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This paper reviews significant contributions to the evidence for the use of quantitative

electroencephalography features as biomarkers of depression treatment and examines

the potential of such technology to guide pharmacotherapy. Frequency band

abnormalities such as alpha and theta band abnormalities have shown promise as have

combinatorial measures such as cordance (a measure combining alpha and theta power)

and the Antidepressant Treatment Response Index in predicting medication treatment

response. Nevertheless, studies have been hampered by methodological problems and

inconsistencies, and these approaches have ultimately failed to elicit any significant

interest in actual clinical practice. More recent machine learning approaches such as the

Psychiatric Encephalography Evaluation Registry (PEER) technology and other efforts

analyze large datasets to develop variables that may best predict response rather than

test a priori hypotheses. PEER is a technology that may go beyond predicting response

to a particular antidepressant and help to guide pharmacotherapy.

Keywords: electroencephalography, quantitative EEG, biomarkers, depression, machine learning, PEER

INTRODUCTION

Psychiatry largely remains unique in the field of medicine in the lack of physiologically based
diagnostic tools to diagnose a specific disorder. There are no objective physiology-based tests in
psychiatry equivalent to those commonly used in other areas of medicine such as x-ray, ultra sound,
or blood tests. There is also no physiological test to guide treatment, comparable, for example, to
assaying malignant breast tissue for the presence of estrogen receptors to support treatment with
tamoxifen.

This lack of physiological tools to diagnose and guide treatment is of particular concern in the
treatment ofMajor Depressive Disorder (MDD)—a leading cause of disability worldwide. The 2016
National Survey on Drug Use and Health found that 16.2 million adults in the United States had
experienced at least one major depressive episode. This number represented 6.7% of all U.S. adults
(1). Worldwide the WHO estimated that 4.4% of the population suffered with depression (2). The
financial costs of depression are tremendous with the global costs per year of depression and anxiety
estimated to be $1.15 trillion (3).

The financial and personal burdens of depression could be reduced by more effective treatment.
The Sequenced Treatment Alternatives to Relieve Depression (STAR∗D) study, a very large, NIMH-
funded study of depression treatment algorithms, reported remission rates of 36.8% in Step 1 which
dropped to 13% by Step 4 (4). However, a variety of factors, including lack of consideration of
dropout rates, may have actually inflated these relatively poor STAR∗D outcomes (5).
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Identifying effective biomarkers to support more effective
treatment of depression is extremely important. There has long
been interest in the potential for electroencephalography to
develop clinically useful biomarkers given the relatively low cost
and widespread availability of the technology. Indeed, there have
been efforts to identify EEG biomarkers for depression for over
four decades.

There are already excellent, comprehensive reviews of this
literature (6–8). While some of the reviewed studies examine
Event-Related Potentials, the majority of the studies utilized
resting state EEGs, evaluating both pre and post-treatment
changes and the differences between antidepressant treatment
responders and non-responders. These studies identified a
number of interesting findings including alpha band changes,
theta QEEG cordance, and EEG source localization. More
recently, machine learning approaches to identify the most
relevant potential biomarkers have shown promise. This paper
will first present a few of the most significant studies related to
EEG biomarkers in depression and contrast this with a potentially
more useful approach utilizing machine learning.

ALPHA BAND ACTIVITY

Alpha waves have a frequency of ∼8–12Hz, varying slightly
based on different definitions. They are generally thought to
reflect a relaxed state and are more prominent with closed
eyes. A number of studies have generally found elevated alpha
power in depressed patients though others found decreased
frontal alpha power in comparison to controls and others
didn’t find any correlations at all (8–10). Some studies found
a correlation between alpha excess occipitally and on the right
side and antidepressant response (11) though a later study failed
to replicate these asymmetry findings (12). This latter study
had examined alpha differences between responders and non-
responders to treatment with SSRIs and dual-action SSRI/SNRI
antidepressants and found that a classifier based upon themedian
alpha for healthy controls demonstrated good positive predictive
value (93.3) and specificity (92.3). However, sensitivity was low
(50%) so that half of responders had alpha below the control
median and were not expected to be responders.

