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Worldwide daily, millions of people are unable to combat their frustrating and even fatal
romance with getting high; for some, “high” may be just experiencing feelings of well-being.
The neuroscience community conducts and funds, outstanding research using sophisticated
neuroimaging and molecular-genetic applied technology to improve understanding of the complex
functions of brain reward circuitry that has a key role in addiction symptomatology. While it is
widely accepted that dopamine is a major neurotransmitter implicated in behavioral and substance
addictions, there remains controversy about how to modulate dopamine clinically to treat and
prevent various types of addictive disorders. A prudent approach may be biphasic; a short-term
blockade followed by long-term dopaminergic upregulation. The goal of treatment would be
to enhance brain reward functional connectivity volume, and target reward deficiency and the
stress-like anti reward symptomatology of addiction. Such phenotypes can be characterized using
the Genetic Addiction Risk Score (GARS) R©. Dopamine homeostasis may thus be achieved via
“Precision AddictionManagement” (PAM) R©, the customization of neuronutrient supplementation
based on the GARS test result, along with a behavioral intervention.
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INTRODUCTION

Following almost three decades of genetic-based research
related to identifying and characterizing addiction-related
Reward Deficiency Syndrome (RDS), a paradigm shift is
proposed in the prevention and treatment of all types of
addictive behaviors. The novel adoption of “Precision Addiction
Management” (PAM) based on genetic predisposition is
imminent. Certainly, more research is necessary to further
pinpoint the most appropriate candidate genes. However, an
accelerated personalized, precision tool can be useful for
the identification of highly convergent candidate gene single
nucleotide polymorphisms (SNPs), associated in populations
with RDS. Research directed toward improving treatment of
substance use disorders in underserved populations is the basis
of an NIH grant awarded to Drs. Kenneth Blum and Marjorie
Gondré-Lewis. The research team is confident that eventually, the
scientific community will seriously support new research directed
toward the up-regulation of dopamine in mesolimbic structures
with the goal of restoring homeostasis.

The interrelatedness of reward circuitry and the prefrontal
cortices of the brain were not well-understood in the early
sixties. The importance of the core neurotransmitters was not
recognized. The functions of serotonin, GABA, dopamine, and
acetylcholine were unknown, and endorphins were not even
a part of our scientific acumen. The 1956 doctrine of Jellinek
shocked the world when he proposed the concept of alcoholism
as a disease, without much scientific evidence the idea was not
generally accepted (1). However, most addiction scientists at that
time agreed, in part, that deficiencies or imbalances in brain
chemistry-perhaps genetic in origin –contributed to the cause of
alcoholism.

REWARD DEFICIENCY SYNDROME (RDS)

In the early 70s, Blum investigated the theorized neurochemical
mechanisms of some psychoactive drugs (alcohol and opioids)
that had been observed initially in the work of Virginia Davis,
Gerald Cohen, Michael Collins and others, as being related to
the interface of alcohol and opioid use disorders (2–6). Following
many other foundational studies from around the world, the
Royal Society ofMedicine published the RDS concept in 1996 (7).
To date, there have been 150 articles in PUBMED, and the SAGE
Encyclopedia of Abnormal and Clinical Psychology published a
definition in 2017 (8). The RDS concept arose from the findings
that dysfunction in the dopaminergic system are implicated
in reward mechanisms in the brain and lead to substance
seeking behavior and non-substance addictive behaviors (7) like
pathological gambling (9–11), Tic Disorders (12, 13), Tourette’s
syndrome (14), and attention deficit hyperactivity disorder
(ADHD) (15–17).

Mark Gold’s “Dopamine Depletion Hypothesis,” proposed
an important role for dopamine in the effects of cocaine. He
observed that the development of chronic cocaine use disorder
(CUD) was due to the euphoric properties of cocaine and
followed the acute activation of central dopamine neurons.
Overstimulation of these neurons and excessive synaptic

metabolism is thought to result in dopamine depletion which
may underlie dysphoric aspects of cocaine abstinence and
cocaine urges (18). Neurochemical disruptions caused by cocaine
are consistent with the concept of “physical” rather than
“psychological” addiction (19). The proposal that followed this
research was to treat CUD with dopamine agonist therapy.
The powerful dopamine D2 agonist bromocriptine was found
to reduce cocaine craving significantly after a single dose (20).
The suggestion was that bromocriptine might be an effective,
non-addictive pharmacological treatment for those with CUD
and open trials indicated that low-dose bromocriptine might
be useful in cocaine detoxification. In 1995, Lawford et al.
administered bromocriptine or placebo to subjects with alcohol
use disorder (AUD), in a double-blind study, they found that the
most significant improvement in craving and anxiety occurred in
the bromocriptine treated subjects with the Dopamine Receptor
D2 (DRD2) A1 allele and attrition was highest in the placebo-
treated A1 subjects (21). Unfortunately, we now know that
chronic administration of this D2 agonist induces significant
down-regulation of D2 receptors, therebymaking it an ineffective
deterrent to relapse and preventing its clinical use (22, 23).

THE CASCADE OF REWARD
NEUROTRANSMISSION

The Ventral Tegmental Area (VTA)-Nucleus Accumbens (NAC)
pathway is part of a series of parallel integrated circuits within
the “Brain Reward Cascade,” which involves the hypothalamus,
dorsal raphe and substania nigra. The net release of dopamine is
due to the interrelatedness of serotonergic, endorphinergic,
endocannabinoidergic, GABAergic, glutaminergic, and
dopaminergic neurotransmitter signaling. The VTA is the
site of dopaminergic neurons, which tell the organism whether
an environmental stimulus (like natural rewards, drugs of
abuse, stress) is aversive or rewarding. While a less understood
brain region, the pre-frontal cortex, including the anterior
cingulate cortex and orbitofrontal cortex, provides executive
control of choices such drug reinstatement as being pleasurable
(reward). Most recently even the dorsal raphe which contains
both serotonergic and glutaminergic neurons impact the
GABA input at the substania nigra (24). Therefore, for reward
processing while net dopamine released at the NAC (reward
site) is key, it is impacted by many neurotransmitter systems.
Neurotransmitter interaction at the mesolimbic brain region
induce “reward” when dopamine well-known as an anti-stress
and pleasure neurotransmitter is released from the neuron and
interacts with a nucleus accumbens dopamine D2 receptor.
Reward produced to maintain our drives is the consequence of a
cascade of neurotransmission. Initially, the release of serotonin
stimulates enkephalin, then, inhibits GABA at the substantia
nigra and ventral tegmental area. GABA regulates the release of
DA at the nucleus accumbens. Studies indicate that balancing
dopamine, possibly via dopamine D2 agonists, especially when
availability of this molecule, based on genes and even epigenetics,
is compromised, has important therapeutic application which
has been proposed by NIDA scientists (25).
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A consensus of the literature suggests dysfunction in the brain
reward cascade is caused by the genetic sequence variations
that cause a hypodopaminergic trait. This trait leads to multiple
drug-seeking behaviors; the brain of that person requires a
dopamine fix to feel good. Reduced dopamine release causes
individuals to crave dopamine and have a high risk for multiple
addictive, impulsive and compulsive behaviors that have been
shown release dopamine (26).

