
alternative mechanisms that are resistant to desensitization.
Regarding brain areas, chronic baclofen treatment produced
a sustained increase in auto-phosphorylation of FAK in the
caudate, an increase in phosphorylations of GSK3ß in the
caudate and putamen, and an increase of DARPP-32 in the
nucleus accumbens. These actions demonstrate that chronic
baclofen can induce significant plastic effects in dopaminergic
structures, and that the effects of baclofen in these dopaminergic
structures are associated with an absence of tolerance. The
Keegan et al. study shows that chronic baclofen treatment also
produces a sustained increase in kinase cascades activity in
other regions, namely the cortex, thalamus, and hippocampus
for FAK; the cortex, thalamus and septum for GSK3ß; and the
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cortex, thalamus, hippocampus and amygdala for DARPP-32.
These regions are not primarily dopaminergic, but nevertheless
receive dopaminergic projections, and, for many of them, they
are part of the reward network (38). In summary, chronic
baclofen produces G-protein desensitization in a certain number
of structures, and alterations in signaling via kinase cascades,
with resistance to desensitization, in a set of structures that are
closely related to the dopamine network. It may be hypothesized
that structures showing desensitization could be involved in the
adverse effects of baclofen, which all tend to vanish over time,
while structures showing no desensitization are involved in the
therapeutic effect on baclofen in AUD—these last structures
being possibly involved in the indifference toward alcohol.
Indeed, when baclofen produces a complete indifference toward
alcohol, there is no tolerance to this effect [no requirement for
“markedly increased dose [. . . ] to achieve the desired effect,” as
tolerance is defined in the DSM-5 (16)]; on the contrary baclofen
can be progressively decreased over time in patients indifferent
to alcohol, until, for many patients, a possible discontinuation of
the treatment after a more or less lengthy period of time.

THE ANTI-DOPAMINERGIC HYPOTHESIS

All addictive substances alter dopaminergic signaling in the
mesocorticolimbic system, and models of addiction posit
positive and negative reinforcement as closely linked to
dopaminergic reward systems (39). In positive reinforcement, an
increase in drinking is associated with increases in the release of
dopamine in the brain, producing a feeling of pleasure. Whereas
in negative reinforcement, alcohol is taken to alleviate a negative
emotional state, and is associated with decreased dopamine in the
striatum. And it is widely accepted that, in patients with chronic
AUD, reward thresholds are increased and dopamine function
is decreased, leading to a general “dopamine-impoverished”
brain (40). The enduring reduction of dopaminergic systems
activity in patients’ brains logically implies that drugs used in
the treatment of AUD should enhance dopamine function to
restore brain circuits disrupted by alcohol use. The idea of a
strict hypo-dopaminergic state in the brain of AUD patients
remains controversial (41). However, dopamine antagonists
have never shown effectiveness in the treatment of AUD (42).
Furthermore, preclinical studies have shown that baclofen
inhibits dopamine transmission (43–48). Such dopamine
antagonist properties do not a priori posit baclofen as a good
candidate for the treatment of subjects who have a dopamine-
impoverished brain. However, some studies have shown that
baclofen could have dose-dependent effects on dopamine
systems, with low doses increasing dopamine transmission
and high doses inhibiting it. This has been demonstrated
in animals (49), in in vitro cell preparations (50), and in
humans (51).

Studies investigating the effect of baclofen in animal
models of addiction show that systemic administration of
baclofen reduces the acquisition and maintenance of alcohol
consumption (52–55), motivation to drink (56), binge-like
drinking (57), relapse-like drinking (58), severity of alcohol

withdrawal signs (53), cue-induced reinstatement of previously
extinguished alcohol-seeking behavior (59), and the reinforcing
and motivational properties of alcohol (60–65) in different
validated rodent models of AUD [for review, see (2)]. That
baclofen reduces alcohol consumption in animal models has been
further strengthened by the demonstration that R(+)-baclofen,
and not S(-)-baclofen selectively reduces self-administration
of alcohol in rats (66). Regarding the mechanism of action
of baclofen in these models, it is generally hypothesized
that baclofen reduces alcohol consumption through an anti-
dopaminergic effect. The hypothesis is based on two major
points. The first is the fact that baclofen has clear anti-
rewarding effects. These effects have been shown not only for
alcohol consumption, but also for the consumption of cocaine
(67), amphetamine (68), and even of non-drug reinforcers
such as sucrose, saccharin, or regular food pellets, suggesting
that baclofen produces a generalized suppression of reward-
motivated behaviors (2). The second is that microinjection of
baclofen directly into the VTA blocks the behavioral response to
cues and the cue-evoked firing of subpopulations of NAc neurons
that respond to predictive cues (69). Baclofen and other GABA-
B agonists microinjected into the VTA suppress alcohol-seeking
behavior (70), alcohol consumption (71), and alcohol-induced
conditioned place preference (72). Microinjection of baclofen in
the nucleus accumbens also decreases binge-like alcohol drinking
(73). Given that the microinjection of baclofen in the VTA
dampens the activity of dopaminergic neurons, it has been
hypothesized that baclofenmay exert its anti-addictive properties
by means of its ability to reduce the activity of dopaminergic
neurons (74).