The studies looking at alpha band activity were hampered by
being small, non-randomized treatment of different medications
that were not designed to examine medication from non-
medication treatment effects (7). However, a more recent
study did at least address the small size and non-randomized
medication treatment of prior studies in the large, 1,008
subject International Study to Predict Optimized Treatment of
Depression (iSPOT-D) in which study subjects were randomized
to treatment with either escitalopram, sertraline, or venlafaxine
XR. One component of the study was analysis of the predictive
effects of alpha band power (13). Neither occipital nor frontal
alpha was associated with treatment outcomes at 8 weeks nor did
patients and healthy controls differ in occipital or frontal alpha
or alpha asymmetry. The study did find a sex difference with
relatively greater right frontal alpha in women associated with
a good response to the selective serotonin reuptake inhibitors
of escitalopram and sertraline, while finding no such effect for

the dual action selective serotonin and norepinephrine reuptake
inhibitor venlafaxine XR.

THETA BAND ACTIVITY

Theta waves have a frequency from 4 to 8Hz and have also been
examined in relation to depression and medication response.
Theta activity is related to the activity of the anterior cingulate
cortex (ACC). Its affective division in the rostral ACC (rACC)
has been found to play roles in assigning emotional valence
to internal and external stimuli and emotional expression (14).
In his meta-analysis, Pizzagalli found that 19 of 23 studies
reviewed suggested that higher pretreatment rACC activity
was associated with better treatment response. This link was
demonstrated in a variety of different medication and biological
treatments suggesting potential in differentiating responders
from non-responders in general and not in guiding which
particular treatment to use. Pizzagalli and his collaborators
examined the role of theta activity in the rACC as part of the
Establishing Moderators and Biosignatures of Antidepressant
Response for Clinical Care (EMBARC) study in which 248
subjects with usable pretreatment EEG data were randomized
to treatment with sertraline or placebo over 8 weeks (15).
High rACC activity was found to be a significant predictor of
lower Hamilton Rating Scale of Depression (HAM-D) scores
at 8 weeks. Baseline rACC activity was responsible for 8.5% of
the unique variance in outcome outside of that deriving from
clinical and demographic covariates. There was no difference
between treatment groups, so that rACC was found to be a
general predictor of treatment response rather than a means to
guide choice of treatment. This contrasts with the analysis of
theta activity from the above-mentioned, large i-SPOTD study
which found that both pretreatment high frontal and rACC
theta activity were associated with treatment non-response (16).
The authors hypothesized that their contrasting results to other
studies demonstrating greater response with high rACC theta
might be related to different medications studied, differences
in degree of treatment resistance, and differences in electrode
montages.

The role of theta activity has also been evaluated using
cordance, which is a measure reflecting cortical perfusion using a
formula that combines absolute and relative power (7). Cordance
was investigated in a randomized, double-blinded, placebo
controlled study of response to fluoxetine and venlafaxine (17).
Decreased frontal theta cordance as measured 1 week after
the start of medication treatment correlated with response to
these antidepressants at 8 weeks a pattern not seen in placebo
responders. Decrease in cordance to predict response and lack of
decrease to predict non-response was found to have an accuracy
of 72% with sensitivity 69%, specificity 75%, positive predictive
value 75%, and negative predictive value 69%.

COMBINED QEEG PARAMETERS: ATR

The Antidepressant Treatment Response Index (ATR) is a
measure that combines prefrontal theta and alpha power
at baseline and Week 1 (7). Specifically it is a non-linear
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combination of relative alpha and theta power, alpha power in
high and low alpha bands, and change in alpha power from
baseline to Week 1. ATR is then presented as a probability score
from 0 (low probability) to 100 (high probability). In an initial
study of ATR, 82 subjects with MDD were treated with either
an SSRI or venlafaxine (18). 54.9% of subjects responded based
on a ≥50% reduction in HAM-D scores. Retrospective analysis
indicated that ATR predicted response with 70% accuracy [82%
sensitivity, 54% specificity (p= 0.001)].

A second study examined ATR as part of the Biomarkers
for Rapid Identification of Treatment Effectiveness in Major
Depression (BRITE-MD) study (19). Subjects were treated
prospectively with escitalopram 10mg daily. Response was
defined as a ≥50% reduction in HAM-D scores and remission
was defined as a HAM-D score of ≤7 after 7 weeks of treatment.
The 73 evaluable subjects had an overall response rate of
52.1% and a remission rate of 38.4%. ROC analysis was used
to determine a threshold value to maximize classification of
responders vs. non-responders. Using this, the ATR predicted
response with 74% accuracy, 58% sensitivity, 91% specificity,
88% positive predictive accuracy, and 67% negative predictive
accuracy and predicted remission with 74% accuracy, 61%
sensitivity, 82% specificity, 68% positive predictive accuracy, and
77% negative predictive accuracy. Of a variety of markers of
response investigated, only ATR (p = 0.001) and the change in
HAM-D at Week 1 (p = 0.034) significantly predicted response.
The latter measure, it should be noted, is certainly easier to
obtain, though at the same time only ATR predicted remission
(p= 0.002).

