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Background: Recently discovered relationships between the gastrointestinal

microbiome and the brain have implications for psychiatric disorders, including

major depressive disorder (MDD). Bacterial transplantation from MDD patients to

rodents produces depression-like behaviors. In humans, case-control studies have

examined the gut microbiome in healthy and affected individuals. We systematically

reviewed existing studies comparing gut microbial composition in MDD and healthy

volunteers.

Methods: A PubMed literature search combined the terms “depression,” “depressive

disorder,” “stool,” “fecal,” “gut,” and “microbiome” to identify human case-control studies

that investigated relationships between MDD and microbiota quantified from stool. We

evaluated the resulting studies, focusing on bacterial taxa that were different between

MDD and healthy controls.

Results: Six eligible studies were found in which 50 taxa exhibited differences

(p < 0.05) between patients with MDD and controls. Patient characteristics and

methodologies varied widely between studies. Five phyla—Bacteroidetes, Firmicutes,
Actinobacteria, Fusobacteria, and Protobacteria—were represented; however, divergent

results occurred across studies for all phyla. The largest number of differentiating taxa

were within phylum Firmicutes, in which nine families and 12 genera differentiated the

diagnostic groups. The majority of these families and genera were found to be statistically

different between the two groups in two identified studies. Family Lachnospiraceae
differentiated the diagnostic groups in four studies (with an even split in directionality).

Across all five phyla, nine genera were higher in MDD (Anaerostipes, Blautia,
Clostridium, Klebsiella, Lachnospiraceae incertae sedis, Parabacteroides, Parasutterella,
Phascolarctobacterium, and Streptococcus), six were lower (Bifidobacterium, Dialister,
Escherichia/Shigella, Faecalibacterium, and Ruminococcus), and six were divergent

(Alistipes, Bacteroides, Megamonas, Oscillibacter, Prevotella, and Roseburia). We

highlight mechanisms and products of bacterial metabolism as they may relate to the

etiology of depression.

Conclusions: No consensus has emerged from existing human studies of depression

and gut microbiome concerning which bacterial taxa are most relevant to depression.
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This may in part be due to differences in study design. Given that bacterial functions

are conserved across taxonomic groups, we propose that studying microbial functioning

may be more productive than a purely taxonomic approach to understanding the gut

microbiome in depression.

Keywords: depression, gut, microbiome, microbiota, gut-brain axis

INTRODUCTION

Major Depressive Disorder (MDD) is a debilitating psychiatric
illness affecting an estimated 300 million people worldwide
(1). MDD is the leading cause of disability globally (2) and is
associated with ∼800,000 suicide deaths annually (3). Despite
significant advances in our understanding of the etiology of
MDD (4), existing knowledge is incomplete, treatments are
inadequate, and new insights into MDD pathophysiology are
urgently needed. One novel area of investigation related to MDD
pathophysiology is the gut microbiome.

The microbiome is a collection of trillions of microorganisms,
including bacteria, that inhabit and interact with human hosts,
with effects ranging from beneficial to pathogenic (5), and also
more specifically refers to the collection of microbiota and
their genetic material (6). Groups of bacteria are organized on
a phylogenetic tree with taxonomical categories ranging from
low resolution (kingdom, phylum) to high resolution (genus,
species) taxa.

The gut microbiota are considered so necessary and so
integrated into host function that some describe this population
as an overlooked organ (7). Beyond the breakdown of otherwise
indigestible food substances and production of micronutrients,
gut microbiota affect the hypothalamic-pituitary-adrenal axis
(HPA) (8), produce neurologically active substances such as
gamma-aminobutyric acid (GABA) (9) and short-chain fatty
acids (SCFAs) (10), and influence the immune system and gut
barrier (11–16).

A growing body of literature supports and characterizes a
gut-brain axis, and elucidates a possible role of gut microbiome
dysfunction in major depression. Associations between the gut
microbiome and depression have been identified in studies of
inflammatory states and gut barrier health (17–19). In addition,
animal studies have supported the possibility of a causative
role of dysbiosis (disruption of the microbiome) in depression-
like behaviors. Broad-spectrum antibiotic administration in mice
leads to dysbiosis, depression-like behavior, and altered neuronal
hippocampal firing, with reversal of this phenotype following
probiotic treatment with Lactobacillus casei DG (20). Male
germ-free mice also exhibit elevated levels of serotonin (5-
hydroxytryptamine) and its metabolite, 5-hydroxyindoleacetic
acid in the hippocampus (21). Few translational studies
are as dramatic as the human-to-rodent studies in which
transplantation of gut microbiota from humans with MDD to
germ-free or microbiota-deficient rodents induces a depression-
like phenotype, including anhedonia and anxiety-like behaviors,
not observed in mice receiving microbiota transplantation
from healthy controls (22, 23). A small number of human

studies have demonstrated behavioral correlates of dysbiosis
ranging from infant colic (24) to behavioral abnormalities in
neurodevelopmental disorders (25). Finally, several studies have
compared the gut microbiome in affected vs. control individuals.
In order to investigate the role of the gut microbiome in
MDD, we systematically reviewed the scientific literature of
case-control studies concerning gut microbiome composition
in MDD.