Non-drug behaviors like gambling (27) and high-risk drug use
are reinforced by surges of dopamine activation in the nucleus
accumbens via the D1 receptors of the direct striatal pathway and
inhibition of the indirect corticostriatal pathway via D2 receptors.
Chronic drug administration enhances the brain’s reactivity to
drug cues, reduces sensitivity to non-drug rewards and causes
neuroplastic changes in glutamatergic inputs to the striatum and
midbrain dopamine neurons. Self-regulation is weakened, and
sensitivity to stressful stimuli and dysphoria is increased. These
long-lasting drug-induced impairments call for interventions
designed to mitigate and if possible reverse them (28).

THE DEVELOPMENT OF PRECISION
ADDICTION MANAGEMENT

Blum et al. proposed that KB220Z; a mild neuro-nutrient
formulation, can stimulate the D2 receptor (29). Blum’s group
advocates instigating dopamine release, to cause the induction
of D2-directed mRNA to direct the proliferation of D2 receptors
in the brain (30). For example, DNA-directed compensatory
overexpression of the DRD2 receptors (a form of gene therapy),
resulted in a significant reduction in alcohol craving behavior
in alcohol-preferring rodents (31) and self-administration of
cocaine (32). Thus, based on this model enhanced bioavailability
of D2 receptors was shown to reduce craving.

Studies that showed rats with depleted neostriatal dopamine
display increased sensitivity to dopamine agonists estimated to
be 30–100 x in the 6-hydroxydopamine (6-OHDA) rotational
model (33) were the basis for “denervation supersensitivity”
(34). Denervation supersensitivity was identified as a putative
physiological mechanism to help explain the enhanced sensitivity
following intense acute dopaminergic D2 receptor activation
in the face of hypodopaminergia. In contrast, promotion
of long-term (chronic low vs. intense acute) dopaminergic
activation by lower potency dopaminergic repletion therapy
has been shown in clinical and neuro imaging studies, to be an
effective modality when used to treat RDS behaviors including
Substance Use Disorders (SUD), Attention Deficit Hyperactivity
Disorder (ADHD), obesity and others, without side
effects (35).

An unprecedented number of clinical studies validating
this patented nutrigenomic technology for re-balancing brain
chemistry, and optimizing dopamine sensitivity and function
have been published. Here clinicians and neuroscientists are
encouraged to continue to embrace the concept of “dopamine
homeostasis” and search for safe, effective, validated and
authentic means to achieve a lifetime of recovery, instead of
reverting to anti-dopaminergic agents. Anti-dopaminergic

agents are doomed to fail because chronic use continues and
exacerbates hypodopaminergia while promoting powerful
D2 agonists like bromocriptine and L-Dopa compromises
needed balance (36). Increased resting state functional
connectivity as well as an increased neuronal recruitment
has been demonstrated acutely on fMRI in both animal and
humans within 15 (animal) to 60 (human) minutes post
administration of neuro nutrient therapy. These studies
demonstrate neuronal dopamine firing in brain areas involved
in reward processing and possible induced neuroplasticity and
“dopamine homeostasis” (37, 38). The comprehensive role of
dopamine as themesolimbic system neurotransmitter underlying
motivational function supports the low potency dopaminergic
repletion therapy concept; sustainable, mild activation of D2
receptors (30).

PRECISION ADDICTION MANAGEMENT
(PAM)

The system is a holistic therapeutic model for treating RDS
that includes the Genetic Addiction Risk Score (GARS) test for
genetic risk predisposition and customization of neuronutrient
supplementation to target the individual genetic allele variation,
based on the GARS test results, and thereby deliver (PAM) R© to
patients.

See Figure 1 for an example of how simple genotyping for
identified SNPs in individuals could identify targets for precision
nutrigenomics treatment. Figure 1 shows the PCR amplification
of four variants of dopamine receptor D4 (DRD4). Multiple
repeats of DRD4 variants are associated with disorders within the
RDS spectrum (39–41). In the figure, six different 48 bp repeat
sequences are identified, from 2 repeats (2R) to 8R. The DRD4,
DRD2, catechol-O-methyltransferase (COMT) are among genes
within themesolimbic reward pathway with SNPs that contribute
to RDS, see Figure 2.

THE DEVELOPMENT OF THE GENETIC
ADDICTION RISK SCORE (GARS)

There are many examples of association studies involving genes
and polymorphisms especially of the ten reward genes measured
in the GARS test. Alleles of genes that affect the synthesis,
degradation, reception, and transport of neurotransmitters (like
enkephalin, serotonin, GABA, and dopamine) and enzymes
like Monoamine Oxidase (MOA) A and COMT in the reward
pathway of the brain were candidates for selection for the GARS
test if they contributed to hypodopaminergia. Comings and
Blum proposed that functional defects in the genes for these
neurotransmitters result in dopamine deficit, later identified as
RDS. They suggested that individuals with hypodopaminergia are
at risk for seeking reward from RDS behaviors to satisfy their lack
of natural rewards (42). Some examples of functional research
and studies that associated RDS behaviors with the risk alleles of
the genes and second messengers that comprise the GARS test
follow.

Frontiers in Psychiatry | www.frontiersin.org 3 November 2018 | Volume 9 | Article 548

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Blum et al. Precision Addiction Management for RDS

FIGURE 1 | An example of PCR amplification of variants of dopamine receptor D4 (DRD4). DRD4 (Dopamine Receptor 4) variants detected via polymerase

chain reaction (PCR) amplification with multiple control samples. 2R to 8R = six different 48 base pair (bp) repeat sequences. 2R repeats = 48 bp twice, 3R = thrice

and so forth. Peak height (y-axis) indicates fluorescence signal amplitude, peak location (x-axis) indicates fragment size (bp). Fragment sizes are shown below the

peaks (base pairs). Humans carry two copies of this variant and their lengths are from 2R to 11R. Carrying one or both variants at 7R+ increases the risk of

developing RDS. This is one of the eleven established risk variants assessed by the GARS test.

