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The relationship between depression and intracerebral hemorrhage (ICH) is complicated.

One of the most common neuropsychiatric comorbidities of hemorrhagic stroke is

Post-ICH depression. Depression, as a neuropsychiatric symptom, also negatively

impacts the outcome of ICH by enhancing morbidity, disability, and mortality. However,

the ICH outcome can be improved by antidepressants such as the frequently-used

selective serotonin reuptake inhibitors. This review therefore presents the mechanisms

of post-ICH depression, we grouped the mechanisms according to inflammation,

oxidative stress (OS), apoptosis and autophagy, and explained them through their several

associated signaling pathways. Inflammation is mainly related to Toll-like receptors

(TLRs), the NF-kB mediated signal pathway, the PPAR-γ-dependent pathway, as well

as other signaling pathways. OS is associated to nuclear factor erythroid-2 related

factor 2 (Nrf2), the PI3K/Akt pathway and the MAPK/P38 pathway. Moreover, autophagy

is associated with the mTOR signaling cascade and the NF-kB mediated signal

pathway, while apoptosis is correlated with the death receptor-mediated apoptosis

pathway, mitochondrial apoptosis pathway, caspase-independent pathways and others.

Furthermore, we found that neuroinflammation, oxidative stress, autophagy, and

apoptosis experience interactions with one another. Additionally, it may provide several

potential therapeutic targets for patients that might suffer from depression after ICH.

Keywords: intracerebral hemorrhage, depression, inflammation, oxidative stress, apoptosis, review, therapeutic

target, autophagy

INTRODUCTION

Each year, about 795,000 individuals suffer from a new or recurrent stroke. Nearly 610,000 among
these patients experience first time attacks in their entire life; the remaining cases are reported as
recurrent strokes. All stroke cases, 87% are ischemic, while intracerebral hemorrhage (ICH) strokes
account for 10%, and subarachnoid hemorrhage (SAH) strokes only make up 3% of the total (1).
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Post-stroke depression (PSD), themost common and frequent
mental disorder after stroke, has a strong association with
exacerbate deterioration of functional recovery, physical, and
cognitive outcome, as well as quality of life. Moreover, PSD
is even independently associated with enhanced morbidity,
disability, and mortality (2–4).

Intracerebral hemorrhage (ICH) is a dangerous type of stroke,
which is severer. Evidence have shown that 20% of ICH survivors
existed with explicit signs of depression (5, 6). Numerous studies
of PSD have been revealed, especially ischemic strokes; studies
were based on medical examinations in researches. Nevertheless,
the etiological factors that cause post-ICH depression are far
from being elucidated. Hence, it is vital to understand the specific
etiopathology of depression after ICH that can thus help people
to develop effective therapeutic strategies aimed at etiological
factors.

The present review will address the mechanisms, especially
involved signaling pathways, and will introduce several potential
therapeutic agents for the therapy of post-ICH depression.
Finally, we will provide suggestions, that we hope can guide
future research.

ICH TYPES

ICH is divided into primary and secondary types, depending
on the response to the fundamental cause of hemorrhage
(7). Primary ICH develops without any underlying vascular
malformation or coagulopathy. However, some cases like tumors,
trauma, as well as coagulation could lead to the formation of
secondary ICH, as well as the use of thrombolytic agents (7).
In any ICH case, primary brain damage will occur because of
the hemorrhage. And with the development of a hematoma,
secondary brain injury will gradually appear on account of a
pathological and physiological reaction.

Intracerebral hemorrhage is a lethal type of stroke, in the
United States, every year there are 30,000 people who die from
a stroke. If the patient is lucky enough to survive, then the
growth of the hematoma in the brain parenchyma could trigger
multiple of reactions that lead to another insult or even more
severe neurological impairments. We will discuss several aspects
of secondary cerebral injury following ICH and underline the key
mechanisms correlated with post ICH depression (8).

SECONDARY BRAIN INJURY-INDUCED
DEPRESSION

Secondary injury is a key factor in the deterioration of the
nervous system in ICH patients (9, 10). Secondary brain injury
after ICH is caused by intraparenchymal hemorrhage, which
then activates several signaling pathways such as inflammatory,
oxidative, autophagic, and apoptotic pathways. These pathways,
in vivo, become the bridge that links intracerebral hemorrhage
and depression (8, 11–13).

Inflammation
Inflammation is a significant host defense response to cerebral
damage following ICH. Once ICH occurs, components in the

blood such as leukocytes, RBCs, and macrophages immediately
migrate into the brain parenchyma. There is growing evidence
that inflammation-induced impairment plays a crucial role in
the mechanism underlying secondary brain injury after ICH
(8, 14–17).