A further examination of ATR in a larger subset of the BRITE-
MD study was based upon a randomization of subjects at Week
1 to either continued treatment with escitalopram, switch to
bupropion XL 300mg daily, or the combination of escitalopram
and bupropion (20). Two hundred and twenty subjects were
evaluated at Week 7. Overall the ATR showed 74% accuracy in
predicting response and remission (p= 0.001 for both). Response
rates of those with high ATR values compared to low values were
68 v. 28% (p = 0.001). Interestingly, those with low ATR values
who were switched to bupropion were 1.9 times more likely to
respond than those who remained on escitalopram (53 v. 28%,
p= 0.034). This is important in demonstrating some potential to
differentiate between antidepressant treatments albeit not until
1 week after the initiation of SSRI treatment. The ATR index
did not prove useful in predicting response to combination
treatment.

MACHINE LEARNING APPROACHES

The approaches taken above are all based upon a priori
hypotheses of specific frequency band variables or combinations
thereof. A different approach is to use intensive computational
analyses of large datasets to derive predictive biomarkers, a
method that has become increasingly common in biomedical
research. One pilot study examined responders to SSRIs (noted
to generally be sertraline hydrochloride) in 22 subjects with
MDD (21). All but one had comorbid diagnoses, and all

had failed at least two previous adequate trials of various
antidepressants. Pre-treatment EEGs were collected after 10 days
of medication withdrawal. Responders were defined as those
having ≥30% reduction in HAM-D scores rather than the more
common 50% bar. A machine learning prediction method was
used to identify candidate features with a Fisher discriminant
ratio being used to identify the most relevant features. The
most relevant features were primarily found to be a variety
of frontotemporal coherence measures in frequencies lying in
the low beta frequency band (12–20Hz). A multi-dimensional
model demonstrated an average prediction rate of 87.9% (80.93%
specificity and 94.86% sensitivity). There was considerable sex
imbalance between responders and non-responders in this study
with 6 of 11 females but only 1 of 11 males found to be
responders. The model has not yet been tested on a larger
dataset and provides no aid in predicting response to non-SSRI
antidepressants. The potential for greater applicability would
require examining larger datasets and assessing the predictive
model for other antidepressant types.

Bailey et al. (22) also used machine learning techniques in
attempting to identify responders from non-responders to rTMS
treatment. Fifty subjects with treatment resistant MDD and 21
healthy controls had baseline QEEGs. Forty two MDD subjects
also had EEG testing at Week 1 and at the end of 5–8 weeks
of rTMS treatment. Responders showed lower Montgomery-
Asberg Depression Rating Scale (MADRS) scores at Week 1
and endpoint (p < 0.01 for both) and lower Beck Depression
Inventory (BDI) scores at Week 1 (p = 0.03) and endpoint
(p < 0.01). In an a priori analysis, theta connectivity averaged
across baseline and Week 1 was higher in responders than non-
responders (p = 0.0216). Subsequently, 54 EEG features were
chosen to design a predictive model using a linear support
vector machine (SVM). The algorithm was evaluated using 5,000
repeats of five-fold cross validation. Using the resulting model,
responders could be distinguished from non-responders with
mean sensitivity of 0.84 (p = 0.001) and mean specificity of
0.89 (p = 0.002). However, the relative success of the easily
collected MADRS and BDI makes one question the clinical
utility of the more difficult to obtain EEG data. In addition,
the study was limited by the low response rate of 12 of
50 subjects.