FIGURE 2 | The Precision Addiction Management system. The schematic illustrates various elements related to “Precision Addiction Management (PAM)” and shows

the interrelatedness of genetic testing, utilizing a patented Genetic Addiction Risk Score (GARS) and a customized polymorphic matched nutraceutical therapeutic

adjunct KB220PAM.
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THE CHARACTERIZATION OF
PHENOTYPES FOR THE GARS

The Dopamine Receptor DRD1 Gene
The dopamine receptor DRD1 gene encodes the most abundant
dopamine receptor in the central nervous system: the D1
subtype (43). While the D2, D3, and D4 receptor subtypes
inhibit adenylyl cyclase activity, the D1 receptor stimulates
a critical brain molecule adenylyl cyclase, which activates
cyclic AMP (required for proper nerve brain function). The
nucleotide guanidine (G) can be replaced by the adenine (A)
and roughly a quarter of the human population carries one
or two copies of this risk variant allele. Peer-reviewed studies
involving the DRD1 gene show that carriers have an increased
risk for many substance abuse and novelty seeking (NS) reward
deficiency behaviors. In one of hundreds of association studies,
Liu et al. looked at drug dependence and impulsive behavior
and found that DRD1 gene polymorphisms are related to heroin
dependence in a Chinese Han population, however, two of
eight SNPs did not associate with impulsivity (44). Huang et al.
found a significant association between the DRD1 and Nicotine
Dependence (ND) (45). Recently they explored differential allelic
expression of the DRD1 modulated by microRNA miR-504 (46).
Other positive association studies on abusable drugs related
to the D1 polymorphisms provide informative data indicating
risk (47–50).

The Dopamine Receptor DRD2 Gene
The dopamine receptor DRD2 gene encodes the second (D2)
subtype of the dopamine receptor.While the D1 receptor subtype
activates, the D2 receptor inhibits adenylyl cyclase activity and
reduces the intracellular concentration of cyclic AMP (51). DRD2
located near Ankyrin Repeat and Kinase Domain Containing
1 (ANKK1) at chromosome 11 q23.2, is involved in signal
transduction (52). The Taq A1 genetic variant in ANKK1 equates
functionally to 30–40% lower density of dopamine D2 receptors
resulting in hypodopaminergic function (53). The DRD2 risk
variant of interest (rs1800497) is downstream at chr11:113400106
where the nucleotide guanine (G) replaces the adenine (A). In
1986 inspired by a reported unconfirmed genetic association in
depressed Amish subjects, Blum et al. discovered the first genetic
association with a behavior, severe alcoholism, foundational work
within the field of behavioral genetics (54). Initially, Taq 1A
(rs1800497) was thought to be within the DRD2 gene, but as
sequencing technology advanced and the location was corrected
to exon 8 of the nearby ANKK1 gene. This risk allele is found in
approximately 100 million people in the USA, with the highest
frequency in Native Americans (85%) and the lowest among
Western European Jews (6%).

The first of few examples of association studies is one from
Singh, Ghosh, and Saraswathy. They looked at the role of
dopamine receptors in susceptibility to alcohol dependence (AD)
concerning three sites of the DRD2 gene (-141C Ins/Del, TaqIB,
and TaqID) and TaqIA site of ANKK1 gene among Meiteis
of Manipur, a Mendelian population of India, in association
with AD. They found ANKK1 TaqIA polymorphism significantly
associated with AD (odds ratio = 2.13, 95% confidential interval
1.04–4.39, P < 0.05), whereas a borderline significance of the
−141C Del allele was observed (P = 0.059) (55).

Panduro et al. analyzed DRD2/ANKK1 genotyped a
cross-section of 680 unrelated subjects including two Native
Amerindians groups (87 Nahuas and 139 Huicholes), and two
Mestizos groups (158 subjects from Tepic, Nayarit and 296
subjects from Guadalajara, Jalisco) by PCR-RFLP and allelic
discrimination assays. Heavy drinking was considered ≥300 g
alcohol/week. They concluded that the DRD2/ANKK1 A1 allele
was present at a high frequency in Mexican populations and the
A1/A1 genotype associated with heavy drinking in Mestizos. The
highest frequencies of the A1 allele, exhibited worldwide to date
were documented among the Native Amerindians (56).

Wang et al. investigated whether predisposing genetic variants
and personality traits may be specific to a particular class of
addiction or common to all addictions. They recruited 175
opiate-dependent patients, 102 alcohol-dependent patients, and
111 putative healthy controls diagnosed using DSM-IV criteria
and assessed with Tridimensional Personality Questionnaire
(TPQ). They genotyped dopamine D2 receptor (DRD2),
5-HTT-linked promoter region (5-HTTLPR), and aldehyde
dehydrogenase 2 (ALDH2) genes using Polymerase Chain
Reaction (PCR). They concluded that both alcohol- and opiate-
dependent patients, have common genetic variants in DRD2
and 5-HTTLPR but specific for ALDH2. They found higher
NS and Harm Avoidance traits in both patient groups with the
interaction with DRD2, 5-HTTLPR, and ALDH2 genes (57).

Merritt and Bachtell in their non-genetic physiological study
looked for the expression of the D2 dopamine receptor subtype
as predictive of D2 dopamine receptor function and cocaine
sensitivity that would enable cocaine abuse in rats. Quinpirole
[D2 dopamine receptor agonist] was used to classify rats as
high (HD2) or low responders (LD2). Results demonstrated that
HD2 rats have greater cocaine conditioned place preference,
enhanced sensitivity to the locomotor stimulating properties of
cocaine, and self-administer more cocaine compared to LD2
animals. These findings suggested that individual differences in
D2 dopamine receptor sensitivity may be predictive of cocaine
sensitivity and reward (58).

Persico, Bird, Gabbay, and Uhl tested the hypothesis that a
DRD2 gene variant might be more prominent in polysubstance
users who preferentially use psychostimulants than in addicts
who prefer opiates and those with no drug preference. Their
results were consistent with the hypothesis that DRD2 gene
variants marked by Taq1 A1 and B1 polymorphisms may work,
probably in concert with other genetic and environmental
factors, to enhance vulnerability to psychostimulant abuse (59).

Noble et al. examined the allelic prevalence of the D2
dopamine receptor (DRD2) gene in male cocaine-dependent
(CD) Caucasian (non-Hispanic) subjects to determine the
relationship of DRD2 alleles to family history and selected
behavioral measures. The data showed a strong association of the
minor alleles (A1 and B1) of DRD2 with cocaine dependence
and suggested that a gene, located on the q22-q23 region of
chromosome 11, confers susceptibility to this drug disorder (19).