Toll-Like Receptors in Inflammation
Toll-like receptors (TLRs) are an important component of
inflammatory responses and innate immunity (18, 19). TLR4 on
leukocytes are important for the infiltration of both neutrophils
and monocytes out of circulation (20). Recently, several clinical
studies have suggested that increased levels of TLR2 and TLR4
expression in peripheral monocytes is related to a poor prognosis
in patients with ICH (21). Furthermore, some studies have found
an improved neurological function in TLR4-knockout ICH
animal models (20, 22). Moreover, TLR4 signaling, especially
those on resident microglia and on blood-derived inflammatory
cells, is specific to inflammatory damage induced by ICH (20, 22,
23).

Recently, more attention has been placed on understanding
the underlying mechanisms of inflammation-induced
depression. Kéri et al. found patients diagnosed as major
depressive disorder (MDD) for the first time, usually had an
accompanied upregulation of TLR-4 signaling. It is thought
to be related to bacterial translocation or various molecular
patterns that correlate with the type of injury (24). Strekalova
et al. first showed that C57BL/6J mice models appeared to show
depression- and anxiety-like behaviors when they were fed high
amounts of cholesterol. Moreover, they reported an unexpected
elevation in the level of TLR4 expression, which indicated that
TLR4 may play a critical role in the central neuronal system
(25). Habib and his colleagues clarified, in an experiment
using diabetic/depressed rats, when dysfunctions occurred to
blood vessels as well as the metabolic system, the expression of
TLR-4 in the aorta increased rapidly, in addition to a rise in
pro-inflammatory cytokines (26). Later, Cheng et al. found that
stress-induced neuroinflammatory responses are regulated by
the GSK3-dependent TLR4 pathway. This signaling pathway
is involved in development of depressive-like symptoms (27).
García et al. then concluded that the activation of TLR-4 in the
brain and peripheral area leads to sickness symptoms, and its
expression level is also a risk factor that contributes to depression
(28). These results confirmed the correlation between an elevated
level of the TLRs and the risk of developing depression.

An increasing body of evidence suggests that microglia
are the main mediators of inflammation-related disorders,
including depression. Slusarczyk et al. suggested that
tianeptine, an antidepressant drug, could attenuate the level
of inflammatory mediators related to TLR4 signaling and the
NLRP3 inflammasome (29). In addition, chronic restraint stress
(CRS)-induced depressive-like animal models were found to
show inflammatory responses in the hippocampus via the toll-
like receptor type 4 (TLR4)/p38 mitogen-activated protein kinase
(MAPK) pathway, which could be treated by ketamine (30). Past
studies demonstrated that the TLR4 signaling pathway in the
CNS and the periphery are associated with activated glycogen
synthase kinase-3 (GSK3), a kinase shown to be involved in
depression (31, 32). GSK3 inhibition has been indicated to
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reduce the production of pro-inflammatory cytokines with
the stimulation of TLR4 in several different immune cells,
both in clinical and basic experiments (33–35). Moreover,
antidepressants like fluoxetine or the GSK3 inhibitor, TDZD-8,
could improve stress-induced depressive-like behaviors via the
TLR4 signaling pathway (27).

NF-kB Mediated Signal Pathway
Recently, many studies have proven the instrumental role of
proinflammatory cytokines in the development of ICH. For
instance, the activation of NF-kB in microglia/macrophages,
which contributes to brain damage after ICH, results in the
upregulation of proinflammatory cytokines (36, 37). Moreover,
inhibited NF-kB activity is also related to alleviated neurological
deficits (22, 38).

Furthermore, plenty of research suggests that
neuroinflammation may play a significant role in the
pathogenesis of depressive disorders. Koo et al. first reported that
NF-κB signaling may act as a key mediator in anti-neurogenic
and stress-induced behavioral actions; it may provide therapeutic
targets of depression, which have never been described before
(39). A few years after, evidence was provided that MDD is
characterized by up-regulation of redox-sensitive transcriptional
factors (Nrf2 and NF-κB), which indicated the pro-oxidative
state that exists in MDD patients’ peripheral blood mononuclear
cells (PBMC) (40). A review concerned with adult hippocampal
neurogenesis similarly supported the finding that NF-κB
signaling modulates neurogenesis in adult patients, as well
as expressing antidepressant actions (41). Recently, Nadeem
et al. discovered that IL-17A seems to participate in comorbid
depression with those who have psoriatic inflammation; this
was linked to NF-κB and p38MAPK pathways that function
through the up-regulated inflammatory cytokines in the brain
(42). What is more, chronic stress in the basolateral amygdala
(BLA) would induce the upregulation of neuropeptides and
subsequently cause depressive-like behaviors. The siRNA could
mediate the inhibition of NF-kB signaling in the BLA and
downregulate the expression of neuropeptides, which lead to the
alleviation of depressive symptoms (43). Moreover, Su et al. (44)
proved that chronic unpredictable mild stress (CUMS)—induced
depression-like action could be mediated through the NLRP3
inflammasome. Furthermore, the depression rat model indicated
that the CUMS-induced MAPK pathway could be regulated
by NLRP3 inflammasome by activating the NF-κB protein
complex (44). Depression is one of the upmost psychological
illness that is closely tied with inflammation. Crocin could act
as a promising therapeutic target for depressive-like behaviors
and neuro-inflammation caused by lipopolysaccharide (LPS).
Researchers found such a phenomenon was an outcome of
inhibited NLRP3 inflammasomes as well as inhibited NF-
κB signaling in microglia (45). Pro-anthocyanidin, having
potential anti-inflammatory and antioxidative activity efficacy,
functions as an effective therapeutic candidate for depression-
like behaviors induced by LPS by regulating the NF-κB signal
in many cerebral regions and inhibiting the LPS-induced iNOS
and the increased expression of COX-2 (46). Senegenin (SEN)
is a main bioactive component of Polygala tenuifolia Willd,