From a clinical standpoint, this hypothesis is not entirely
satisfying because the clinical effects of baclofen in AUD patients
are not really those of an antidopaminergic effect. Indeed, acute
administration of baclofen may produce sedation, and sedation
could be related to an inhibition of dopaminergic systems,
but baclofen often produces a behavioral disinhibition, and
quite frequently an evident hypomania (approximately 15% of
patients). Disinhibition could be possibly linked to a dose-related
effect of baclofen on dopaminergic neurons, where a low dose
of baclofen activates VTA neurons and a high dose inhibits
them (50, 51). However, the experience of baclofen treatment in
patients with AUD shows that most often the stimulant effect is
not dose-dependent; it appears at any dose, and sometimes at
high doses. And when a disinhibitory effect occurs at a low dose,
it is almost never followed by a state of inhibition when doses are
increased, as should be the case if baclofen had a dose-dependent
biphasic effect. In baclofen-treated patients, a disinhibitory
effect is generally accompanied by a sensation of well-being,
or euphoria, or even by a hypomanic state; and it is well
established that these feelings or symptoms are associated with
an increase in striatal dopamine activity (75–77). On the other
hand, inhibition of dopaminergic systems has been consistently
related to apathy, anhedonia and depression (78). Baclofen’s
ability of to produce major depression during treatment of AUD
is a subject of discussion [see (79)]; if this were the case, it is
certainly very rare. However, baclofen makes patients sometimes
feel dull, apathetic, and joyless (approximately 15% of patients),
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suggesting, rather, a state of atypical depression that does not
meet the criteria of a major depressive episode. This state is
possibly related to a hypo-dopaminergic state. Thus, baclofen
can produce states of disinhibition/hypomania or of apathy,
in about 30% of patients. The large majority of patients never
experience these symptoms. This shows that baclofen can have
an effect on dopaminergic systems during treatment of AUD
patients, but this effect can be that of a hyper- or a hypo-
dopaminergic effect, and that it occurs in a minority of patients.
More importantly, the clinical experience shows that the states of
sedation, apathy, disinhibition, or hypomania have no relation
to the therapeutic effect of baclofen; they occur independently
of an anti-craving effect, and these symptoms are commonly
considered as side-effects of baclofen. As a whole, these elements
are not compatible with a general hypothesis that would posit an
inhibition of dopaminergic systems as a central mechanism for
the anti-addictive action of baclofen (Table 1).

Another reason why the therapeutic effect of baclofen in AUD
is likely not to be related to a global anti-dopaminergic effect is
that it is not compatible with the phenomenology of the state
of indifference toward alcohol. Patients indifferent to alcohol
are no longer interested in alcohol, but they experience normal
enjoyment for the other aspects of their life. People who enjoy
life normally necessarily have intact reward systems. The state
of indifference is always reached after treatment has lasted for a
certain amount of time, which is likely a period of remodeling
brain circuits. It cannot be excluded that that an initial blockage
of the dopaminergic systems participates in the remodeling of
brain circuits. The above-mentioned study by Keegan et al. shows
that chronic baclofen treatment induces plastic changes in a
number of structures and systems, most of which are part of, or
are closely linked with, the brain’s reward network.

