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Autism spectrum disorder (ASD) is currently diagnosed according to behavioral criteria.

Biomarkers that identify children with ASD could lead to more accurate and early

diagnosis. ASD is a complex disorder with multifactorial and heterogeneous etiology

supporting recognition of biomarkers that identify patient subsets. We investigated

an easily testable blood metabolic profile associated with ASD diagnosis using high

throughput analyses of samples extracted from dried blood spots (DBS). A targeted

panel of 45 ASD analytes including acyl-carnitines and amino acids extracted from DBS

was examined in 83 children with ASD (60 males; age 6.06 ± 3.58, range: 2–10 years)

and 79 matched, neurotypical (NT) control children (57 males; age 6.8 ± 4.11 years,

range 2.5–11 years). Based on their chronological ages, participants were divided in

two groups: younger or older than 5 years. Two-sided T-tests were used to identify

significant differences in measured metabolite levels between groups. Näive Bayes

algorithm trained on the identified metabolites was used to profile children with ASD

vs. NT controls. Of the 45 analyzed metabolites, nine (20%) were significantly increased

in ASD patients including the amino acid citrulline and acyl-carnitines C2, C4DC/C5OH,

C10, C12, C14:2, C16, C16:1, C18:1 (P: < 0.001). Näive Bayes algorithm using acyl-

carnitine metabolites which were identified as significantly abnormal showed the highest

performances for classifying ASD in children younger than 5 years (n: 42; mean age

3.26 ± 0.89) with 72.3% sensitivity (95% CI: 71.3;73.9), 72.1% specificity (95% CI:

71.2;72.9) and a diagnostic odds ratio 11.25 (95% CI: 9.47;17.7). Re-test analyses as a

measure of validity showed an accuracy of 73% in children with ASD aged≤5 years. This

easily testable, non-invasive profile in DBS may support recognition of metabolic ASD

individuals aged ≤5 years and represents a potential complementary tool to improve

diagnosis at earlier stages of ASD development.

Keywords: autism spectrum disorders, dried blood spots, ESI-MS/MS, mitochondrial fatty acid β-oxidation,

machine learning
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INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder that affects approximately 16.8 per 1,000 (one in 59)
children aged 8 years in the US and with a male/female ratio of
4:1 (1). In Italy, a recent study reported an overall prevalence rate
of one in 100 children at age 7–8 years (2). ASD is characterized
by significant defects of social communication and interaction
and by restricted and repetitive patterns of interests and activities
with onset in early childhood (3). The etiology remains poorly
understood. Increasing evidence has converged on possible
interactions among pleiotropic genetic background conferring
vulnerabilities to environmental inputs leading to multiple
systemic co-morbidities including metabolic disarrangement (4).
Classic inborn errors of metabolism (IEM) affect a subgroup
of ASD patients accounting for 1–3% of patients (5). Acquired
symptoms featuring autism or childhood disintegrative disorder
may occur in the neuronopathic lysosomal storage disorders
(6, 7). Among IEM, primary mitochondrial diseases affect nearly
5% of patients with ASD, however the occurrence of abnormal
biomarkers indicating mitochondrial dysfunction is higher in
patients with ASD than in the general population (8). On
a clinical ground, children with ASD may exhibit features
of a mitochondrial disease such as hypotonia and delayed
motor development as well as gastrointestinal disturbances and
regression following fever or other environmental triggers (9).

Clinical diagnosis of ASD relies on behavioral tests. Early
recognition and specialized intervention improve the outcome
and are most effective if initiated early in life (10). Thus, the
development of multiple laboratory markers that can assist in
the early and accurate diagnosis of ASD is envisaged. Urinary
metabolomic studies (11–16) and a few studies performed
on blood samples (17–19) collectively showed modification of
amino acid, purine and fatty acid metabolic pathways, increased
oxidative stress, gut dysbiosis and altered gut permeability in
individuals with ASD.Multiplatform analytical methodology and
multivariate analysis may provide the best models discriminating
between ASD and typically developing (TD) children. Through
this approach, a rigorous analysis for the discovery of ASD
biomarkers combined several mass spectrometry (MS)-based

analyses of blood. This combined analysis resulted in 40
features could differential ASD and TD samples with an
accuracy of 70% (17). More recently, a study in 38 children
with ASD reported increased advanced glycation endproducts,
Nε-carboxymethyllysine and Nω-carboxymethylarginine, and

Abbreviations: ASD, autism spectrum disorders; IEM, inborn errors of

metabolism; ESI-MS/MS, electrospray ionization-tandem mass spectrometry.

DBS, dried blood spots; TD, typically developing; FAO, fatty acid β-oxidation;

ADI-R, Autism Diagnostic Interview-Revised; ADOS, Autism Diagnostic

Observation Schedule; CSS, Calibrated Severity Score; DD, developmental delay;

ID, intellectual disability; PPV, Positive Predictive Value; NPV, Negative Predictive

Value; DOR, Diagnostic Odds Ratio.; RF, Random Forest, SVM, Support Vector

Machine; LM, Linear Regression; PART, Recursive Partition Tree; SCAD, short

chain acyl-CoA dehydrogenase; MCAD, medium chain acyl-CoA dehydrogenase,

VLCAD, very long chain acyl-CoA dehydrogenase; LCHAD, long chain 3-

hydroxyacyl-CoA dehydrogenase; PA, propionic academia; PPA, propionic acid;

NSC, neural stem cells; CPT, carnitine palmitoyl transferase.

increased oxidation damage marker, dityrosine, in plasma
proteins, capable to classify the disease status (19).