which has sturdy effects including anti-inflammatory actions as
well as neuroprotection. At the same time, it has been used to
lessen the depressive behavior in CUMS-induced rat models by
inhibiting NLRP3-regulated NF-κB signaling (47). Icariin (ICA),
which could be extracted from a certain traditional Chinese
herb, is able to freely transverse the blood-brain barrier. It
reduces neuroinflammation and OS-induced brain damage to
prevent depressive-like behaviors by inhibiting the activation of
NF-κB signaling in addition partially inhibition of the NLRP3-
inflammasome/caspase-1/IL-1β axis, which would increase
the antioxidant and anti-inflammatory ability of the cerebrum
(48). With associated neuroprotection and anti-inflammatory
activities, Geraniol (GE) has the potential to treat antidepressant-
like behaviors in CUMS-induced depression mouse models,
possibly by inhibiting the NF-κB pathway activation. Likewise,
it seems that the regulation of nucleotide binding and NLRP3
inflammasome expression are both involved in this process
(49). On the other hand, Chrysophanol (Chr) was also reported
to function as anti-depression treatment by influencing the
P2X7/NF-κB signaling pathway (50).

PPAR-γ-Dependent Pathway
CD36, belonging to the class B scavenger receptor family,
is usually expressed in macrophages or microglia. It is
involved in phagocytosis of many pathogens such as bacteria,
apoptotic cells and oxidized low-density lipoproteins (51–
53). Peroxisome proliferator-activated receptor (PPAR) -γ,
which is a part of the nuclear hormone receptor superfamily,
can transcriptionally regulate the expression of CD36 and
participate in inflammation (54, 55). In addition, treated
with PPARγ activator, the hematoma in the brain of ICH
mouse model would regress quicker and neurological damage
following ICH in adults would decline. Flores and his
colleagues confirmed that PPARγ agonists (15d-PGJ2) raised
short-term PPARγ levels, accompanied with enhanced CD36
expression and accelerated hematoma resolution. Furthermore,
it improved neurological function results. Moreover, both long
term ventricular dilatation after ICH and white matter loss were
decreased (56).

In several clinical and basic experiments, PPAR-γ agonists
have exerted anti-depressive behavioral effects. Nevertheless,
no one explained these mechanisms clearly. Gold and his
colleagues proposed that PPAR-γ may exhibit as a conceptually
new remedial target that improves the affective, cognitive and
systemic manifestations of MDD (57). Later, Agudelo et al.
opened a novel therapeutic avenue for treating depression
through the PGC-1α1-PPAR axis, which was usually expressed in
skeletal muscles, rather than by crossing the blood-brain barrier
(58). Colle et al. found that PPAR-γ agonists have antidepressant
effects in 3 out of 4 RCTs and in 4 open-label studies. Consequent
studies concluded that PPAR-γ agonists may have antidepressant
effects (59). Recently, several studies suggested that PPAR-γ
agonist exhibit their antidepressant-like effects through various
pathways: Liao and his colleagues firstly revealed the regulation
of the CREB/BDNF and NF-κB/IL-6/STAT3 pathways, together
with the potential effects on central 5-HT neurotransmissionmay
be implicated in depressive-like behaviors via PPAR-γ-related
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effects (60). Through the upregulation of PPARγ expression,
Song and his colleagues proposed that neuroinflammation could
be inhibited and even play a role in its antidepressant effects (61).

Selective agonists of the nuclear transcription factor
PPAR-γ are used to treat type 2 diabetes. Several studies
also seem to suggest their contribution to improvement of
depressive symptoms. PPAR-γ agonist pioglitazone (60, 62, 63),
rosiglitazone (64–66), Troglitazone (67), atorvastatin (68), folic
acid (69), Astragaloside IV (61), all of which have been reported
to ameliorate depressive-like behaviors in mice via the PPAR-γ
inflammasome axis.

Other Pathways
Inhibiting transient receptor potential Classic 3 (TRPC3), a
member of the calcium-permeable cation channels, significantly
reduced the perihematomal accumulation of reactive astrocytes,
indicating that TRPC3 plays an important part in activating
astrocytes following ICH. Accumulating findings indicate that
neurological functions improve with reduced cerebral edema by
inhibiting activated astrocytes via the TRPC3 inhibitor Pyr3.