LONG-TERM NETWORK ALTERATIONS

The concept of indifference is not a scientific concept,
while those of craving and compulsive drinking are such
concepts. Craving/compulsive consumption of alcohol occurs
after repeated consumption of alcohol, likely in relation with
complex adaptations in brain circuits. The challenge is to
explain how a chronic treatment with a GABA-B agonist is able
to overcome these numerous and complex brain adaptations,
and to lead to a state of indifference toward alcohol. The
different components of the progressive set-up of the compulsive
drinking behavior involve neural substrates that belong to
the dopaminergic reward network. Schematically, the reward
network has three major components (38): a VTA-ventral
striatum/nucleus accumbens system (VTA-NAc) that encodes
stimuli valence; a VTA-amygdala/hippocampus system (which
in the amygdala includes the basolateral and central nuclei)
that forms associative related memories; And a VTA-medial
prefrontal cortex system (VTA-mPFC) that regulates executive
control. Studies have shown that craving occurring in response
to alcohol cues is associated with the activation of structures,
which, for the most part, belong the reward system. These
structures are the nucleus accumbens/ventral striatum; the

anterior, posterior and dorsal cingulate cortex; the orbitofrontal
cortex; the dorso-medial prefrontal cortex; the amygdala, the
hippocampus and para-hippocampus; and the cerebellum (93–
95). These different structures are interconnected through
complex networks. Preclinical models have demonstrated that
a direct inactivation of some of these structures can suppress
craving or the reinstatement of drinking. For instance, it
has been shown that inactivation of the prelimbic cortex
inhibits ethanol self-administration (80); that the inactivation of
the baso-lateral amygdala attenuates context-induced alcohol-
seeking (81); or that the inactivation of the ventral subiculum
decreases context-induced relapse to alcohol seeking (82).
Therefore, inactivation of localized parts of the reward network
may globally inhibit craving or compulsive drinking. Studies
in AUD patients have shown the same kind of results.
Transcranial Magnetic Stimulation (TMS) targeted to the dorsal
anterior cingulate cortex (dACC) has been shown to reliably
suppress craving (83, 96); a similar effect has been found
with Deep Brain Stimulation (DBS) targeted in the nucleus
accumbens (84). It is well established that TMS and DBS
efficacy are related to their ability to change network connectivity
(97).

Many studies have shown that AUD is associated with
abnormal brain connectivity. It seems, in a simplified way, that
in AUD patients connectivity is increased in regions that are
involved in appetitive drive and reduced in regions that mediate
executive control, while in long-term abstinent patients activity
is decreased in reward circuitry and increased in executive
control regions (98–102). This is however a simplified view
of the question, which is certainly far more complex (103–
108). But the important point in the context of the present
article is to highlight that there are dysfunctional networks
in the brains of AUD patients, and to try to understand
how effective pharmacological treatments used in AUD can
normalize these dysfunctional networks. The literature dealing
with the effects of pharmacological treatments for AUD on
brain connectivity is scarce. A study by Morris et al. (85)
showed that AUD patients have heightened local efficiency
of neural networks, indicating disturbances of information
processing—more isolation and clustering of functionally
related regions, stronger processing in certain regions, with
less cross-talk between distinct functional processes—, and
that naltrexone, a commonly used treatment of AUD, can
normalize these abnormalities. Gamma-hydroxybutyrate (GHB),
a medication used in the treatment of AUD that activates
GABA-B receptors, has been shown to markedly alter functional
connectivity in healthy volunteers (109). Generally speaking,
it is very likely that all effective AUD treatments, whether
pharmacological, psychological, or using local stimulation, do
so by normalizing functional connectivity, possibly leading
to a decrease in the strength of appetitive networks and
to an increase of that of executive control regions, with a
recovery of balanced cross-talk between the different local
functions.

It is therefore hypothesized that chronic baclofen treatment
produces a state of indifference through a normalization of
brain network connectivity. Chronic baclofen produces many
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TABLE 1 | Correspondence between potential mechanisms, symptoms and neurobiological substrates.

Mechanism Symptom Neurobiological substrate Method References

Dopamine Anticraving effect

Sedation/apathy

Hypomania/mania

Indifference

ց dopamine in VTA-NAc

ց dopamine in VTA-NAc

ր dopamine in striatum

Long-term remodeling of dopamine circuits?

Intra-VTA B inject

Peripheral B inject

Brain imaging

(2) (review)

(44)

(75)

Connectivity Inhibits reinstatement

Eth seeking decrease

Eth relapse

Anticraving effect

Anticraving effect

AUD treatment

Indifference

Inactivation of infralimbic cortex in rats (similar to anterior

cingulate in humans)

Inactivation of baso-lateral amygdala

Inactivation of ventral subiculum

Stimulation of dorsal anterior cingulate

Stimulation of the nucleus accumbens

Multiple networks

Gaba tone in the amygdala?