Since the 1980s, electrospray ionization (ESI) and tandem
MS/MS technology endorsed high throughput analyses of
samples extracted from dried blood spots (DBS) for newborn
screening of IEM as health care standard (20). Thus, we
hypothesized that ESI-MS/MS analyses of different metabolites
in DBS might represent a high throughput method for metabolic
profiling of individuals with ASD by a single injection, in a rapid,
low-cost, and suitable procedure. To test this hypothesis, we used
a standardized ESI-MS/MS analyses in DBS to systematically
examine the levels of a large panel of highly selective biochemical
analytes in patients with ASD and healthy TD, matched-control
subjects. The targeted metabolites include acyl-carnitines and
amino acids representing a set of ASD candidate metabolic
markers. We propose a novel approach applying machine
learning methods to assess differences in the metabolic profile
between ASD and age-matched healthy TD controls. This
represents a promising novelty in the field given that previous
analyses of multiple analytes in ASD often resort to a one-at-
a-time approach that does not consider the data as a whole.
Using univariate and multivariate data modeling, we outlined a
metabolic risk profile capable to classify a subset of ASD patients
from TD children. The study supports identification of metabolic
ASD subtype whose distinguishing features suggest a reduced
flux through the mitochondrial fatty acid β-oxidation (FAO)
pathway.

METHODS

A total of 162 Caucasian subjects with age ranging from 30
months to 11 years were included in a case-control study
during an 18-month period (January 1, 2016–June 30, 2017)
at the Child Neurology and Psychiatry Unit of the University
Children Hospital Catania, Italy. Participants comprised 83
children with the ASD diagnosis (60 males, 23 females; age 6.06
± 3.6; range: 2–10 years) and 79 healthy TD controls, with a
similar age and gender distribution as the patients (57 males,
22 females; age 6.8 ± 4.1; range 2.5–11 years) (Table 1). The
Institutional Review Board at University Hospital of Catania
approved the study that was performed in accordance with
the ethical standards laid down in the 1964 Declaration of
Helsinki and its later amendments (Helsinki Declaration 1975,
revision 2013). Written informed consent was obtained from
all ASD participants’ parent or legal guardian in order to enter
clinical and laboratory data from the clinical files into the
present study. Diagnosis of ASD was obtained according to
strict criteria using standardized diagnostic tests including the
Autism Diagnostic Interview-Revised (ADI-R) (21) and Autism
Diagnostic Observation Schedule (ADOS) (22). The Calibrated
Severity Score (CSS) from 4 to 10 was used as a measure of
autism severity (23). Developmental quotient (DQ) and/or
Intellectual quotient (IQ) were measured in all participants
by a comprehensive, standardized neuropsychological
assessment battery administered according to age. Among
ASD individuals, exclusion criteria were the presence of
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TABLE 1 | Demographic and clinical characteristics of ASD patients and TD controls divided by age.

ASD TD

Participant

characteristics

Total sample

(n = 83)

Age ≤ 5

(n = 42)

Age > 5

(n = 41)

P-value* Total sample

(n = 79)

Age ≤ 5

(n = 35)

Age > 5

(n = 44)

P-value*

Age (years) 6.06 ± 3.58 3.26 ± 0.89 8.9 ± 2.98 n.a. 6.8 ± 4.11 3.06 ± 1.5 9.7 ± 2.86 n.a.

Boys (%) 60 (72.3) 29 (69.04) 31 (75.6) 0.653 57 (72.1%) 24 (68.5%) 33(75%) 0.692

DQ/IQ 63.2 ± 20.8 56.8 ± 17.1 69.6 ± 22.4 0.022 93.9 ± 14.2 89.6 ± 11.2 95.3 ± 10.5 0.752

DD/ID (%) 54 (65.1) 32 (76.2) 22 (53.6) 0.035 n.a n.a. n.a. n.a.

Regression

(%)

29 (35) 19 (45.2) 10 (24.4) 0.065 n.a n.a. n.a. n.a.

Autism

severity

(ADOS CSS)◦

6.7 ± 1.8 6.6 ± 1.8 6.8 ± 1.8 0.845 n.a. n.a n.a. n.a.

*Fisher’s Exact Test was performed for discrete variables gender, DD/ID and regression. T-test was performed for continuous variables DQ/IQ and ADOS-CSS. ◦The Social Communication

Questionnaire was used to screen and exclude autism in TD children. DQ, developmental quotient; IQ, intelligence quotient; DD, developmental disability; ID, intellectual disability; ADOS,

Autism Diagnostic Observation Schedule. CSS, Calibrated Severity Score. n.a., not applicable.

an associated monogenic disease (i.e., Fragile-X syndrome,
Tuberous Sclerosis), positive chromosomal microarray analysis,
positive history for mitochondrial disease or known medical
conditions including autoimmune disease and inflammatory
bowel diseases (IBD)/celiac disease.