In recent years, several studies have reported that the
alterations of intracellular Ca2+ signaling are the basis for the
pathophysiology of psychiatric disorders, including depression
(70, 71). Qin and his colleagues showed a complete difference
between the depression animal model group and the control
group related to the expression level of TRPC3/5 and the
morphology in neurons, located in the hippocampus (72).
Moreover, Buran et al. found that TRPC3/6 inhibitors might play
a critical part in the etiopathogenesis of depressive disorders with
enhanced levels of miR-9-5p and miR-128-1-5p (73).

Oxidative Stress (OS)
Nuclear Factor Erythroid-2 Related Factor 2 (Nrf2)

Pathway
Nrf2 comprises of a basic leucine zipper (bZIP) domain, which
plays an important part in regulating the cellular antioxidant
defense system. This includes heme oxygenase (HO) and
superoxide dismutase (SOD) (74). The functions of Reactive
oxygen species (ROS) are to trigger the Keap1/Nrf2/ARE
pathways so as to compromise oxidative stress (OS) following
ICH, which is known as an adaptive response (75–77). Keap1 is
an OS sensor that negatively regulates Nrf2. Upon exposure to
ROS, Nrf2 decouples from Keap1 and relocates to the nucleus
before activating the antioxidant response element (ARE)-
dependent cytoprotective gene that mediates cell survival (78).
The neuroprotective effect of Nrf2 suggests that a greater brain
damage in Nrf2 knockout mice is correlated with increased
ROS and apoptosis (76, 77). Therefore, Nrf2 activation of
pharmaceutical preparations is a promising target to alleviate
OS-induced brain damage following ICH.

Some researchers have indicated that Nrf2 is a major
redox-sensitive transcription factor, which gets involved in the
process of cellular self-protection from oxidative damage and
increases vulnerability to depression-like actions. As part of
a review, depression was characterized by distortion in six
interwoven pathways; Maes et al. proposed that inhibitors of
the Nrf2 activator target the above six pathways and may

produce antidepressant effects (79). Djordjevic et al. revealed the
maladaptive characteristics of chronic stress at the Nrf2/Keap1
level, resulted in the production of pro-inflammatory symptoms,
suggesting that these changes may take part in the pathogenesis
of depression/anxiety disorders (80).

For the past few years, several drugs have been found
to have an antidepressant effect by influencing the Nrf2
signaling pathway. Furthermore, their target proteins are
expressed in the brain. Mendez-David and colleagues showed
that the Nrf2 signaling pathway is necessary for fluoxetine-
induced neuroprotection associated with SERT blockade of 5-
HT transporters, rather than for enhancing BDNF expression
(81). Martín-Hernández et al. confirmed that the Nrf2 pathway
is involved in the oxidation/nitrosation damage detected in
the prefrontal cortex (PFC); moreover, the antidepressant drug
has a therapeutic effect through this route (82). By stimulating
PFC, CA3, and TrkB in dentate gyrus in Nrf2-knockout
animal experiments, the TrkB agonist, 7,8-dihydroxyflavone,
has shown a significant antidepressant functionality (83). Mice
pretreated with Nrf2 activator sulforaphane (SFN) revealed
reduced depression symptoms, which resulted from frequent
social defeat stress. This suggests that the Keap1-Nrf2 interaction
has a critical role in the pathophysiology of depression (83).
Other Nrf2-activating drugs like TBE-31 and MCE-1 have also
been proven as effective for treatment of depression associated to
inflammation (84). Agmatine, an endogenous neuromodulator,
also promises to serve as adjuvant/monotherapy for depression.
This reinforces the importance of antidepressant Nrf2 activators
(85). Recently, another drug, cilostazol, manifests promising
prophylactic antidepressant-like effect by activating the Nrf2
pathway as well as by recovering mitochondrial malfunction,
which interrupts OS (86).

PI3K/Akt Pathway
Plenty of brain stroke studies have revealed that ROS/RNS not
only directly oxidize cellular macromolecules, such as proteins,
lipids, and nucleic acids, which are associated with oxidative
damage, but are also involved in the cell apoptosis signaling
pathways. The PI3K/Akt, MAPK/P38, and NF-κB pathways
are three major OS-mediated pathway activators. Apoptosis
mediated by cytochrome c is another important pathway that
is mitochondria-dependent (87). In addition, there is growing
evidence that the phosphatidylinositol 3-kinase (PI3K)/AKT
pathway is associated with the pathophysiology of depression and
the antidepressant-like effect of different compounds (88–90).