Gaba inhibition

Gaba inhibition

Gaba inhibition

TMS

DBS

Naltrexone

Baclofen

(80)

(81)

(82)

(83)

(84) (review)

(85)

Substitution Similar effects of Eth and

GABA-B activation

General symptoms

Anxiolysis

Withdrawal

GHB deficiency hypothesis

Multiple brain structures

Brain GHB receptors

Eth and GABA-B agonists

studies

GHB studies

(86); (87)

(16); (88)

(89); (90)

(16); (91)

(92)

B, baclofen; Eth, ethanol; VTA-NAc, Ventral Tegmental Area-Nucleus Accumbens; Gaba inhibition, local injection of baclofen+muscimol; TMS, Transcranial Magnetic Stimulation; DBS,

Deep Brain Stimulation. References, only the first author is cited; Two references on the substitution line, the first refers to alcohol, the second to baclofen or other GABA-B agonists.

changes in the brain that could impact connectivity. We
have previously mentioned that chronic baclofen produces
plastic changes in regions of the reward system, including
desensitization in G-protein-dependent systems and alterations
in signaling of several kinase cascades (FAK, GSK3ß, DARPP-
32) that are resistant to desensitization (37). In addition, AUD
is associated with marked brain neuro-immune alterations (110);
and studies have shown that baclofen has anti-inflammatory and
neuroprotective effects on the brain. Baclofen attenuates neuro-
inflammation (111) and inflammatory signaling (112); inhibits
the release of pro-inflammatory cytokines from microglia (113)
and from astrocytes (114); and decreases oxidative stress (111);
interestingly, baclofen is an allosteric modulator of CXCR4, a
receptor for the chemokine CXCL12, which has been causally
involved in several neurological disorders, including stroke,
brain tumors, HIV encephalopathy and multiple sclerosis (115).
GABA-B-receptor activation alters also the activity of dopamine,
serotonin, norepinephrine, GABA and glutamate, which are
prominent neurotransmitters implicated in alcohol dependence
and are involved in the modulation of brain networks. It is not
known whether these effects of baclofen on neurotransmitter
or neuroimmune factors can alter functional connectivity in
AUD, but it has been shown that neuroimmune/neurotransmitter
dysregulation in other psychiatric disorders, such as bipolar
disorder, disrupt local brain network connectivity and have
deleterious effects on the brain, and that these effects can
be treated with appropriate pharmacological treatments (116).
Abnormal glutamate release and function have been found
in the brains of AUD patients and glutamate and/or GABA
neurotransmission may underlie resting-state functional deficits
in drug addiction (117). Therefore, the effects of baclofen on
neuroimmune/neurotransmitter systems may participate in a
normalization of functional connectivity in patients with AUD.

Indifference to alcohol is a special phenomenon. The case of
Olivier Ameisen is very illustrative (3, 14). Ameisen progressively

increased the dose of baclofen up to 270 mg/day, and became
completely indifferent to alcohol at that dose. At the dose of
260 mg/day, he was not indifferent at all. It is the addition of
10mg that abruptly and completely changed his attitude toward
alcohol. The long experience of baclofen prescription in AUD
shows that this abrupt occurrence of a state of indifference at
a given dose is common. Patients call it “my threshold.” The
threshold of indifference is unique to each patient. Some reach it
at moderate doses, some at high or very high doses. The passage
from a state of extreme vulnerability to compulsive drinking to
a state of indifference is however not always as abrupt as in
the case of Olivier Ameisen. Instead, it is often preceded by
a period of a slow decrease of craving; but almost all patients
who reach a state of indifference say that at a certain dose they
felt a complete change in their attitude toward alcohol. For the
majority of patients, baclofen treatment is a quest to reach the
threshold of indifference. In a recently published guidance for
baclofen treatment of AUD, primarily written by expert patients,
the quest for the threshold of indifference was clearly described
(79). In this guidance article, the authors present what they call
the “Ameisen test:” “One of the best ways to confirm that the
effective treatment dose has been reached is to ask the patient
to go to the shop where s/he used to buy alcohol. If the desire
to drink alcohol is ignited by the sight of wine and spirits, the
baclofen dose should continue to be increased progressively. If
the sight of alcohol has no more effect than looking at nappies
or washing powder, the effective dose of baclofen has been
reached.” Patients indifferent to alcohol are no longer concerned
or stressed by the sight of alcohol. Alcohol has become devoid of
meaning. It is well established that craving and the subsequent
sequence of compulsive drinking are triggered by feelings of
stress that can themselves be triggered by the exposition to
alcohol cues (118). The analysis of the mechanisms potentially
involved in the dose-dependent, and often abrupt, passage from
a state of extreme vulnerability to compulsive drinking to a state
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of complete indifference is critical in addressing the question
of the mechanism of action of baclofen in the treatment of
AUD.