Mumtaz et al. (23) also developed a predictive model of
response using a machine learning approach. Thirty four patients
diagnosed with MDD were washed out of medications for 2
weeks and then had baseline and weekly EEGs during 6 weeks
of treatment with an SSRI. Seventeen subjects were found to
be responders based upon a >50% improvement in the BDI.
The authors used a wavelet transform analysis to develop an
EEG data matrix. This matrix dimensionality was reduced using
rank based feature selection. Resulting training and testing led
to the development of a logistic regression model which was
then validated with 100 iterations of 10-fold cross validation.
Frontal and temporal delta and theta frequency variables were
found to be the most accurate predictors of response. The
model’s sensitivity was 95% (±4.3) with a specificity of 80%
(±8.8). As in the other machine learning studies the potential
for greater applicability would require examining larger datasets
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and determining utility in predicting response to other classes of
antidepressants.

META-ANALYSIS OF EEG PREDICTION OF
TREATMENT RESPONSE

Widge et al. (24) sought to quantify the reliability of QEEG in
predicting response to depression treatment in a recent meta-
analysis. The authors analyzed articles of interest published
between January 2000 and November 2017. Seventy six studies
comprising 81 EEG features were identified that merited
inclusion for descriptive analysis, while 53 studies comprising
57 EEG features reported sufficient information for inclusion
in the meta-analysis. The studies were heterogeneous in degree
of treatment resistance, inclusion/exclusion criteria, statistical
analysis, EEG methodology, EEG feature studied, and treatment.
57/81 studies looked at medication response while 14/81
investigated rTMS treatment response. Studies tended be small.
Quality measures were generally not met with 24 /36 studies
testing multiple features failing to make statistical corrections
for multiple comparisons and with only 6 of 71 biomarkers
reported to have statistical predictive validity subjected to cross-
validation. The meta-analysis found an overall sensitivity of 0.72
(95% CI = 0.67–0.76), specificity of 0.68 (95% CI = 0.63–
0.73), and log (diagnostic odds ratio) 1.89 (95% CI = 1.56–
2.21) indicating that predictive power was greater than chance,
though without any difference between biomarkers or treatment
type. Funnel analysis suggested a strong publication bias, while
further analysis suggested that the predictive power was fueled
by small studies with strong positive results. The authors stated
that their “results do not imply QEEG findings were not real”
but that greater rigor and replication of prior positive studies
were necessary for QEEG to be a reliable tool ready for clinical
practice. Of note, the meta-analysis did not include results from
the EMBARC study, presumably as that study publication fell
outside of the stated time parameters, though there was also a
mention that insufficient information was provided for inclusion
in a meta-analysis.

PEER

The Psychiatric Encephalography Evaluation Registry (PEER)
previously known as referenced-EEG (rEEG) is another machine
learning approach which is applied to a large dataset. Currently
the PEER database comprises ∼11,000 baseline EEGs and
39,000 medication treatment outcome points (25). There are
a number of characteristics of PEER that set it apart from
other approaches that have been reviewed here. One is
that PEER is not a diagnostic tool to predict response to
treatment but a tool to guide medication selection. Medication
guidance is not restricted strictly to antidepressant treatment; the
technology provides indications for a broad range of psychiatric
medications. Of note, PEER was specifically not included in
the meta-analysis by Widge and his colleagues, as it is not
a diagnostic test predicting treatment response but a tool to
inform pharmacotherapy (24). PEER has been applied to a

range of psychiatric diagnoses in addition to depression. This
is based upon a primary assumption that patients with similar
EEG biomarkers should respond to the same medications in
a consistent manner regardless of diagnosis. This assumption
was derived from the observation that psychiatric diagnoses
are defined by symptoms rather than objective physiological
measures. This contrasts with non-psychiatric medicine, where
for example the presence of chest pain and other associated
symptoms may point to the presence of a myocardial infarction,
but its definition relies on the physiological definition of cardiac
cell damage or death, and the diagnosis is demonstrated by
physiological tests such as an electrocardiogram or cardiac
enzyme assay. Thus, psychiatric patients within a diagnostic
category may demonstrate phenomenological similarities but
be physiologically heterogeneous and not responsive to the
same medications. At the same time patients receiving different
diagnoses may have important physiological similarities that
would potentially respond to similar medications. A further
unusual aspect of PEER is that a patient may simultaneously have
different biomarkers that suggest different types of medications
resulting in treatment with medication combinations. This
seems consistent with general clinical practice in which multiple
medications are often prescribed. The use of medication
combinations complicates evaluating PEER in comparison to
evaluating how well a single electrophysiological measure
predicts response to a specific type of medication.