In recent years, numerous findings have been derived from
both basic and clinical researches that suggest erythropoietin
has the ability to fight the depressive-like symptoms. Through
JAK2, erythropoietin and its receptor signaling activates plenty
of downstream signaling pathways such as NF-κB, PI3K/Akt,
MAPK, and STAT5, they are able to have a significant role in
neuro-progression and inflammation in the CNS (91). Recently,
Wu et al. concluded that following the activation and release
of neuroinflammatory factor induced by stress, the probable
mechanism relates to the idea that the AKT/GSK3β/CRMP-2
pathway changes the normal structure and function of the central
nervous cell scaffold microtubule system, and subsequently
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leads to depression (92). Moreover, Tao et al. proposed
that liquiritigenin may reverse depression-like behavior in
UCMS-induced animal models by modulating PI3K/Akt/mTOR
mediated BDNF/TrkB signaling pathway (93). Several studies
have shown that fluoxetine, creatine, atorvastatin, valproic acid
as well as IGF-1 can all counteract depression-like behaviors via
the PI3K/Akt Pathway (94–99).

MAPK/P38 Pathway
Earlier studies have shown that p38 MAPK, which can be
stimulated by cytokine, can influence the neuroendocrine
function, monoamine neurotransmission as well as other
behaviorally-associated pathophysiological pathways (100).
Felger et al. indicated that during chronic IFN-α treatment,
depressive symptoms are highly related to the sensitivity
of the p38 MAPK pathway to immune-stimuli (101).
The MAO-A enzyme and p38 MAPK cascade are both
involved in OS. These data and in vitro experiments
demonstrate that the function of MAO-A is strongly
inhibited by the p38 MAPK cascade. Thus, these published
data indicate that the endogenous approach could be
adopted to deal with OS and disorders like depression
(102).

Recent research on neuroscience indicates that
neurodegenerative pathways and OS pathways are both
involved in depression. Bruchas et al. (103) found that the
serotonin transporter can translocate to the plasma cell
membrane, and that neurotransmitter-uptake is enhanced
at the serotonergic nerve terminals when stress induces the
activation of p38α MAPK. This finding strongly suggests
that a cascade of molecular and cellular events is initiated by
stress, and consequently the activation of p38α MAPK leads
to a change in the hyposerotonergic state, which underlies
drug-seeking and depression-like behaviors (103). MAPK and
its phosphatase MKP are found to be implicated in depression
and drug-addiction. Findings by Jia et al. supported the idea that
there is a direct link between the phosphorylation of MAPK and
depression induced by prolonged morphine withdrawal (104). In
addition, Park et al. demonstrated that p38 MAPK inhibits the
hypoxia response pathway (105). Moreover, Martín-Hernández
et al. (106) showed that CMS increased the expression of
activated MAPK p38 in addition to decreasing antioxidant
transcriptional factor Nrf2. These results suggested that the
translocated bacteria played a role through p38 MAPK, which
aggravated oxidative injury and neuro-inflammation. This is
possibly strongly linked to the pathophysiology of depression
(106). These studies indicated an indirect relationship with
depression, which requires further research.

Regarding drug therapy, the acute MAPK pathway was
blocked, which resulted in depression-like symptoms and
prevented the positive effects of ketamine. This fact suggests that
the antidepressant response of ketamine is probably regulated
by the MAPK pathway in some brain regions (107). Yang
et al. reported that fluoxetine (FLX) is able to reduce NF-
κB and p38 MAPK phosphorylation levels and may improve
the anti-inflammatory consequence (108). Moreover, Moretti
et al. extended the data relating to the anti-depressive-like

effect of ascorbic acid, which distinctly decreased hippocampal
phosphorylation of p38MAPK (109).

Autophagy
Increased autophagy has now been reported in the central
nervous system after several different kinds of diseases, such
as ICH. Autophagy is an essential intracellular pathway, which
includes degradation and recycling of aged proteins and entire
organelles (110, 111). The mTOR pathway, NF-κB pathway
and PI3K pathway are major pathways involved in regulating
autophagy.

The mTOR Signaling Cascade
Mammalian target of rapamycin (mTOR) is a serine/threonine
protein kinase that belongs to the phosphoinositide kinase-
related kinase family (PIKK family) and is a downstream effector
of the PI3K/PKB (protein kinase B) signaling pathway. When its
signaling pathway is activated, it has an important presence in
regulating protein development, synthesis, proliferation and cell
survival. Wang et al. conducted an experiment on mice to try
to understand the negative effects of mTOR signaling (and its
downstream products) on brain damage that results from ICH.
It was found that if mTOR is blocked with rapamycin, PICs,
scilicet, TNF-α, IL-6, IL-1β, and Caspase-3 all were upregulated
indicating that apoptotic cell death could be reduced remarkably
(112).

Several studies have found that ICH upregulated the
expression level of miRNA-144 but decreased mTOR expression,
which lead to increased inflammation and microglial autophagy.
Their findings suggested that miRNA-144 was a critical regulator
of autophagy by modulating mTOR (113). Later, another study
published by Wang et al. indicated that miRNA-144 contributed
to activated autophagy of microglia through the mTOR signaling
pathway, which might be mediated by hemoglobin (114). More
recently, Shi et al. suggested that IL-17A is a mediator who
promoted the activation of inflammation and autophagy in
microglial cells (115).