From a clinical/phenomenological standpoint, craving and
compulsive drinking can be assimilated to a Pavlovian reaction
where stress or the activation of an alcohol-related cue or
mental imagery is associated with the memory of a reward,
and triggers an irrepressible drinking behavioral sequence. The
learning of cue-reward associations is a slow process causing
long-lasting synaptic plasticity changes in cortico-limbic-striatal
circuitry, via multiple gene and protein expression. It is well
established that there is a very important relation between
stress and alcohol use (34, 35). The biological bases of craving
and drinking in response to stress or alcohol cues have been
extensively studied in preclinical models of alcohol addiction
and in AUD patients themselves. Interestingly, endogenous
substances like dopamine and corticotropin-releasing factor and
exogenous acute and chronic ethanol act in brain regions that
regulate stress and anxiety-related behaviors (119), the most
important region being the amygdala. The amygdala is a critical
part of the reward network, involved in the way cues associated
with rewards gain access to regions attributing incentive salience
(120). The way stress and cues associated with rewards are
processed in the amygdala may therefore determine subsequent
behaviors such as compulsive drinking. Baclofen can interfere
with these processes. Baclofen affectsmemory processes in rodent
addiction models, impairing consolidation of memory (121),
facilitating extinction learning (122), and interfering with fear
extinction (123). Amygdala CREB is known to be involved in
the modulation of fear memory (124); and baclofen suppresses
stimulant-induced increases in pCREB levels in the amygdala
(125). Progressive increase in the reinforcing effects of drug cues
is associated with the increases in BDNF and extracellular signal
regulated kinase (ERK) activity in the central nucleus of the
amygdala (126–128); and GABA-B receptors are involved in the
regulation of BDNF release (129), and of the ERK pathway (130).
Baclofen also has important neuromodulatory effects in the
amygdala, through its inhibitory action on neurotransmitters and
complex effects on second-messenger signaling (37). It reduces
the strength of excitatory (glutamate) and inhibitory (GABA)
transmission in the amygdala by a presynaptic mechanism
(131). Furthermore, as mentioned previously, alcohol addiction
is associated with impaired GABA clearance and increased
GABA tone in the amygdala, associated, in turn, with higher
anxiety-like behavior (30). GABA-B receptor stimulation, which
inhibits GABA transmission, should therefore be useful in
the treatment of alcohol dependence and associated anxiety
(Table 1).

Chronic neuromodulatory effects of baclofen in the amygdala
may change the processing of stress and cues, and ultimately
alter the functional connectivity within the reward network,
in such a way that cues associated with rewards lose their
meaning. The dose of baclofen needed to achieve this effect
could be very variable from one subject to another in relation
to each individual’s variable strength of the Pavlovian association
between the cue and the reward. In other words, the dose
of baclofen would be that which is necessary to overcome

the strength of a long-lasting associative learning “carved” in
the limbic memory. This could be in accordance with studies
that show that higher doses of baclofen are correlated with a
higher severity of addiction (8, 132). Clinical experience also
shows that when the effective dose is reached—the threshold
dose producing a state of indifference—the treatment has to
be continued for several months at the same dose before it
can be reduced. It is proposed that this delay is necessary
to completely suppress the Pavlovian association between the
cue and the reward. It has been highlighted that, in patients
indifferent to alcohol, those who remain completely free of
alcohol for many months are those who will be able to stop
taking baclofen, while those who continue to drink, even at
moderate levels and without any real desire for alcohol but
who do so out of habit or on certain social occasions, will
have greater difficulty in stopping baclofen (79). Indeed, in
terms of connectivity and synaptic strength, it is likely that
the continuation of regular drinking reactivates the Pavlovian
association between the cue and the reward every time, making it
impossible to suppress, and paving the way for relapse if baclofen
is stopped.

THE SUBSTITUTION HYPOTHESIS

Alcohol and baclofen produce many similar symptoms or
behavioral effects in patients. Both can produce unsteady gait,
dizziness, feelings of drunkenness, mood alterations, sensory
alterations, confusion, impairment in attention andmemory, and
sleep disorders, among others (16, 88). Both can also reduce
anxiety (89, 90). Patients taking baclofen often spontaneously
notice these similarities. Abrupt withdrawal from alcohol
and high-dose baclofen may also produce similar symptoms,
including confusion, hallucinations, delirium, and seizures (16,
91) (Table 1). The main difference between alcohol and baclofen
is that alcohol progressively produces a state of dependence,
while this is not the case with baclofen (although a few cases
have been reported (133)—likely because these are exceptional).
Besides, chronic alcohol consumption induces tolerance, whereas
tolerance with baclofen is equivocal: as previously mentioned,
there is no tolerance to the clinical effectiveness of baclofen in
AUD, but there is tolerance to most of its adverse effects (e.g., its
effects on locomotor activity) (134).