Wang et al. used the MassARRAY system to identify markers
that contribute to the genetic susceptibility to heroin addiction.
They compared 334 patients with heroin dependence, and 299
healthy controls who participated in the research. Their findings
indicated a role for DRD2 polymorphism in heroin dependence
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in the Chinese Han population and may be helpful for
future genetic or neurobiological studies on heroin dependence
(60). Most recently, Zhang et al. (61) found a 35.8 kilobases
haplotype spanning ANKK1 and DRD2 is associated with heroin
dependence in Han Chinese males (61).

The Dopamine Receptor DRD3 Gene
The dopamine receptor DRD3 gene encodes the D3 subtype of
the five (D1–D5) dopamine receptors. As with D2 receptors, the
activated D3 receptor inhibits adenylyl cyclase DRD3. Having
a cytosine (C) instead of thymine (T) intensifies the effect of
dopamine, magnifying the “high” observed with alcohol and
cocaine to dangerous levels (62). The location of this receptor
is within the older, more emotionally bent, limbic areas of the
brain, including the pituitary gland, the olfactory bulb (smell) and
the nucleus accumbens (cravings, aversions, reward). This gene
demonstrates increased risks for alcohol, cocaine, and heroin
dependence as well as RDS behaviors including ADHD, OCD,
and even pathological aggression.

Thome et al. investigated the distribution of a dopamine
D3 receptor gene polymorphism (Ball) in patients suffering
from AD and compared with non-dependent controls. The
allele A1 occurred significantly more frequently among patients
compared to controls. Patients with the genotype A1/A2 showed
significantly higher defined NS scores in the tridimensional
personality questionnaire (TPQ) than patients with the genotype
A1/A1. While this seems counter intuitive it can be explained
by heterosis a well-known genetic phenomenon extensively
discussed in the literature. There were significantly more
individuals with higher NS scores and fewer individuals with
lower NS scores than expected. The results of this study support
the hypothesis of a genetically determined involvement of the
dopaminergic system in AD (63).

Another study by Huang et al. investigated 13 single
nucleotide polymorphisms (SNPs) spanning a region of the
dopamine D(3) receptor gene (DRD3) to determine whether
DRD3 is associated with ND. They studied a set of 2,037 subjects
in 602 nuclear families representing two distinct American
populations using three NDmeasures, namely, smoking quantity
(SQ), the Heaviness of Smoking Index (HSI), and the Fagerström
Test for ND (FTND). The results indicate that DRD3 associated
significantly with ND in the European American cohort, and that
rs6280, a functional polymorphism causing an amino acid change
of serine to glycine (Ser9Gly) in the N-terminal extracellular
domain of the D(3) receptor, likely is causative of the association
between DRD3 and ND (64). Other positive association studies
involving avoidant and obsessive personality traits and disorders,
violent behavior and response tomorphine reveal the importance
of DRD3 polymorphisms in RDS (65–67).

The Dopamine Receptor DRD4 Gene
The dopamine receptor DRD4 gene that encodes for the receptor
(subtype) D4. Dopamine receptors are responsible for neuronal
signaling in the old reptilian mesolimbic system of the brain,
which is an area that regulates emotions as well as RDS addictive
behaviors. The DRD4 located on chromosome 11 at 11p15.5., is a
G-protein receptor which is activated by the chemical messenger
dopamine. Two different variants are measured in the GARS

test. The first is a SNP located at rs1800955, −521 C>T and the
risk allele is C. The second, is a Variable Number of Tandem
Repeats (VNTR) located in intron 3, 48. The base–pair repeat;
<7 is short, while if there are >7R, the risk allele is long
VNTR equal or >7–11 repeats (68, 69). There are hundreds of
studies of the DRD4 gene, and many of these studies have linked
these risk variants to neurological and psychiatric conditions
including schizophrenia, bipolar disorder, anhedonia, ADHD,
Addictive behaviors, Parkinson’s disease, eating disorders, and
even anorexia nervosa (a non-eating repetitive RDS behavior).
The underlying brain mechanism is D2-like in which the
activated receptor inhibits the enzyme adenylate cyclase, thereby
reducing the intracellular concentration of the second messenger
cyclic AMP (required for cell function). The 7R allele appears
to have been selected, for providing a survival advantage, about
40,000 years ago. It has been shown that compared to sedentary
populations, the frequency of the 7R variant of DRD4, is much
higher in nomadic populations suggesting its association with
modern day “NS.” One important feature is that good parenting
(epigenetic) was associated with appropriate decision making
even at the age of four. Thus, early knowledge of this 7R or
greater risk variant could be very helpful to prevent risk for
substance use: opiate, alcohol, cannabis, glucose, and nicotine
as well non-substance RDS behaviors: ADHD, Novelty seeking,
Conduct Disorder (CD), hypersexuality, pathological aggression,
and others.

Multiple repeats of DRD4 variants are associated with
disorders within the RDS spectrum. Gervasini et al. conducted
research to determine the effect of functional polymorphisms
and haplotypes of the DRD4 gene on general psychopathological
symptoms of 273 eating disorder (ED) patients [199 with
Anorexia Nervosa (AN) and 74 with Bulimia Nervosa (BN)] who
completed the SCL-90R symptom inventory. They found that
certain combinations of DRD4 variants haplotype ∗2 (non7R-
TR long-C-C) associated with higher scores in the three global
SCL-90R indices the Global Severity Index (GSI), the Positive
Symptom Distress Index, (PSDI), and the Positive Symptom
Total (PST) after Bonferroni correction (p≤ 0.01 in all instances).
They also found that these polymorphisms may contribute
to psychopathological features like Somatization, Obsessive-
Compulsive, Anxiety, Phobic anxiety, Paranoid ideation, in BN
patients (41).

In another example Dragan and Oniszczenko analyzed the
association between the variable number tandem repeat (VNTR)
DRD4 exon III polymorphism and intensity of PTSD symptoms
in 107 (57 women and 50 men) survivors of a flood aged 14–
62. PTSD symptoms were more intense for participants with at
least one copy of the long (seven or eight repetitions) DRD4
allele than participants who did not have these alleles (40). Huang
et al. used a transmission disequilibrium test of DRD4 exon
III 48 bp variant-number-tandem-repeat polymorphism and tic
disorder. Their results revealed an association between the longer
alleles of DRD4 exon III 48 bp VNTR polymorphism and tic
disorder accompanied with ADHD, thus suggesting a possible
genetic risk factor of tic disorder with ADHD in Chinese (39).
One interesting recent study by Ji et al. (70) involving epigenetics
revealed that DNA methylation of DRD4 may be responsible for
the pathophysiology of drug addiction (70).
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The Dopamine Transporter Gene
The dopamine transporter gene (DAT1/SLC6A3) gives
instructions for the production of a membrane-spanning
protein that controls the reuptake (recycling) of dopamine from
the synapse. The dopamine transporter helps regulate the level of
neurotransmitter present in the synapse and controls how long a
signal resulting from neurotransmitter release lasts (71).