TD children were recruited among subjects that underwent
morning fasting blood analyses screening for sideropenic anemia
that was definitely ruled out in all included TD participants.
Full informed consent was signed from parents to participate in
the study. TD participants’ exclusion criteria included positive
history for inherited metabolic diseases, intellectual disability
or other developmental, neurological, or behavioral problems
and inflammatory bowel diseases/celiac disease. The Social
Communication Questionnaire (24) was used to screen and
exclude autism in TD children. Since artifacts in plasma
acylcarnitine levels are possible due to diet enriched with
fatty acids (MCT-oil, ketogenic diet) (25), we ensured that
no participants underwent fatty acids enriched diet, such as
ketogenic diet or MCT-oil, at least 6 months before sample
collection.

Metabolic Work-Up in ASD Subjects
ASD patients underwent blood and urine collection in the
morning between 8.00 and 8.30 a.m. after nocturnal fasting.
Routine blood analyses including glucose, transaminases,
cholesterol, triglycerides, creatine kinase, electrolytes and
thyroid hormones were normal. Morning fasting lactate and
ammonia blood levels were increased in 12.5 and 22.2% of
patients, respectively in line with previous reported rates of
increased markers of mitochondrial dysfunction in ASD (8).
Twenty-five out of 40 studied subjects (62.5%) had significantly
decreased blood Vitamin D3 levels with normal Ca/P ratio.
Urinary organic acids by using Gas Chromatography/MS
detected increased excretion of ketone bodies in five patients.
One patient showed increased urinary 3-hydroxy-isovaleric
acid with normal plasma biotinidase activity. In two sibs with
ASD, the acylcarnitine profile showed increase of C8, C10,
C10:1 carnitine levels suggesting medium-chain acyl-CoA

dehydrogenase deficiency (MCAD). Molecular analyses was
not significant for any mutations associated to MCAD in these
patients.

Biospecimen Collection, Processing and
MS/MS Analysis
To avoid systematic differences related to the time of sample
collection, blood spots on filter paper card (Whatman card
Specimen 903) were collected from each participant in the ASD
and TD groups in the morning between 8.00 and 8.30 a.m.
after nocturnal fasting. Samples from the NT children were
prospectively collected in the same period, along with ASD
children samples. Once dried, blood spots were stored at 4◦C in a
unique refrigerator with controlled humidity rate and processed
within 2 weeks after sampling.

A 3.2mm diameter blood dot of each individual was
used for the analyses. Underivatized specimens were analyzed
using electrospray ionization (ESI)-Tandem MS/MS system.
Forty-five metabolites including amino acids, free carnitine
and acyl-carnitines (saturated, unsaturated, hydroxylated, and
dicarboxylated) were simultaneously measured in DBS. The
analyte concentration was quantified by comparison with
known concentration of corresponding stable-isotope internal
standards. Results of targeted 45 metabolites in ASD participants
were considered in comparison with age-matched reference
ranges obtained from studied TD healthy subjects.

Statistical Analyses
Blood levels of forty-five targeted analytes (µmol/L) obtained
from 162 subjects, 83 ASD patients and 79 TD healthy controls,
were evaluated. Metabolites, with statistically significant different
blood levels between ASD and healthy TD control children were
identified by using the R package limma (26). Since data supports
equal population variances together with normal distributions,
a T-test was applied. The p-value produced by the two-sided
T-test, employed by limma, was corrected using the Benjamini
& Hochberg method in order to estimate the False Discovery
Rate (27). All differences were considered to be statistically
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significant at a 5% probability level. Possible associations between
the identified metabolites and clinical features of ASD patients
were verified by Spearman correlations analyses.

Classification Modeling
Model development was performed with the aim to detect
metabolic features useful to profile ASD patients vs. healthy
NT controls. For this purpose we trained an algorithm
on the discriminant metabolites identified as described. The
methodology was evaluated in terms of Sensitivity = TP/(TP +

FN), Specificity = TN/(TN + FP), where TP is the number of
true positives, i.e., the number of patients correctly classified;
TN is the number of true negatives, i.e., number of controls
correctly classified; FP is the number of false positives, i.e.,
number of controls classified as patients; and FN is the number
of false negatives, i.e., number of patients classified as controls.
Diagnostic odds ratios and 95% confidence intervals were
evaluated.