PEER Interactive, the term describing the report generator,
provides a statistical analysis comparing electrophysiological
abnormalities (identified by comparison to a normal database
of subjects screened for psychiatric and neurological disorders)
of a patient to abnormalities found in known responders to a
medication in the PEER outcome database (25). PEER Interactive
uses two response/non-response classifiers so a scatter plot can be
utilized to best represent if a certain subject will be a responder
or non-responder to specific medications in the PEER Interactive
database (Figure 1). The first classifier (C1) is based upon “net
hits” and the second classifier (C2) is based upon a logistical
regression.

Responsiveness to classifiers for a specific medication can be
presented graphically. The graph illustrates this for classifier I
(C1) and classifier II (C2) for the population of either responders
or non-responders to the medication. Each point represents:
(score on C2, score on C1, response (blue), non-response (red).

Peer interactive uses machine learning techniques to develop
combinatorial algorithms with the best predictive power from
the full range of available QEEG variables. The individual
medication models are tested through multiple cross validations
which test the performance of the model against a set of
cases not used to develop the model itself. The true positive
(complement of type I error) and true negative (complement of
type II error) are reported. A validation sample is developed by
querying the outcomes database for medication responses not
used in constructing the model. The validation sample is further
subdivided into a tuning sample and the final validation sample.
The tuning sample helps to refine the model by running the
scoring model and comparing the score distribution to known
responses. The final validation sample is used to further validate
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FIGURE 1 | PEER medication response scatter plot.

the model by running the model without any adjustment of
parameters or thresholds. The model is ready for use if the results
of the final validation meet the specifications of the previous
clinical correlations. The specific machine learning algorithms
are proprietary, though drug/class models are reported. In
addition, the model is periodically refined as the PEER outcome
database is expanded and additional medications are added to
this database.

There have been four randomized, controlled trials of PEER
technology or its earlier iteration of rEEG. Suffin and colleagues
conducted a pilot study on 13 subjects with treatment-resistant
major depression who were randomized to a usual care, control
group based on the clinical decisions of treating psychiatrists in a
naturalistic setting or the experimental EEG-guided medication
group (26). Subjects and independent rating physicians were
blinded to treatment group. After 6 weeks the decline in HAM-D
scale and BDI scores in the experimental group were significantly
greater (p < 0.009). A larger percentage of subjects in the
experimental group had good to excellent outcomes compared
to the control group based on Clinical Global Impression-
Improvement scores (p= 0.02).

Debattista et al. (27) conducted a randomized, blinded,
controlled pilot study of treatment-resistant depression in
which subjects were treated based upon the Texas Medication
Algorithm Project (TMAP) or guided by referenced-EEG.
Eighteen subjects completed the pilot study. Outcomes were
compared regardless of assigned treatment group based on
whether TMAP and rEEG treatments were equivalent after 10
weeks. In comparing the 12 subjects with treatment consistent
with the rEEG report vs. the 6 subjects with TMAP guided
treatment inconsistent with the rEEG report there was a
significantly greater mean change in Quality of Life Enjoyment
and Satisfaction Questionnaire (Q-LES-Q) and Quick Inventory
of Depressive Symptomatology (QIDS) scores (p < 0.0094 and
p < 0.0066).

This pilot study helped refine the design of a larger,
multicenter, randomized, controlled, single-blinded study in

TABLE 1 | Least square means.

rEEG-guided Control p-value 90% CI

PER PROTOCOL

QIDS-SR16 −6.8 (SE 0.35) −4.5 (SE 0.38) <0.0002 1.52 to 2.99

Q-LES-Q-SF 18.0 (SE 1.06) 8.9 (SE 1.14) <0.0002 −11.21 to −6.81

MODIFIED ITT

QIDS-SR16 −5.7 (SE 0.30) −4.2 (SE 0.34) <0.0002 0.84 to 2.17

Q-LES-Q-SF 14.1 (SE 0.92) 8.0 (SE 1.05) <0.0002 −8.17 to −4.07

Adapted from DeBattista et al. (28).

Repeated measures, two tailed, mixed procedure with covariance structure including

stratification and study sites in the model.

TABLE 2 | P-values obtained by ANOVA.