METHODS

Literature Search for Gut Microbiome
Studies in MDD
To identify putative depression-relevant aspects of gut
microbiome composition, a PubMed literature search
was performed that included articles published prior to
February 28, 2018 with combinations of the terms “depression,”
“depressive disorder,” “stool,” “fecal,” “gut,” and “microbiome.”
Additional relevant articles were sought through manual
bibliography search. Eligibility criteria were: (1) articles in
English; (2) human case-control studies; (3) articles focused
on depression; and (4) gut microbiota quantified from stool
samples. Two raters (SGC and ARG) reviewed all search
results and came to a consensus about inclusion/exclusion of
each article.

RESULTS

Literature Search to Identify Human
Case-Controlled Studies
Six studies met the search criteria (23, 26–30), involving a
total of 392 research participants, 204 MDD and 188 controls
(see Figure 1).

Characteristics of the Studies
Sample (see Tables 1, 2 for More Details)
Five of the six identified case-control studies were conducted
in Asia: four in China and one in Japan. The sixth study was
conducted in Norway. The sample sizes of the studies were
relatively small, ranging from 10 to 63 individuals per diagnostic
group. Three of the studies documented smoking status, but
the number of active smokers was not matched between
diagnostic groups.

Medication and use of probiotics/prebiotics/synbiotics
All studies included participants taking psychiatric medications.
The percentage of individuals in the MDD group on
antidepressant medication ranged from 33 to 100% among
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FIGURE 1 | Flow chart of literature search for articles concerning case-control

studies of the gut microbiome in major depressive disorder compared with

healthy volunteers.

the six studies. While the majority of studies included individuals
on a variety of antidepressant medications, Lin et al. (29)
standardized the treatment to 10mg of escitalopram per day.
Of note, two studies (27, 30) included individuals being treated
with antipsychotics. All but one study (26) excluded individuals
on antibiotics within at least the last month. Three studies
specifically excluded recent probiotic use (27, 29, 30), and one of
these studies also excluded recent prebiotic or synbiotic use (27);
however, five participants in one study (28) were on probiotics.

Psychiatric and medical conditions
Exclusion criteria related to psychiatric and medical conditions
differed among the six studies. All but one (26) excluded a
variety of specific medical illnesses or stipulated no active disease.
Zheng et al. (23), problematically, excluded medical illness only
in the controls. Some of the studies specified exclusion of
individuals with other psychiatric history. For example, Aizawa
et al. (28) excluded those with a history of substance use disorder
and intellectual disability. Naseribafrouei et al. (26), did not
recruit healthy volunteers but instead recruited controls with
diffuse neurological symptoms who were not diagnosed with any
neurological condition after physical examination and imaging.
One study (27) recruited only MDD participants with scores>20
on the 24-item HAM at baseline but then divided the sample into
responders and non-responders after 4 weeks of treatment with
respect to microbiome findings. T
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Methodology (see Table 2)
Clinical assessments
Diagnostic methods included the International Classification of
Disease 10 (ICD 10), the Mini-International Neuropsychiatric
Interview (MINI), and the Structural Clinical Interview for DSM-
IV (SCID). Depression severity was assessed variously by the
Montgomery-Åsberg Depression Rating Scale (MADRS) and
the Hamilton Depression Rating Scale (HAM). The majority of
studies used the HAM (17, 21, and 24-item scales) to determine
severity, whereas one study (26) used the ICD 10 andMADRS for
severity measurements. Mean depression levels in all six studies
were of moderate to high severity (see Table 1).

Microbiome quantification
All but one of the studies included used 16S rRNA gene
sequencing, but with different region specification: region V1–
V3 (27), region V3–V5 (23), region V3–V4 (29), no specified
region (26), and a bacterial rRNA-targeted reverse transcription-
quantitative polymerase chain reaction (RT-qPCR) method with
no specified region (28). For pipeline analysis, one study used
Quantitative Insights Into Microbial Ecology (QIIME) with a
cut-off of 1% and closed-reference picking (26), and three used
Mothur with a dissimilarity cut-off of 3% (23, 27, 29). Three
of the studies (23, 26, 27) used the Ribosomal Database Project
(RDP) database, while a fourth used the Silva v.119 database
(29). A single study (30) performedmetaproteomic analysis using
identified bacterial proteins with hierarchical clustering analysis
of orthologous groups to differentiate MDD from controls,
followed by phylogenetic analysis of the bacterial peptides and,
with respect to Bacteroidetes and Firmicutes only, taxonomic
distribution into genus and species (see Table 2 for more details).