The workflow of the study is depicted in Figure 1. Our
dataset, comprising 83 ASD patients and 79 healthy controls,
was randomly partitioned into a training set of 124 samples
(67 ASD patients and 57 healthy controls) for identification
of the classification modeling, and 38-sample holdout set (16
ASD patients and 22 healthy controls). Due to the small cohort
size, keeping a large part of the samples in the training set is
needed to proper identify the classification model (28). For this
reason, we kept two third of the samples in the training set and
the remainder was used as a holdout validation set. Samples
were properly randomized using diagnosis, age and gender to
establish a similar proportion of factors on both training and
holdout sets. Such holdout strategy was repeated 1,000 times to
estimate average performances together with a 95% CI of the
classification model. In addition, a validation test was performed
in an independent set of 29 ASD participants randomly recruited
for re-test analyses. Neurotypical controls were not included in
this analysis because further blood sampling was not achieved in
the TD group. Finally, classification performance was evaluated
by permutation testing in order to establish a distribution of
chance estimates. For this purpose, we trained the classifier with
the 124-sample training set with randomized group labels (ASD
vs. TD) many times (≈ 1,000). This allowed establishing a chance
distribution that could be used for comparison.

RESULTS

Participant Characteristics
Based on their chronological ages, participants were divided in
two groups: younger (ASD n.42; TD n.35) or older than 5 years
(ASD n.41; TD n.44). Demographic data and clinical features
of all participants in the two age groups, such as presence of
developmental delay (DD), intellectual disability (ID) (IQ < 70)
and symptoms of regressive autism are presented in Table 1.
The rate and extent of DD/ID were higher in children with
ASD younger than 5 years (P: 0.035 and P: 0.0228, respectively).
No significant differences were found in the rate of patients
with regressive autism and in the degree of autism severity
(CSS) between the two age groups (P: 0.065 and P: 0.845,

respectively). ASD patients did not fulfill diagnostic criteria
for probable or definite mitochondrial disorder according to
Morava mitochondrial disease criteria system (29). Less than
5% of studied ASD children had hypotonia and/or epileptic
seizures. None presented with ataxia, peripheral neuropathy,
sensorineural deafness, cardiomyopathy or endocrinological
problems which are common features of mitochondrial diseases.

Metabolic Profile of Target Analytes by
ESI-MS/MS of Blood Spots in Patients With
ASD and Healthy Control Subjects
Over 45 analyzed metabolites in DBS, nine (20%) were
significantly increased in ASD patients with respect to healthy,
age-matched subjects (Table 2). The increased metabolites in
ASD patients included eight acyl-carnitines such as short-chain
(2-5 carbon length) C2 and C4DC\C5OH, medium-chain (6–
12 carbon length) C10 and C12, and long-chain acyl-carnitines
(13-18 carbon length) C14:2, C16, C16:1, C18:1. Among eleven
studied amino acids, citrulline levels were increased in ASD
patients (Table 2). Volcano plot showing the distribution of
log-fold-changes vs. statistical significance (p-value) of the
metabolites and individual swarm plots for the subject data, split
by diagnosis, for the nine changed metabolites are reported in
supplementarymaterials (Figures S1–S4).We estimated an effect
size of 0.6 as the absolute difference between the mean of the
most discriminant metabolites (short chain C2 and C4DC/C5OH
acylcarnitines and long chain C10, C12, C14:2, C16, C16:1, C18:1
acylcarnitines, citrulline) within each class divided by the pooled
variance observed between the two classes. This yielded a power
of 0.93 at significance level of 0.05 suggesting a high practical
significance. The power was also estimated within the two age
groups at 0.79 for patient younger than 5 y. o. and 0.78 for older
patients.

Spearman correlations showed that in the ASD sample
metabolite levels did not correlate with age, developmental or
intellectual quotient and autism severity score (CSS) (Table 3).

Training and Testing Set Model
Performance
Next, we trained a classifier based on the Naïve Bayes algorithm
making use of the training set and adopting as predictor variables
only the ninemetabolites differing significantly between ASD and
TD subjects (P: < 0.001) (Table 2). The results were verified on
the holdout set with the purpose of checking the robustness of the
procedure.

To assess the model and the predictive power of the selected
metabolites, we compared the Naïve Bayes algorithm, with other
classification techniques such as C-tree, Random Forest (RF),
Support Vector Machine (SVM), Linear Regression (LM), and
Recursive Partition Tree (PART) (online methods). Our final
choice fell on the Naïve Bayes algorithm due to its robustness
and stability. The training procedure led to the selection of acyl-
carnitines C2 and C4DC\C5OH, C10, C12, C14:2, C16, C16:1,
C18:1 as the most promising classification variables. Naïve Bayes
algorithm, using a 8 feature set, reaches an overall classification
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FIGURE 1 | Workflow of the study. Blood acylcarnitines (m/z) C2 (204.3); C4DC\C5OH (262.2); C10 (316.2); C12 (344.3); C14:2 (368.3); C16 (400.3); C16:1 (398.3);

C18:1 (286.2) (red asterisks) measured in DBS are increased in patients with ASD. Näive Bayes algorithm trained on the identified metabolites was used to profile

children with ASD vs. healthy controls. Blue asterisks indicate correspondent stable-isotope internal standards.

performance with 73.3% sensitivity (95% CI 72.6–73.9), 63.4%
specificity (95% CI 62.8–64), 6.78 DOR (95% CI, 6.39–7.16).