Structural and neurochemical changes in the limbic system
are related to depression. The limbic structures include the
hippocampus, which plays an important part in controlling
emotion andmood. How the mTOR signaling pathway is relating
to depression is discussed in many studies. Severe damages in
mTOR signaling are revealed in postmortem studies, especially
the mTOR signaling that exists in the prefrontal cortex of
MDD patients (116). Feng et al. proposed that the depressive
disorder is related to PLD-mTOR signaling (117). Lately, studies
suggest microRNAs (miRNAs or miRs) such as miR-124-3p
are implicated in certain signaling pathways, which might be
associated to the pathophysiological mechanism of MDD. It was
also suggested that DNA damage-inducible transcript 4 (DDIT4)
is an inhibitor of the mammalian target of rapamycin (mTOR)
signaling pathway and positively correlates with the expression
of miR-124-3p (118).

Recent investigations found that mTOR signaling is related
to several types of antidepressant drugs. Yu et al. indicated
that the antidepressant effects of ketamine, in patients who
have depression, could be reversed by the mTOR signaling
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inhibitor rapamycin (119). Cui et al. confirmed that by improving
plasticity and neurogenesis, the mammalian target of rapamycin
(mTOR) signaling pathway has an important role involved
in mediating the antidepressant effect of ketamine (120).
Nonetheless, drugs such as imipramine are not the same as
ketamine, which could inhibit the PI3K/Akt/mTOR signaling
to exert its antidepressant effect (116). Moreover, Liu et al.
indicated that Resveratrol expresses antidepressant effects in
CUMS-induced depressive-like animal models, which was partly
mediated by its up-regulation of phosphor-Akt and mTOR
expressions in the PFC and hippocampus playing a part in its
antioxidant effects (121). Zhang et al. presented a new insight
into the role of the dopaminergic system located in mesocortical
region, which revealed antidepressant actions during the l-
SPD mediated antidepressant process via the D1R/PKA/mTOR
signaling cascade in the mPFC (122).

NF-κB Pathway
Numerous studies have demonstrated that in several disorders,
autophagy is associated with inflammation. Moreover, as a
critical controller in inflammation, NF-κB is either mediated
by autophagy-related proteins or regulates autophagy directly.
Shen et al. indicated that autophagy is activated after ICH, which
may exacerbate ICH-induced cerebral damage in animal models.
Furthermore, the regulation of the NF-κB pathway maybe a
key reason that results in neuro-damage via its promotion of
apoptosis and inflammation (123).

As we have described in the former part of this manuscript,
the NF-κB pathway is an important pathway that links ICH
and ICH-induced depression. Drugs such as Crocin, Icariin,
Proanthocyanidin, Senegenin, and others all have antidepressant
effects via the NF-κB pathway in ICH-induced depression
patients.

Apoptosis
Study findings suggest that both necrosis and apoptosis following
ICH causes cell death. Some experiments revealed that apoptotic
cell death existed in brain tissues from both animal models and
ICH patients (124, 125). DNA fragmentation and apoptotic cell
death are a consequence of activated caspases that are a part of a
series of overwhelmingly complicated apoptotic mechanisms. It
has been reported that cell death in ICH-induced animal models
results from apoptosis mediated by caspases (126, 127). Intrinsic
and extrinsic pathways are mainly responsible for apoptosis.

Apoptotic Pathways
1. Death receptor-mediated apoptosis pathway—cell death

signals are likely initiated by different stimuli, such as tumors,
trauma or others. Subsequently, upstream signals bind to
Fas-associated proteins that have associated death domains
(FADD) and receptors. Then, caspase- 8 is activated via
the p53, BCL-2, FAS, NF-κB, and others, which would
ultimately lead to the activation of the executioner caspase.
The effector caspases then activate endonucleases, resulting
in DNA fragmentation, which subsequently orchestrates the
dismantling of the whole cell structure.

2. Mitochondrial apoptosis pathway—often regulated by B-
cell lymphoma-2 (BCL-2) family protein. As a trigger,
intrinsic signals could inhibit the pro-apoptotic BCL-2 family
protein and deactivate the anti-apoptotic function of BCL-
2. Consequently, the mitochondria will release cytochrome
c abundantly into the cytosol, which is a significant
component of the complex, apoptotic protease activating
factor-1 (APAF-1) and pro-caspase-9. Downstream effector
molecules activated by the Cyt-c-Apaf- 1- Procaspase- 9
complex result in apoptosis.

3. Caspase-independent pathways—Apoptosis-inducing factor
(AIF), as an intermembrane protein of mitochondrial, is
regulated by p53 in the absent of APAF-I, and activated by the
caspase-independent pathways.

Finally, together, procaspase-8,−9, cytochrome c and other
signal proteins constitute the “apoptosome,” which activates
the initiator caspases such as caspase 8 and−9. After that,
either the extrinsic or intrinsic apoptosis pathway delivers the
cell death signal to the final executioner caspase (caspase-
3,−6,−7) and subsequently initiates enzymes that degrade
DNA, RNA and ribose. After the process of activating
procaspase to caspase, programmed cell death is initiated
(128).