The function of DAT1 is to clear excess dopamine released
from the pre-neuron into the synapse and prevent uptake into the
receptors on the next neuron. Much research, both biochemical
and structural, has been performed to obtain clues about the
mechanism of reuptake.The activity of clearing dopamine from
the synapse is dependent on the variant form of this gene.
So under normal conditions, the dopamine active transporter
protein pumps the chemical messenger dopamine out of the
synaptic cleft back into the cytosol of the pre-neuron cell. The
DAT1 gene is located on chromosome 5 at p15. The gene has
a variable number tandem repeats (VNTR) at the 3′end of the
gene and another in the intron 8 region (72). The importance
here is that differences in the VNTR, for example, 10R vs. 9R
have been shown to effect the basal level of expression (activity)
of the transporter. Indeed it has been demonstrated that the 9R
is a risk form because it has a much higher ability to clear DA
from the synaptic cleft compared to the 10R allele (73). Therefore,
carriers of the 9R are more prone to both substance and non-
substance RDS addictive behaviors due to hypodopaminergia
(low dopamine function). The regional brain distribution of the
DAT includes high dopamine-containing neurons in the old
reptilian limbic system similar to the DRD2 receptor distribution
(74). The maximum expression of the DAT1 gene is found
in a parts of the brain called the substantia nigra and ventral
tegmentum area (75) [brain regions containing large amounts
of the inhibitory chemical messenger GABA that fine-tunes
dopamine release at the reward site]. It is also interesting that
DAT is co-localized with the D2 receptors (76).

There exists over 2,700 studies (PUBMED 7-14-18)
concerning the role of the DAT1 gene and predisposition
for the use of substances: particularly, heroin, alcohol, cocaine,
and nicotine dependence; and non-substance RDS behaviors:
ADHD, depression (Anhedonia), and PTSD are included.

Sullivan et al. focus on the role of aberrant dopaminergic
signaling, interaction with dopamine transporter DAT, a cocaine
target, and the dopamine D2 receptor in subjects and controls
from theMiami Dade County Brain Bank splicing polymorphism
rs2283265 of DRD2, encoding D2 receptors, was shown to
confer risk (odds ratio ∼3) of cocaine overdose/death. This
risk was attributable to the minor allele of rs2283265 enhanced
significantly in homozygous carriers of the main 6-repeat allele
of DAT rs3836790to OR = 7.5 (P = 0.0008). In contrast, no
significant risk to carriers of the minor 5-repeat DAT allele
was demonstrated. The results demonstrated gene-gene-drug
interaction affecting the risk of fatal cocaine intoxication (77).

Cinque et al. used transporter (DAT) knockout (KO) and
heterozygous (HET) mice to investigate diseases with altered
dopamine transmission such as attention-deficit/hyperactivity
disorder (ADHD) and obsessive-compulsive disorder (OCD).
These diseases characterized by poor decision making and
executive function have been studied using many animal models.

DAT KO rats appeared less sensitive to rewarding stimuli than
wild-type (WT) and HET rats: they also showed a prominent
hyperactive behavior with a rigid choice pattern and a wide
number of compulsive stereotypies. Moreover, when the effects of
amphetamine (AMPH) and RO-5203648 were tested, the AMPH
accentuated impulsive behaviors in WT and HET rats, it did not
affect in DAT KO rats (78).

Monoamine Oxidase A Gene
Monoamine oxidase A, (MAO-A), an enzyme, is encoded by
the MAOA gene in humans. Two neighboring gene family
members MAOA and MAOB encode mitochondrial enzymes
which catalyze the oxidative deamination (breaks down the
molecules) of catecholamines, like dopamine, norepinephrine,
and indoleamines like serotonin. This gene is associated with
a variety of psychiatric disorders, including antisocial behavior.
The MAOA gene located on only the X chromosome at Xp11.3,
the short (p) arm of the X chromosome, at position 11.3. a crucial
enzyme for healthy brain function degrades chemical messengers
like dopamine and serotonin (79–82).

The risk variant is 4R found at the 3′ 30 base-pair Repeat
(R) on X chromosome only. The 3.5R and 4R variants have
been found to be more highly active than 3R or 5R. Carriers of
the 3.5 and 4R may display hypodopaminergia (low dopamine
function) whereby too much of dopamine is broken down in
the presynaptic neuron which may result is less dopamine to be
released into the synaptic cleft. The 4R has been associated with
Alzheimer’s disease, aggression, panic disorder, bipolar affective
disorder, major depressive disorder, and ADHD. There are over
900 studies on the MAO-A gene showing risk for substance use
disorder: alcohol, opioid, and nicotine dependence, as well as
obesity, and RDS behaviors: harm avoidance, NS, and ADHD.

Regarding catabolism the studies reveal risk forMAOA,Wang
et al. conducted a family-based association analysis of AD in
the COGA sample in the Australian twin-family study and
found support for an association of MAOA gene (P = 4.14 ×

10(−4) for rs979606) and AD (83).
Ducci et al. investigated the interaction between a functional

monoamine oxidase A (MAOA) locus and childhood sexual
abuse (CSA). They tested whether MAOA-LPR influences the
impact of CSA on alcoholism and antisocial personality disorder
(ASPD) in a sample of 291 women, 50% of whom had
experienced CSA. They also tested whether haplotypes covering
the location of both MAOA and MAOB) genes predict risk for
alcoholism and ASPD better than the MAOA-LPR locus alone.
Three haplotypes showed the MAOA-LPR low activity allele. The
most abundant was among alcoholics (P = 0.008) and antisocial
alcoholics (P = 0.001). Independently from ASPD the MAOB
haplotype associated significantly with alcoholism (P = 0.006),
and antisocial alcoholism (P = 0.03) (84).