Predictive Performances of the Metabolic
Profile for Participants Divided by Age
Taking into account that ASD are neurodevelopmental disorders
we considered closely possible interactions of measured
metabolites with participant ages. For this purpose, we divided
the sample into two groups according to age (≤5 years and >5
years) and we applied the classifier to discriminate among ASD
and TD control subjects in each age group. Table 4 presents the
predictive performances of the metabolic profile (measures and
95% CI), using Naïve Bayes and other compared classifiers, for
all participants; participants aged ≤5 years and >5 years.

We found an increased competitiveness of the framework
for classifying ASD in toddlers (n: 42 subjects mean age
3.26 ± 0.89) 72.3% sensitivity (95% CI: 71.3;73.9), 72.1%
specificity (95% CI: 71.2;72.9), and diagnostic odds ratio (DOR)
11.25 (95% CI: 9.47;17.74). Furthermore, by applying our
classification framework to subjects older than 5 years of age,
we found a reduction in performance compared to younger
subjects: Sensitivity 67.5% (95% CI: 66.6; 68.4) Specificity 56.9%
(56.1;57.7), DOR 4.29% (95% CI: 4.09;4.56).

Validation Test
Results were confirmed on independent validation test. For
validation analyses, a set of 29 ASD participants was randomly
recruited for re-test analyses. For this purpose, blood spot
collection for metabolite analyses was repeated at the same
conditions a second time after a mean time interval of 6.86 ±

3.8 months. Data from re-test were used as validation set. The
initial values from total 132 subjects were used as training set.
The results show an overall accuracy of 69% (20 patients correctly
classified as ASD, and 9 misclassified as healthy). Splitting the re-
test set by age we found a greater accuracy in younger subjects
(≤5 years of age) (n = 11 samples, 73% accuracy) compared to

individuals older than 5 years (n = 18 samples, 67% accuracy).
It should be noted that the re-test validation set only includes
participants with an ASD diagnosis. Therefore, the validation can
only test for true positive and false negative ASD classifications.

Permutation Testing
Classifier performance was evaluated using permutation testing.
Permutation testing can be used to evaluate the probability of
getting specificity and sensitivity values higher than the ones
obtained during the cross-validation procedure by chance. In
order to establish a distribution of chance estimates, we trained
the classifier with the 124-sample training set each time randomly
assigning patient and control labels to each sample many times
(≈ 1,000) and repeated the cross-validation procedure. The
results show that the quality of the classification in such a case is
even lower than expected values in the case of a random classifier
model with 43.9% accuracy (95% CI: 43.3;44.5) (Table S1). We
definitely demonstrated that the accuracy of the classifier (73%)
is significantly better than expected by chance alone as the
classification algorithms are actually able to extract molecular
patterns that distinguish patients, with respect to a chance
distribution.

DISCUSSION

ASD is a polygenic multifactorial disorder with variable
underlying mechanisms including energy metabolism
disarrangement among others (30). Recognition of specific
classes of ASD patients by biological markers has been
considering effective for better understanding molecular
mechanisms and to guide tailored therapeutic strategies in
patient subset (31). In the current study we pursued to set up
an easily testable blood metabolic profile in DBS to support
early recognition of metabolic subtype patients at risk for ASD
diagnosis. We found in an ASD population without clinical
relevant features secondary to primary mitochondrial disease,
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TABLE 2 | Statistical significant metabolites in ASD participants with respect to TD participants.

Metabolite Abbreviation Log-FC Average concentration t p-Value

(ASD vs. TD)

Adjusted

p-Value

ASD TD

≤5 y >5 y ≤5 y >5 y

Citrulline CIT 0.3601 4.7594 4.5606 4.3556 4.2129 3.7337 0.0003 0.0020

Acetylcarnitine C2 0.3318 3.5333 3.5503 3.1886 3.2330 4.2770 0.0000 0.0007

Methylmalonyl/3-OH-

isovalerylcarnitine*

C4DC\C5OH 0.0762 0.4734 0.5062 0.4058 0.4224 4.4927 0.0000 0.0006

Decanoylcarnitine C10 0.0395 0.1468 0.1643 0.1035 0.1352 2.6288 0.0004 0.0470

Dodecanoylcarnitine C12 0.0246 0.0714 0.0762 0.0414 0.0556 4.1838 0.0000 0.0007

Tetradecadienoylcarnitine C14:2 0.0109 0.0398 0.0377 0.0211 0.0322 3.5912 0.0004 0.0025

Hexadecanoylcarnitine C16 0.1409 1.0594 1.0934 0.9499 0.9180 3.7904 0.0002 0.0019

Hexadecenoylcarnitine C16:1 0.0145 0.0758 0.0805 0.0634 0.0637 3.6726 0.0003 0.0021

Octadecenoylcarnitine C18:1 0.1302 1.0725 1.1304 0.9295 0.9945 3.8526 0.0002 0.0019

Logarithm of the fold-change (Log-FC) between the classes, average concentration in each age subgroup, t-test statistic with its p-value and Benjamini & Hochberg adjusted p-value.
* Isomers or isobars metabolites. ASD, Autism Spectrum Disorders; TD, Typical Development; y, year.