Depression is a condition related to abnormal brain energy
metabolism that is also marked with increased apoptosis
in specific cerebral areas. Bay 60-7550 (Phosphodiesterase
2 inhibitors) has been shown to be a mediator in the
apoptotic process, possibly via the SOD-cGMP/PKG-anti-
apoptosis signaling pathway in neuronal cells, and by inhibiting
PDE2; it may be a significant novel antidepressant therapy
(129). Moreover, water extracted from Panax ginseng (WEG)
has been used as a treatment of several CNS disorders. Ding
et al. suggested previously that WEG performed antidepressant-
like effects in animal models of depression that was treated for
both chronic and acute stress. Its neuroprotective effect relies
on corticosterone-induced apoptosis via the downregulation of
cytochrome C, ICAD, caspase-3, caspase-9 and so on (130).
Moreover, both risperidone, at medium dose, and paroxetine
were reported to improve modified stress re-stress (SRS)-induced
depressive- like behaviors with associated down-regulated levels
of cytochrome-C and caspase-9 in several regions of the brain
(131). In addition, a novel antidepressant drug, Agomelatine
(AG), might play an important part in the pathophysiology of
depression with the amelioration of the apoptotic cells and the
increase of neurogenesis in the hippocampus (132). Moreover,
Apocynum venetum leaf extract (AVLE) was also reported to

exert antidepressant-like activities in CUMS-induced rat models,

which possibly suppressed neuronal apoptosis by regulating

the Bcl-2/Bax signaling pathways, and improved the BDNF
expressions in the hippocampus (133). Overload of Ca2+ entry

as well as excessive OS in neurons are the two main causes
of depression. Recently, Demirdaş et al. reported that with

the treatment of Duloxetine (DULOX), TRPM2 and TRPV1
channels (associated with Ca2+ entry-induced neuronal death),
were regulated to reduce apoptosis in depression-like rats models

(134).
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TABLE 1 | The relationship among pathophysiology of ICH-induced depression, underlying signal pathways and its potential antidepressant drugs.

Pathophysiology of

ICH-induced depression

Signal pathways Antidepressant drugs

Inflammation Toll-like receptors (18, 19) Tianeptine (29), Ketamine (30), Fluoxetine (27), TDZD-8 (27)

NF-kB mediated signal pathway (36, 37) Crocin (45), Proanthocyanidin (46), Senegenin (47), Icariin (48),

Geraniol (49), Chrysophanol (50)

PPAR-γ-dependent pathway (54, 55) Pioglitazone (60), Astragaloside IV (61), Rosiglitazone (64),

Troglitazone (67), Atorvastatin (68), Folic acid (69)

other signaling pathways (71) TRPC3/6 inhibitor (73)

Oxidative stress Nrf2 pathway (74–77) Fluoxetine (81), 7,8-dihydroxyflavone (83), Sulforaphane (83),

TBE-31 (84), MCE-1 (84), Agmatine (85), Cilostazol (86)

the PI3K/Akt pathway (88–90) Erythropoietin (91), Liquiritigenin (93), Fluoxetine (94), Creatine

(95, 96), Atorvastatin (97), valproic acid (98), IGF-1 (99)

the MAPK/P38 pathway (100) Ketamine (107), Fluoxetine (108), Ascorbic acid (109)

Autophagy mTOR signaling cascade (112) Ketamine (119, 120), Imipramine (116), Resveratrol (121)

NF-kB mediated signal pathway (123) Crocin (45), Proanthocyanidin (46), Senegenin (47), Icariin (48),

Geraniol (49), Chrysophanol (50)

the PI3K/Akt pathway (116) Erythropoietin (91), Liquiritigenin (93), Fluoxetine (94), Creatine

(95, 96), Atorvastatin (97), valproic acid (98), IGF-1 (99)

Apoptosis Death receptor-mediated apoptosis pathway

Mitochondrial apoptosis pathway

Caspase-independent pathways

Bay 60-7550 (129), Water extracted from Panax ginseng (130),

Risperidone (131), Paroxetine (131), Agomelatine (132),

Apocynum venetum leaf extract (133), Duloxetine (134)

other signaling pathways (135, 137, 139) Mefloquine (136), lncRNA TCONS_00019174 (139)

Other Pathways
Pannexins serves a significant role in the regulation of
cellular signal transduction of glial cells and extracellular
neuronal regenerative currents. Nevertheless, there have been
no reported findings regarding the effects of pannexins in
various cerebrovascular diseases. Zhou et al. first suggested
that the upregulation of Pannexin-1 (Panx1) expression may be
correlated with degeneration and apoptotic cell death of neurons
in the rat cerebrum after ICH. Furthermore, he speculated
that this may lead to subsequent cognitive dysfunction (135).
Recently, Ni et al. used a broad-spectrum Panx1 inhibitor
called Mefloquine (MFQ), demonstrating that the Panx1 channel
played an important role in chronic stress and MFQ-induced
depression and anxiety behaviors (136).