Tikkanen et al. found that the PCL-R symptom inventory
total score predicts impulsive reconvictions among offenders
with high-activity MAOA (6.8% risk increase for every one-point
increase in PCL-R total score, P = 0.015) but not among
offenders with low-activity MAOA. Antisocial behavior and
attitudes were found to predict reconvictions in both high and
low activity MAOA genotypes a17% risk increase and a 12.8%
increase, respectively. In a meta-analysis, Yang et al. found an
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association between MAO gene polymorphisms and smoking
behavior. The meta-analysis showed the T allele in MAO-A
C1460T reduced the risk of heavy smoking (OR = 0.66, 95%
CI: 0.52–0.84; I(2) = 0.0%), especially in Caucasians. However,
the active group in MAO-A VNTR increased the likelihood
of smoking cessation failure in males (OR = 1.49, 95% CI:
1.01–2.22; I(2) = 0.0%) and the A allele in MAO-B G644A
reduced the risk of heavy smoking in males (OR = 0.20, 95% CI:
0.04–0.98) (85).

Gorodetsky et al. investigated the interactive effect of MAOA-
LPR genotype and a history of childhood trauma in predicting
aggressive behaviors in a population of 692 male prisoners.
Within the group not exposed to physical neglect (PN), carriers
of the MAOA-LPR high-activity variant were more aggressive:
(tR = 2.47, P < 0.014). They observed a crossover effect in
that the increase in aggression scores with PN was greater
in low-activity individuals (tR = 5.55, P < 0.0001) than in
high-activity individuals (tR = 4.18, P < 0.0001). These findings
suggested that childhood trauma and the functional MAOA-LPR
polymorphism may interact to specifically increase the risk for
over-aggressive behavior but not impulsivity or hostility. The
MAOA-LPR low-activity variant may be protective against the
development of aggressive behavior under low-stress conditions
(86).

Vanyukov et al. looked for evidence of an association of a
dinucleotide repeat polymorphism at the MAOA gene with early
onset alcoholism/substance abuse. They found a correlation
between the presence/absence of the disorder and the length
of the MAOCA-1 repeat was significant in males only, with
both increased risk for the disorder and lower age of onset of
substance abuse associated with “long” alleles (repeat length
above 115 bp) (87).

Tikkanen et al. looked at the relationship between MAOA
the effects of heavy drinking and childhood physical abuse
(CPA) on risk for severe impulsive acts of violence among
violent alcoholic offenders. The sample population of 174
male impulsive, alcoholic, Finnish, violent offenders assessed
after 8 years of non-incarcerated follow-up mostly exhibited
antisocial (ASPD) or borderline personality disorder (BPD) or
both. Logistic regression analyses demonstrated that both CPA
and heavy drinking were significant independent predictors of
recidivism in violent behavior (OR 5.2, p = 0.004 and OR 5.3,
p = 0.003) among offenders having the high MAOA activity
genotype (MAOA-H), but these predictors showed no effect
among offenders carrying the low MAOA activity genotype
(MAOA-L) (88). The work of Huang et al. (89) suggested the
interaction of DRD2 rs1079597 and MAOA rs309850 3-repeat
affects smoking intensity in young Taiwanese men (89).

The Catechol-O-methyltransferase Gene
The COMT gene (location 22q11.2) provides instructions for
making an enzyme called COMT. Enzymes facilitate chemical
reactions without the enzyme being changed (90). The gene
makes two versions of COMT enzyme. The longer form, called
membrane-bound catechol-O-methyltransferase (MB-COMT),
is chiefly produced by nerve cells in the brain. The COMT
enzyme destroys the dopaminemolecule in the synapse and helps
maintain appropriate levels of neurotransmitters (dopamine and
norepinephrine) in the brain. In some people, there is a variation

of a single protein building block (amino acid) in the enzyme
(91). The amino acid valine (Val) replaces the amino acid
methionine (Met), expressed as Val108/158Met. Carriers of two
copies of MET have very heightened dopamine function because
COMT activity is low and less dopamine is broken down, while
two copies of Val, destroy more dopamine, and lower dopamine
function (hypodopaminergia) is the result. The double copy
(homozygote) of Val variant metabolizes dopamine at up to four
times the rate of its Met counterpart. There have been over 2,400
studies involving the COMT gene. Val carriers are at increased
risk for substance-related reward deficiency behaviors: including
dependence on alcohol, cannabis, glucose; opiates/opioids,
stimulants, and nicotine; or non-substance-related: ADHD,
Oppositional Defiant Disorder, pathological aggression, panic
disorder, anxiety, Obsessive-Compulsive Disorder (OCD) (92).

Hill et al. investigated caudate volume and working memory
with brain scans and fMRI in offspring with childhood disorders
followed until adolescence. They were tested for genotypic
variation in the COMT and DRD2 genes. Caudate volume and
working memory were reduced in association with externalizing
disorders of childhood-adolescence and associated with variation
in COMT and DRD2 genes (93).

Sery et al. performed a restriction analysis for the detection of
the Val158Met polymorphism to look at the association between
high-activity COMT allele and alcoholism in DNA samples
from 799 subjects in total (279 male alcoholics and 120 female
alcoholics, 151 male controls and 249 female controls). They
found a significant difference between male alcoholics and male
controls in allele and genotype frequencies (p < 0.007; and p <

0.04, respectively) (94).
Guillot et al. examined associations of COMT rs4680

with dimensionally and categorically measured gambling and
drinking problems in a non-clinical sample (139 Caucasian
adults). They found that COMT rs4680 was related to
both dimensionally and categorically measured gambling and
drinking problems and may be a genetic risk factor that
contributes to the development of both problems 36 (95).

Enoch et al. looked for sex differences in the influence
of COMT Val158Met on alcoholism and smoking in plains
American Indians. They found that both male and female
alcoholics were more likely to have at least 1 Val158 allele
compared with non-alcoholics (0.95 vs. 0.88, p < 0.05).
Approximately 30% of all participants were long-term, non-
addicted light, social smokers (3.6±1.7 cigarettes/d); they had the
same Val158Met frequencies as non-smokers (96).