TABLE 3 | Spearman correlations computed for the metabolites listed in Table 2 in relation to the quantitative clinical variables Age, DQ/IQ, and CSS.

Age DQ/IQ CSS

Metabolite p-Value p-Value p-Value

C5OH\C4DC* 0.0771 0.4939 0.1176 0.2959 −0.1122 0.3188

C2 −0.1497 0.1821 −0.0634 0.5741 −0.0083 0.9414

C12 0.1103 0.3271 −0.0415 0.7129 −0.1488 0.1850

C18:1 0.0093 0.9341 −0.0986 0.3814 0.0155 0.8906

C16 −0.0130 0.9084 −0.0380 0.7362 −0.1340 0.2328

CIT −0.1751 0.1180 −0.0685 0.5434 −0.1230 0.2741

C16:1 0.1286 0.2526 −0.0818 0.4677 −0.0795 0.4803

C14:2 −0.0410 0.7163 0.0060 0.9578 −0.0842 0.4551

C10 0.0843 0.4545 −0.0649 0.5647 −0.0607 0.5906

For each metabolite we report the computed correlation together with a p-value, which indicates whether the observed correlation is statistically significant, under the null hypothesis

that values are uncorrelated. * Isomers or isobars metabolites. DQ, developmental quotient; IQ, intelligence quotient; CSS, Calibrated Severity Score.

a significant increase of blood short-chain, long-chain acyl-
carnitines and, to a lesser extent, medium-chain acyl-carnitines.
Our findings in a Sicilian ASD population (Mediterranean area)
confirm the same, unique pattern of acyl-carnitine profile, which
has been first systematically detected in ASD individuals from
US, (32) defining a broadest coverage of ethnic and regional
groups.

It is worth noting that distinct metabolite differences could
be related to co-morbid undiagnosed medical conditions such
as gastrointestinal disturbances that are frequently observed in
ASD. In the present study we found significantly increased
citrulline levels in children with ASD. Citrulline is an
intermediate metabolic amino acid produced primarily by
enterocytes. Blood citrulline level is considered a biomarker
of gastrointestinal mucosal surface and enterocyte integrity.
Previous studies showed that citrulline levels are inversely
correlated with severity of intestinal malabsorption disease
(i.e., coeliac disease) and inflammatory bowel disease (IBD)

such as Crohn’s disease (33). Patients with classic citrullinemia
(type I) (argininosuccinate synthetase 1 gene mutation) present
with elevated citrulline levels along with hyperammonemia and
variable neurological symptoms in the neonatal period or later
on. Interestingly, it was demonstrated that cumulative exposure
to ammonia and citrulline are the most reliable indicators of
poorer cognitive functioning in patients with classic citrullinemia
(34).

Moreover, the existence of distinct metabolite differences
could relate to concurrent vitaminD deficiency that was observed
in a large proportion of patients with ASD (62%) in this
study. Vitamin D has a pivotal role in neurodevelopment
through several mechanisms including gene regulation and
anti-inflammation/immunological modulation. Lower Vitamin
D levels were consistently reported in subsets of patients with
ASD compared to healthy controls (35). Carnitine is mainly
provided in the diet, but is synthesized at extremely low
rates from trimethyl-lysine residues generated during protein
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TABLE 4 | Classifiers performances for all participants (A); participants aged ≤ 5 years (B) and >5 years (C).

Classifier Sensitivity Specificity DOR

(A) All participants

Naïve Bayes 0.7332 [0.7267; 0.7397] 0.6345 [0.6287; 0.6404] 6.7823 [6.3956; 7.1690]

C-tree 0.6715 [0.6590; 0.6841] 0.4942 [0.4824; 0.5060] 2.7437 [2.6171; 2.8703]

RF 0.7296 [0.7229; 0.7364] 0.5670 [0.5608; 0.5731] 4.8079 [4.5668; 5.0490]

SVM 0.7319 [0.7250; 0.7388] 0.5939 [0.5875; 0.6003] 5.5428 [5.2650; 5.8207]

LM 0.6324 [0.6250; 0.6397] 0.6585 [0.6523; 0.6646] 4.4804 [4.2328; 4.7280]

PART 0.6281 [0.6196; 0.6365] 0.5657 [0.5576; 0.5738] 2.9980 [2.8474; 3.1486]

(B) ≤age 5 years

Naïve Bayes 0.7237 [0.7137; 0.7337] 0.7209 [0.7125; 0.7293] 10.1235 [9.4725; 10.7746]

C-tree 0.7590 [0.7441; 0.7739] 0.3574 [0.3399; 0.3749] 2.8163 [2.6411; 2.9914]

RF 0.8270 [0.8187; 0.8353] 0.5464 [0.5358; 0.5569] 7.1375 [6.5862; 7.6888]

SVM 0.8017 [0.7925; 0.8109] 0.6202 [0.6105; 0.6300] 8.1844 [7.6207; 8.7481]

LM 0.6567 [0.6450; 0.6684] 0.6871 [0.6771; 0.6972] 7.1923 [6.6648; 7.7198]