Endpoint RF %change RNF %change Difference n p-value

QIDS-SR16 −30.0 −12 −18% 39 0.029

CHRT −24 −14 −10.0% 150 0.002

PTSD −9 −4 −5% 91 0.035

CGS −23 −13 −10.0% 145 0.017

CGI-physician −34 −22 −12% 150 0.002

CGI-patient −40.0 −22 −18% 150 0.0001

Adapted from Iosifescu et al. (29).

QIDS-SR, Quick Inventory of Depressive Symptomatology Self-Report; CHRT, Concise

Health Risk Tracking Scale; PTSD, Post-Traumatic Stress Disorder; CGS, Clinical Goal

Setting; CGI, Clinical Global Impressions.

relatively treatment-resistant subjects with major depression
(28). One hundred and fourteen subjects were randomized to
rEEG-guided treatment or to a control group treated based upon
a modified STAR∗D protocol. Eighty two subjects completed
the 12 week study. In a per protocol analysis, rEEG-guided
subjects had significantly greater mean change improvements
in QIDS-SR16 and Q-LES-Q scores (p < 0.0002 for both;
Table 1). In addition, there was increasing separation on these
measures between groups over the course of the study. The
rEEG-guided group also showed superiority in 9 of 12 secondary
endpoints.

Iosifescu et al. (29) reported on the use of PEER Interactive in
a study at two military hospitals (Walter Reed National Military
Medical Center and Fort Belvoir Community Hospital). This
was a prospective, randomized, controlled, single-blinded study
of subjects with a primary depressive disorder diagnosis who
were not required to be treatment-resistant. One hundred and
fifty subjects were enrolled and were randomized to a control
group treated per VA/DOD Clinical Guidelines or PEER-guided
treatment over 6 months. A post hoc analysis analyzed subjects
based upon the PEER report being followed (RF) or not being
followed (RNF). The percentage reduction in QIDS-SR16 was
144% greater for the RF vs. RNF groups (p = 0.029). Reduction
in suicidal ideation was 75% greater for the RF vs. the RNF group
on the Concise Health Risk Tracking Scale—Self Report (CHRT-
7SR) (p = 0.0017). There was also a 139% greater improvement
in the PTSD Checklist Military/Civilian (PCL/MC) in the RF vs.
RNF group (p= 0.0348; Table 2).
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DISCUSSION

The studies reviewed here suggest that there are aspects
of quantitative EEG that do correlate with response to
pharmacologic treatment of depression. While these findings
may be of interest in helping us to better investigate the biological
underpinnings of depression and provide direction into future
avenues of research, ultimately the important question is whether
these potential biomarkers have utility in guiding treatment
in actual clinical practice. In that the clinical marketplace has
primarily indicated that the answer is no. Despite decades of
interest in electrophysiological biomarkers, none of the single
variable measures reviewed above has generally become accepted
on a clinical basis. The combinatorial ATR measure has also
been of research interest but has not made its way to general
clinical use despite prior significant attempts to commercialize
the technology. This lack of success may have resulted from
inadequate marketing resources or other purely business factors
but may also point to the medical community not finding
sufficient value to change clinical practice. Testing to predict
whether an antidepressant would ultimately be effective 1 week
after already beginning treatment may not be a worthwhile
cost without greater predictive accuracy since the important
outcome—actual clinical response—will be available after a few
more weeks of continued treatment.

Machine learning approaches, however, may prove key in
bringing the use of EEG biomarkers from a state of research
interest to clinical relevance. PEER technology in particular is
being commercialized and is currently used in an expanding
number of clinical settings, suggesting clinical value to the

effectiveness so far demonstrated in the research projects
reviewed. The commercialization model is that of a reference
laboratory. Clinicians arrange QEEG testing following standard
procedures with any available, local EEG equipment. The
resulting data is electronically sent in a secure manner to be
analyzed by PEER Interactive. Clinicians are then sent a PEER
Report to inform their prescribing decisions in conjunction
with clinical factors. In addition to the value of machine
learning to derive the most useful predictive markers from
large datasets, PEER technology has further advantages in being
a pretreatment rather than mid-treatment test and in not
being a predictor of response to a single medication or single
medication class. Thus, it is a potential tool for broadly guiding
effective psychiatric pharmacotherapy of depression. Because of
the underlying assumptions, PEER technology is intended to be
useful in disorders other than depression, which is the focus
of this review. In addition to further research support for the
effectiveness of this technology that would benefit from larger
studies, further expansion of its current clinical use will be
telling.
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