The Opioid Receptor Genes
Three opioid receptors, mu, delta and kappa exert their
pharmacological actions through the Oprm1, Oprd1, and Oprk1
genes, respectively, and these genes have been cloned. A
family of natural opiate-like endogenous peptides, (enkephalins,
dynorphins, and endorphin), which are released by neurons
activate opioid receptors in the brain. The mu (µ) opioid
receptors (MOR), located on chromosome 6 at q24-q25, have a
high affinity for the enkephalins and beta-endorphin, found in
the brain. The prototypical µ-opioid receptor activator is the mu
agonist morphine, the primary psychoactive alkaloid in opium.
The primary purpose of the mu opiate receptor is the control
of pain; it is also very involved in the regulation of dopamine
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release in the reward site (nucleus accumbens) of the brain. One
function of MOR, when activated by either endogenous natural
opioids like enkephalins or opioid compounds like Fentanyl or
Oxycontin, is to suppress the inhibitory chemical messenger
GABA allowing for dopamine release at the reward site. These
potent activators of MOR can cause overdose and death by
blocking breathing. The risk variant of the MOR is the G
allele 118A>G (p.Asn40Asp); SNP rs1799971). The definition
of opioid is any synthetic narcotic that has opiate-like activities
not derived from opium. The over-prescription of opioids (297
million in 2016) for pain relief, has been linked to the unwanted
deaths (one person every 17min dying from an overdose in
America). Studies on the MOR variants are primarily related to
substance use disorder: alcohol, food, opiate/opioid, and nicotine
dependence; and RDS behaviors: overeating, inability to cope
with stress, and PTSD. Carriers of the G allele have a reduced
response to opioids (97) and exhibit hypodopaminergia.

Published studies reveal that polymorphisms in theMu opioid
receptor associate with drug dependence. A meta-analysis from
Haerian and Haerian is a good example. They sort to resolve
the question of whether the OPRM1 rs1799971 polymorphism
associated with opioid dependence by evaluating evidence from
13 studies (n = 9,385), comprising 4,601 opioid dependents and
4,784 controls. These studies evaluated the association of the
OPRM1 rs1799971 polymorphism with susceptibility to opioids.
The analysis showed a significant association between this
polymorphism and susceptibility to opioid dependence in overall
studies under a codominant model, as well as susceptibility to
opioid dependence or heroin dependence in Asians under an
autosomal dominant model. They concluded OPRM1 rs1799971
might be a risk factor for addiction to opioids or heroin in an
Asian population (98).

In another studyMarini et al. examined the involvement of the
mu-opioid receptor gene polymorphism A118G in the efficacy
of detoxification of alcohol-dependent patients. They found that
alcohol-dependent patients with the A/A genotype could have a
faster restoration of their liver function than those with the A/G
genotype: it might be possible that the presence of G allele confers
on these patients a reduced ability in abstaining from drinking
alcohol (99).

Wang et al. looked at genetic polymorphisms in the OPRM1
gene to determine if in methadone maintenance they are
associated with changes in libido and insomnia in patients.
The results obtained using dominant model analysis indicate
that the OPRM1 SNPs rs1074287, rs6912029, rs12209447,
rs510769, rs3798676, rs7748401, rs495491, rs10457090, rs589046,
rs3778152, rs563649, and rs2075572 are significantly associated
with change-in-libido side effects (adjusted p < 0.042). A
recessive model analysis, of these SNPs, were found to be
significantly associated with insomnia side effects in this cohort
(p < 0.009). A systematic review and meta-analysis of six
previous studies from Chamorro, et al. that analyzed the role of
A118G polymorphism in response to naltrexone for AD. After
meta-analysis, they found lower relapse rates in patients treated
with naltrexone who carried the G allele, than patients who were
homozygous for the A allele (OR: 2.02, 95% CI 1.26–3.22; P =

0.003) (100).
Bond et al. examined alterations in beta-endorphin binding

and activity and the possible implications for opiate addiction.
Their results show that SNPs in the mu opioid receptor gene can

alter binding and signal transduction in the resulting receptor.
This finding may have implications for normal physiology,
therapeutics, and vulnerability to develop or be protected from
diverse diseases including the addictive diseases. The object
of this review is the mu opioid receptor gene, Oprm1 that
generates 3 sets of proteins, each containing many variants. The
review suggests these variants might be targeted to generate safer,
effective analgesic drugs lacking respiratory depression, physical
dependence, and reward behavior (101).

The Serotonin Transporter Gene
The serotonin transporter gene encoded by (SLC6A4) located
with the 5-HTTLPR polymorphism on chromosome 17,
occurs in the promoter region of the gene. Researchers
report two variations in humans; a short (s) and a long
(l). The 5-HTTLPR (serotonin-transporter-linked polymorphic
region) is a degenerate repeat polymorphic region. There
have been thousands of reports many related to behavioral,
pharmacogenetic and RDS behaviors since the identification of
the polymorphism in the 1990’s. The risk variant involves a 43
base –pair 5′′ insertion/deletion, S’ at SNP rs25531. Researchers
found that long allele results in higher serotonin transporter
mRNA transcription in human cell lines. Thus, the serotonin
is swiftly released into the synaptic cleft; eliminated from the
synapse into the pre-nerve cell resulting in low serotonin content
in the synapse leading to reduced function. Sometimes the long
A allele of SNP rs25531 is written LA. Some studies revealed
that the risk form signifies a predisposition to affective disorders,
depressive responses to life stress, hyperactivity, and slowing of
the electroactivity (speed) of the brain. Carriers of the S’ or LA
variant are at risk for substance-related: alcohol, opiate/ opioid,
nicotine, cocaine, cannabis, and glucose dependence; RDS
addictive behaviors: ADHD, PTSD, and pathological gambling
and even pain response (102–105).

The established role of the serotonin transporter and
associated polymorphisms across the Brain Reward Cascade and
addiction liability is exemplified by this study from Herman et al.
They examined the association between a measure of sociopathy
and 5-HTTLPR genotype in a sample of individuals from amulti-
center alcohol treatment trial [Project MATCH]. Regression
analysis revealed that males with the L’L’ genotype (i.e., those
homozygous for the L(A) allele) had lower socialization scores
(i.e., greater sociopathy) than males who were carriers of the
S’ allele (P = 0.03). In contrast, women with the S’S’ genotype
had lower socialization scores than women with two L’ alleles
(P = 0.002) and tended to have lower Socialization Index of the
California Psychological Inventory scores than women with one
copy of the L’ allele (P = 0.07). Among individuals with AUDs,
the tri-allelic 5-HTTLPR polymorphism had opposite effects
on socialization scores in men than women. The basis for this
finding is unknown, but it may have implications for sub-typing
alcoholics (106). Herman and Balogh explored polymorphisms
of the serotonin transporter and receptor genes and susceptibility
to substance abuse. They suggested that Genetic variations in the
5-HT system, such as SLC6A4, HTR1B, HTR2A, HTR2C, HTR3
(HTR3A, HTR3B, HTR3C, HTR3D, and HTR3E), likely play a
role contributing to SUD patient heterogeneity (107).

Polsinelli, Levitan, and De Luca used a multiple-model meta-
analysis to clarify the association between BN and 5-HTTLPR
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using statistical models not used by previous meta-analyses
and extend upon previous meta-analyses by including new
samples. Data were pooled using dominant and additive models.
Both models showed an association between the 5-HTTLPR
polymorphism and BN that was non-significant (108).