PART 0.7031 [0.6914; 0.7149] 0.4532 [0.4407; 0.4658] 2.9037 [2.6924; 3.1150]

(C) >age 5 years

Naïve Bayes 0.6757 [0.6665; 0.6849] 0.5692 [0.5610; 0.5775] 4.2905 [4.0193; 4.5616]

C-tree 0.5071 [0.4867; 0.5275] 0.5468 [0.5290; 0.5645] 1.6693 [1.5826; 1.7559]

RF 0.5881 [0.5780; 0.5982] 0.5248 [0.5157; 0.5339] 2.3622 [2.2069; 2.5175]

SVM 0.5878 [0.5780; 0.5976] 0.6295 [0.6208; 0.6382] 3.9369 [3.6500; 4.2238]

LM 0.6039 [0.5939; 0.6139] 0.6022 [0.5933; 0.6112] 3.7105 [3.4456; 3.9755]

PART 0.5264 [0.5143; 0.5386] 0.5367 [0.5260; 0.5474] 2.0030 [1.8714; 2.1347]

Compared classification algorithms: Naïve Bayes, C-tree, Random Forest (RF), Support Vector Machine (SVM), Linear Regression Model (LM), and Recursive Partition Tree (PART). For

each classifier sensitivity, specificity, of the model and diagnostic odds ratio (DOR) are shown. All the measures are reported together with the bounds of the 95% CI.

catabolism and is excreted in the urine. In patients with
nutritional rickets (vitamin D deficiency), an increased urinary
excretion of carnitine may occur that is reversed by vitamin
D supplementation (36). It may be argued that carnitine
metabolism may be involved in patients with nutritional rickets.
Possible links between vitamin D deficiency and carnitine
deficiency should be further investigated also in view of the
higher prevalence of both these conditions in patients with ASD.

As ASD is developmental in nature, we considered possible
interactions of measured metabolites with participant ages.
Profiles of carnitine and acyl-carnitines change significantly
during the first year of life, but kept at the same level between
2 and 15 years (37). We split the sample in two age categories
(< 5 y.o. and ≥ 5 y.o.) to understand possible predictive
metabolic signatures capable of distinguishing ASD and TD
individuals at early stages of ASD development. This threshold is
consistent with reliable ASD diagnosis and effectiveness of early
intervention. Indeed, the definite diagnosis of ASD is generally
made between 3 and 5 years (38). Moreover, increasing evidences
support the effectiveness of early interventions (behavioral,
developmental and educational approaches) in pre-schoolers
(aged 24–71 months) with ASD (39).

The results show higher classification performance (sensitivity
72.3%, specificity 72.1%) at younger ages and potential
application to improve diagnosis at earlier stages of ASD
development. Re-test analyses as a measure of validity in
independent samples showed an accuracy (proportion of
observations that were correctly classified into patient or control
group) of 73% in children aged ≤5 years. It has to be noted

that the validation set only includes participants with an ASD
diagnosis and so the validation can test for true positive and false
negative ASD classifications.

The present study confirms that patients with ASD may show
a distinct metabolic profile, demonstrating that this can be used
to identify a subset of ASD patients with respect to TD at younger
ages. We verified that in each age group, clinical variables
such as cognitive levels (DQ/IQ) and autism severity (CSS)
did not correlate with the discriminant metabolite levels. This
implies that both clinical features were irrelevant to clinically
discriminate the identified patient subset. It would be interesting
to further investigate if individual component of behavioral
scores instead of global scores and/or additional neurological
features might be more helpful at the clinical level using larger
samples that allow patient stratification (31).

The predictive metabolic profile identified in the present study
is strongly supported by significant biological and experimental

data associated with ASD:

(1) the present findings collectively suggest a reduced flux
through the mitochondrial β-oxidation pathway in a
subset of patients with ASD. The acyl-carnitine pattern

found in ASD patients is not consistent with any known

genetic disorders of fatty acid oxidation and organic
acid metabolism, electron transport chain or urea cycle
dysfunction, or other inherited metabolic diseases. Genetic

defects of mitochondrial β-oxidation are a group of IEM
caused by failure of a single mitochondrial enzyme of
β-oxidation such as short chain acyl-CoA dehydrogenase
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(SCAD), medium chain acyl-CoA dehydrogenase (MCAD),
very long chain acyl-CoA dehydrogenase (VLCAD) or
long chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD).
Mitochondrial β-oxidation defects may be secondary to
dysfunction of dependent processes, such as deficiencies of
the carnitine fatty acid transporter system, or mitochondrial
electron transfer flavoprotein system (multiple acyl-
CoA dehydrogenase deficiency) (40). The occurrence
of developmental delay, autistic-like behavior or ASD
in genetic defects of mitochondrial β-oxidation (41)
particularly VLCAD (42) and LCHAD (43) suggests that
impaired mitochondrial β-oxidation may contribute to
dysfunctional energetic metabolism in subsets of patients
with ASD. Deletion of the TMLHE gene, which is the first
step in carnitine synthesis pathway and located on the
X chromosome, is found more often in males with non-
dysmorphic autism suggesting that TMLHE deficiency is a
risk factor for autism, albeit with low penetrance (estimated
at 2–4%) (44). Children with ASD, as a group, are deficient
in Carnitine (45) with this deficiency potentially related to
gastrointestinal symptom (46). Additionally, supplementing
with Carnitine has been shown to improve core
symptoms of ASD in two double-blind placebo controlled
studies (47, 48).