These clinical similarities raise the possibility that baclofen
and alcohol act on the same brain systems, and that baclofen
could be a substitution treatment for alcohol dependence. In
addictology, a substitution substance is a substance that acts
on the same receptors as the targeted substance of abuse. The
two substances share many similar effects, but the substitution
substance is less prone than the substance of abuse to induce
dependence, or not prone at all to do so. Substitution treatments
appeared in addictology about 50 years ago for the treatment
of opiate addiction. Buprenorphine and other substitution
substances used in the treatment of opiate addiction indeed
act directly as full agonists, or as agonist/antagonists, on opiate
receptors. The problem with baclofen and alcohol is that they
do not act on the same receptors. Baclofen is a selective
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GABA-B agonist, and alcohol has no direct action on GABA-
B receptors. However, it is very likely that the two substances
indirectly act on the same systems, especially the glutamatergic
and GABAergic systems. Even though alcohol does not directly
act on GABA-B, it increases GABA(B1) and GABA(B2) receptor
expression in different parts of the brain, while baclofen partially
reverses these effects (87). Besides, it has been shown that
stimulation of presynaptic GABA-B receptors decreases the
GABAergic effects of alcohol (86), demonstrating that GABA-
B activation can moderate the behavioral sensitivity to alcohol.
This has led Clapp et al. (135) to propose that treatment with
a GABA-B agonist could substitute for the anxiolytic effect of
ethanol, leading to its reduced consumption. Similarly, GABA-
B stimulation may substitute the GABA transporter GAT-3
deficiency in the brains of alcoholics, leading to a normalized
GABA function in the amygdala (30). More generally, chronic
alcohol consumption alters many brain substances, receptors,
and pathways (136), including several that interact with GABA-
B receptors, such as, among others, the PKA and PKC pathways
(137), the Akt pathway (138), the mTORC-1 pathway (139), the
ERK1/2 pathway (130), BDNF release (129), or CREB (125):
in all these systems, GABA-B stimulation could, in some ways,
substitute for the effects of alcohol. The definition of substitution,
limited to the notion that substitution should strictly involve
substances that act on the same receptors, has been questioned.
For instance, Chick and Nutt proposed much more broad
and unspecific criteria to define substitution (140). It remains
that chronic alcohol consumption impacts many brain systems
and that GABA-B may interfere with some of these effects
with potential clinical advantages, assimilated to substitution or
not.

Another approach to the substitution hypothesis has been
proposed by Ameisen (92, 141), who hypothesized that there is
a deficit of GHB in the brain of AUD patients. He highlighted
the similar behavioral effects of alcohol, baclofen and GHB.

Baclofen and GHB share several common neurobiological
effects, including GABA-B activation; among alcohol, baclofen
and GHB, only GHB occurs naturally in the brain and has

brain specific receptors. According to Ameisen, a deficit in
brain GHB could cause dysphoria, itself promoting alcohol
misuse. Baclofen could be able to compensate the deficit in
GHB, thereby suppressing dysphoria and possible dependence
(Table 1). Furthermore, GHB itself is used as a treatment of AUD,
and it is possible that the effectiveness of GHB is related to its
ethanol-mimicking action, making it behave as a substitute for
alcohol in the brain (142). Although these are only hypotheses,
they exemplify the many ways by which a substance could
work as a substitution. However, there are no solid theoretical
bases supporting the hypothesis that baclofen is a substitution
treatment in AUD.

CONCLUSION

This review on the mode of action of baclofen from a clinical
standpoint and with a biological perspective highlighted three
potential modes of action of baclofen; namely on dopamine,
functional connectivity, and as a substitution drug. It is tempting
to hypothesize that these approaches are complementary, and
that they could be synthesized in the proposition that baclofen
may suppress the Pavlovian association between cues and
rewards through an action in a critical part of the dopaminergic
network (the amygdala), thereby normalizing the functional
connectivity in the reward network. It is also proposed that this
action is made possible by the fact that baclofen and alcohol act
on similar brain systems in certain regions of the brain.
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