Harkness et al. examined the moderating role of childhood
emotional, physical and sexual maltreatment and the serotonin-
transporter-linked promoter region (5-HTTLPR) polymorphism
to stress generation in a cross-sectional community sample of
297 adolescents and young adults. Individuals with the risk s-
allele of the serotonin transporter gene and a history of maternal
emotional maltreatment or sexual maltreatment reported higher
rates of dependent and dependent-interpersonal life events than
those homozygous for the l-allele (109).

Liu et al. investigated the relationship between the serotonin
transporter gene (SLC6A4) 5-HTTLPR genotypes, cocaine-
dependence, and impulsivity in 98 healthy control and 243
treatment-seeking, cocaine-dependent subjects. They found that
the impulsivity BIS-11 total score was associated positively with
years of cocaine use for S’-allele carriers (r = 0.26, P = 0.0006,
Pearson’s correlation analysis), but not for L’L’ genotype subjects
(r = 0.02, P = 0.87) (110). It is noteworthy that Garbarino
et al. (111), suggested that extreme bidirectional perturbations
of serotonin signaling during development of one’s DNA likely
compound or synergize to facilitate enduring neurochemical
changes resulting in insufficient or excessive 5-HT signaling, that
could underlie the persistent behavioral characteristics of autism
spectrum disorder (111).

The Gamma-aminobutyric Acid Receptor
Subunits
GABA a neurotransmitter mediates neuronal inhibition by
binding to the GABA/benzodiazepine receptor and opening an
integral chloride channel. Gamma-aminobutyric acid receptor
subunit alpha-3 (GABRA3) is a human protein that is
encoded by the GABRA3 gene. GABA is the major inhibitory
neurotransmitter that acts at GABAA receptors to fine-tune
dopamine release in the reward site of the brain. Of the
16 identified and distinct subunits of GABA-A receptors, the
GABRA3 gene located on Xq28, and the risk variant is CA-
Repeat (171-201) whereby allele 181 results in higher activity.
This risk allele if overexpressed will cause low dopamine function
(hypodopaminergia) leading to SUD: including AD, and other
RDS non-substance addictive behaviors and PTSD (112–117).

There are also association studies involving various
polymorphisms of GABA receptors and RDS behaviors
including alcoholism. An example is an extensive investigation,
by Enoch et al. research to identify the functional locus of
GABRA2 genotyped 24 SNPs across GABRG1 (gamma subunit)
and GABRA2 in 547 Finnish Caucasian men (266 alcoholics),
and 311 community-derived Plains Indian men and women
(181 alcoholics). GABRG1 haplotypes and SNPs associated
significantly with AUD whereas there was no association
between AUD and GABRA2 haplotypes. Although of several
common (>or = 0.05) haplotypes that spanned GABRG1 and
GABRA2 (341 kb) emerged, three of which were present in
both populations. One associated with AUD, the other two
were more common in non-alcoholics determined by GABRG1.

Three less-common extended haplotypes (<0.05) in the Finns,
associated with AUD that was determined by GABRA2. These
results suggest that there are likely to be independent, complex
contributions from both GABRG1 and GABRA2 to alcoholism
vulnerability (118).

Terranova et al. analyze the connection between AD and
criminal behavior and GABA receptors by an integrated genetic-
environmental approach that examined 186 alcohol-dependent
males; group 1 (N = 47 convicted subjects) compared with
group 2 (N = 139 no previous criminal records). Genetic results
highlighted group 1 differences in genotype distribution (p =

0.0067) for SNP rs3780428, found on the intronic region of
subunit 2 of the GABA B receptor gene (GABBR2) (119).

Massat et al. (120) found that the GABRA3 polymorphism
may confer susceptibility to or may be in linkage disequilibrium
with another gene involved in the genetic etiology of bi-polar
depression (120). Cui et al. looked at the genetics of GABAergic
signaling in nicotine and AD. Human genetic studies support the
involvement of genes and variants in the GABAergic signaling
system in the etiology of nicotine dependence and alcoholism
based on linkage, association, and gene-by-gene interaction
studies (121).

Finally, there are multitudes of genetic studies that associate
specific behaviors with identified reward gene alleles (specific
SNPs) within the mesolimbic pathway. These descriptions of
the contribution made by polymorphisms (sequence variations)
that effect the healthy function of reward genes, and this small
sampling of association studies illustrate why the presence of
these alleles in a gene panel indicate genetic risk for associated
behaviors.

PROMOTING A PRO-DOPAMINE
LIFESTYLE

A comprehensive treatment program that teaches a pro-
dopamine lifestyle and uses urine drug screens like the
Comprehensive Analysis of Reported Drugs (CARD) to monitor
outcomes, and as a basis for therapeutic interactions, is suggested.
Can a pro-dopamine lifestyle with gentle prolonged D2 agonist
therapy overcome DNA polymorphisms by promoting positive
epigenetic effects which can be transferred from generation
to generation (32, 122, 123)? Holistic modalities like exercise
(124), low glycemic index diet (125), mindfulness training,
neurofeedback, yoga, and meditation are known to support
reward neurotramsmission and naturally release dopamine the
product of reward neurotransmission (126, 127). These holistic
pro dopamine modalities supported by the 12 step fellowship,
might induce feelings of well-being and thereby reduce craving
and relapse. With this in mind, we wonder if we have been
“licking our pups” enough? Could substance and non-substance
seeking- behaviors be attenuated through nurturing (128) as
suggested by David E. Smith in the late 60’s “love needs care”
(129)?

SUMMARY

These basic concepts underpin translational addiction-related
research that can help the multitude of victims of genetically

Frontiers in Psychiatry | www.frontiersin.org 10 November 2018 | Volume 9 | Article 548

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Blum et al. Precision Addiction Management for RDS

induced RDS become the recipients of better therapeutic relapse-
preventive tactics.

Finally, as neuroscientists and psychiatrists, working in
the “addiction space” we encourage the global scientific
community to take heed and reconsider the current utilization of
dopaminergic blockade and instead adopt the goal of regaining
dopamine homeostasis. Optimistically, early predisposition
diagnosis through genetic testing; including pharmacogenetic
and pharmacogenomic monitoring, with appropriate urine drug
screening, and treatment with pro-dopamine regulators could
conceivably reduce stress, craving, and relapse and enhance
well-being in the recovery community. Following required basic
and clinically directed research, the notion of genetically guided
therapy may become a front-line technology with the potential
to overcome, in part, the current heightened rates of substance
abuse.
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