(2) ASD features and ASD have been reported in patients with
propionic acidemia (PA), a severe organic acidemia caused
by propionic acid (PPA) accumulation due to propionyl-
CoA carboxylase enzyme deficiency (49). Endogenous PPA
derives from the catabolism of branched-chain amino
acids and from odd-chain fatty acid catabolism. PPA is
a fermentation product of many autism associated gut
bacteria, and also a common food preservative (50).
Intracerebral PPA injections in rodents induce behavioral,
electrographic and biochemical changes consistent with
rodent ASD model (PPA model) (51). Brain lipid analyses
of PPA model show increase of short- and long-chain acyl-
carnitines but not medium- chain acyl-carnitines (52). The
acyl-carnitine profile of PPA model overlaps with those
found in patients with ASD (32), also in the current study.

(3) Dysregulated cortical layer formation and layer-specific
neuronal differentiation demonstrated in the neocortex
of children with ASD, suggest possible defects in cell-
cycle processes as well as in cell fate specification (53).
The carnitine palmitoyl transferase (CPT) system, which
mediates the entry of long-chain fatty acids into the
mitochondria for ß-oxidation, operates in astrocytes (54,
55) and in embryonic and adult neural stem cells (NSC)
(56, 57). Recent evidences show that fatty acids might
represent an important oxidative fuel during embryonic and
early postnatal development and a reduced flux through
the mitochondrial fatty acid β-oxidation impairs NSC self-
renewal in the mammalian embryonic brain and potentiates
their transition to lineage-restricted cells (IPCs) (54–56).
As a whole, experimental findings show a pivotal role
for mitochondrial fatty acid β-oxidation in controlling
NSC-to-IPC transition in mammalian embryonic and
adult brain, and propose NSC self-renewal as a cellular

mechanism underlying the association between disturbances
of mitochondrial fatty acid oxidation and autism (56, 57).

We found a combined acyl-carnitine pattern in patients with
ASD indicative of impaired mitochondrial fatty acid β-oxidation.
The identified acyl-carnitine profile is characterized by a pattern
of more elevated acyl-carnitine species in comparison with age-
matched reference ranges. The presence of short-, medium-,
and more elevated long-chain acyl-carnitine species, might
reflect a mild generalized defect in FAO capacities, such as
in FAO electron shuttle protein ETF (electron transferring
factor), which is involved in the transfer of electrons coming
from the short-chain, medium-chain and long-chain acyl-CoA
dehydrogenases isoforms to the respiratory chain. Electrons from
ETF feed the respiratory chain at the level of ETFDH (ETF
dehydrogenase), a respiratory chain enzyme which transfers
these electrons to coenzyme Q. Both inborn ETF and inborn
ETFDH deficiency have been described in human, associated
to a variety of phenotypes (58). The mechanisms responsible
for expression of abnormal acyl-carnitine pattern in this subset
of ASD patients cannot be inferred from the present study.
Further studies are necessary to clarify if genetic variation of
fatty acid oxidation and interaction with environmental factors
including diet might account for acyl-carnitine accumulation.
In view of the wide clinical features related to ASD we
consecutively recruited patients with ASD diagnosis representing
an heterogeneous ASD population: further studies are required
to understand possible genetic and behavioral correlates of
metabolic subtypes of ASD. One limitation of the present study
is the lack of inclusion of a neurodevelopmental delay group
to understand the performances of the algorithms for ASD vs.
other developmental disabilities. Moreover, our study has been
developed in a clinical sample. Similarly, classifiers have been
applied to identify biomarkers of neurological and psychiatric
diseases in clinical cohorts (28, 59). However, it has been recently
highlighted that machine learning models should be adjusted
to the epidemiological prevalence in the general population
(60). Larger-scale studies or population analyses are therefore
needed to assess performances in real life cohorts considering the
actual prevalence rate. This will require resources for large-scale
collaborative efforts worldwide (61).

CONCLUSION

The present study supports early recognition of a distinctive
metabolic profile in DBS whose distinguishing features suggest
a reduced flux through the mitochondrial fatty acid β-oxidation
pathway and provides insight into concealed molecular
mechanisms determining ASD. The results show higher
classification performances in children with ASD younger than 5
years old suggesting a potential complementary and supportive
ability to improve diagnosis at earlier stages of ASD development.
The applied non-invasive methodology on DBS traditionally
used for newborn screening is appropriate to evaluate metabolic
profile changes across development. The present findings yield
the evidence that metabolic biomarkers that identify subset of
patients with ASD are helpful. Considering the heterogeneity
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of ASD, metabolic profiling may support the identification of
phenotypes enabling individualized therapeutic approaches in
children at risk of developing the disease.
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