Recently, NIX was elucidated as a novel p75 neurotrophin
receptor (p75NTR) binding protein as well as a member of the
pro-apoptotic BH3-only group of proteins. When exposed to
glutamate, the connection between NIX and p75NTR, there was
marked increase in the apoptosis of neurons and activation
of the JNK-p53-Bax pathway (137). Fujii et al. previously
offered verification for the connection between the Ser205Leu
polymorphism of the p75(NTR) gene as well as MDD, which
indicated that the Leu205 allele provides a protective influence
to fight the development of MDD (138).

In addition, Zhou et al. suggested that the Wnt/β-catenin
signaling pathway is related to the level of proliferating cell
nuclear antigen (PCNA) that is present in the cerebrum
of the ICH rat, in addition to the rate of cell apoptosis,
it could even regulate the balance of cell proliferation and

apoptosis (139). Furthermore, Ni et al. (136) found that lncRNA
TCONS_00019174 exerts an antidepressant effect in rats by
activating the Wnt/β-catenin pathway (139).

These new signaling pathways are proposed as potential
clinical therapeutic targets for depressive disorders. This may
require further research in order to explore further the
relationships between ICH and depression.

CONCLUSIONS

The pathophysiology of PSD is extremely complex; A multitude
of ischemia-induced neurobiological mal-function as well as
psychosocial distress are involved. The symptom for alterations
of monoaminergic neurotransmitter systems has been well
presented due to the injury of frontal-basal ganglia brainstem
pathway. It has also been proved that there is a strong
relationship between neuroinflammation and acute ischemic
stroke: stress-induced activation of the hypothalamic-pituitary-
adrenal (HPA) axis and the deficit of adaptive response
(140).

In this review, we addressed the mechanisms and therapeutic
targets of post-ICH depression. We divided the mechanisms into
inflammation, oxidative stress, autophagy, and apoptosis, and
clarified them through several signaling pathways. Inflammation
is mainly related to TLRs, NF-κB mediated signal pathway, the
PPAR-γ-dependent pathway and other signaling pathways. OS
is related to Nrf2, the PI3K/Akt pathway and the MAPK/P38
pathway. Autophagy is associated with the mTOR signaling
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cascade and NF-kB mediated signal pathway. Meanwhile,
apoptosis is related to the death receptor-mediated apoptosis
pathway,mitochondrial apoptosis pathway, caspase-independent
pathways as well as other pathways. Based on the evidence listed
above, we found that neuroinflammation, OS, autophagy and
apoptosis interacted with each other. OS-related brain injury is
part of the pathogenic mechanism of neutrophil infiltration that
follows ICH (16). Inducible NOS (iNOS) is synthesized through
the induction of proinflammatory cytokines, and the molecular
mechanisms for NOS activation after ICH are primarily NF-
kB dependent (141, 142). If NF-κB and antioxidative defense
components can be inhibited, then OS and inflammation can
be reduced via PPARγ; in the meantime, the cerebral damage
caused by ICH would be improved. Proinflammatory cytokines,
namely TNF-α and IL-1, could induce iNOS expression in
microglial cells via the KC/p38MAFP/NF-kB pathway (143). Free
radicals can also induce apoptosis, and antioxidant therapy could
alleviate neuronal apoptosis after ICH (144, 145). The NF-kB
pathway has also been detected to mediate Hb-induced apoptosis
and autophagy (146). mTOR, as a downstream effector of the
PI3K/PKB signaling pathway, also plays a significant part in CNS
apoptosis and autophagy. Interactions of TLRs with pathogen-
associated molecular patterns (PAMP) and damage-associated
molecular patterns (DAMP) initiate signaling through myeloid
differentiation primary response-88 (MyD88) and produce
cytokines through the activation of the transcription factor
nuclear factor kappa beta (NF-kB) (147). Furthermore, PPARγ

could stimulate hematoma regression mediated by phagocytosis,
and facilitate the cleanup of the hematomas, which may reduce
the generation of inflammation and toxicity. Overall, from
the assessed antidepressant drugs for ICH-induced depression,
we found that several drugs exerted their antidepressant-like

effects via different signaling pathways and may have different
pathophysiological origins (e.g., ketamine could treat depression
through mTOR signaling cascade, the MAPK/P38 pathway
or TLR-related signal pathways). This could provide us with
evidence that some underlying correlations may exist between
different signaling pathways. However, this still requires more
research.

In summary, our review presents the signaling pathways
relevant to post-ICH depression. Additionally, it may provide
several potential therapeutic targets for the treatment of patients
who show depressive behavior after ICH (Table 1).

Depression has a complex relevance with enhanced
mortality and morbidity in ICH patients. In spite of its great
clinical evidence, the underlying etiological mechanisms
are still worthy to be explored. To better understand
its pathophysiology and to pursue a more promising
outcome of post-ICH depression, therapeutic interventions
have become progressively more important for future
studies.
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