Diversity assessments
All four studies assessing α-diversity (within-sample diversity)
utilized the Simpson diversity index (23, 26, 27, 29), and
all but one (26) also used the Shannon index. Two studies
(27, 29) additionally estimated richness with abundance-based
estimators, the Abundance-based Coverage Estimator (ACE)
and Chao1. Generic measures for evenness (27), observed
species richness (23, 26) and phylogenetic diversity (23) were
also mentioned.

Estimates of β-diversity (diversity of microbial community
structure) employed included weighted Bray-Curtis similarity
(23), and principal coordinate analysis of weighted (29) and
unweighted (23, 27) UniFrac distances.

Statistical analysis
To distinguishMDD from control groups, a variety of techniques
was used, ranging from classical statistics to machine learning
approaches. These included the following: Student’s t- and
Wilcoxon’s signed-rank Tests (29), Mann–Whitney tests (28,
30), the linear discriminant analysis effect size method (27),
principal component analysis (PCA) (26), and the Random
Forest algorithm (23).

Functional analyses
Only the most recent investigation (30) employed methodology
allowing a functional assessment of the gut microbiome.
They directly measured fecal protein levels by performing
high performance liquid chromatography followed by mass
spectrometry, identifying non-redundant proteins on the basis
of two unique peptides and filtering out human proteins.
The resulting proteins were classified using the Cluster of
Orthologous Groups database (138,458 proteins from 66
genomes that have been classified into 23 functional categories)
in order to predict function in the gut microbiome.

Synthesized Findings (see Table 3)
Combining these studies, 50 taxa were significantly (p <

0.05) different between MDD and controls. On the phylum
level, these six studies identified the following phyla as being
significantly different between the two groups: Bacteroidetes,
Firmicutes, Actinobacteria, Fusobacteria, and Protobacteria.
Phylum Firmicutes had the largest number of taxa (nine
families) found to be significantly different between MDD
and controls. On the family level, Lachnospiracea was found
to be significantly different between the two groups in four
studies, however, two were higher and two lower in direction.
All studies identified taxa at the genus level, finding 21 genera
that distinguished the diagnostic groups, as follows: nine genera
were higher in MDD (Anaerostipes, Blautia, Clostridium,
Klebsiella, Lachnospiraceae incertae sedis, Parabacteroides,
Parasuterella, Phascolarctobacterium, and Streptococcus), six
were lower (Bifidobacterium, Dialister, Escherichia/Shigella,
Faecalibacterium, and Ruminococcus), and six had findings in
both directions (Alistipes, Bacteroides, Megamonas, Oscillibacter,
Prevotella, and Roseburia). Genera identified by more than one
report as elevated in MDD were Alistipes, Blautia, Oscillibacter
and Clostridium, although Alistipes and Oscillibacter also had
one report each of being lower. Only Faecalibacterium had two
reports of being lower in MDD.

Results differed between the four studies that compared α-
diversity between groups (23, 26, 27). One study (27) reported
statistically significant higher α-diversity with respect to one
(Simpson’s index) of multiple estimators used, in MDD who did
not respond to treatment, but not in the group of treatment-
responsive MDD, compared with controls (5.344 in non-
responders vs. 5.038 in controls). A second study (26) found no
differences between MDD and controls with respect to species
richness (374 ± 56 vs. 351 ±42, respectively) or Simpson’s index
for α-diversity (39.5 ± 15.9 vs 34.4 ± 19.6); however, their
control group was not healthy volunteers but rather patients
with diffuse neurological complaints. The third study (23) found
no differences in α-diversity, while the final study described α-
diversity measures in the Methods section but did not report any
findings (29).

Three studies analyzed and compared β-diversity. One (27)
was not able to obtain an estimate of phylogenetic β-diversity
due to large inter-individual variability. Two studies reported a
difference betweenMDD and controls with respect to β-diversity:
one (23) using unweighted UniFrac analysis (eigenvalues 19,
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TABLE 3 | Taxa with disparate representation in depressed vs. non-depressed humans in six case-controlled studies quantifying gut microbiome from feces.

Phylum Class Order Family Genus

Actinobacteria
↑Chen

↓Jiang

Coriobacteridae Coriobacteriales
↑Zheng

Coriobacteriaceae
↑Zheng

Bifidonbacteriales Bifidobacteriaceae
↑Chen

Bifidobacterium
↓Aizawa

Actinomycetales Streptomycetaceae
↑Chen

Actinomycetaceae
↑Chen

Nocardiaceae
↑Chen

Bacteroidetes
↑Jiang

↑ Naseribafrouei

↓Chen

↓Lin

Bacteroidia Bacteroidales Rikenellaceae
↑Jiang

↔Chen

Alistipes
↑Jiang

↑Naseribafrouei

↓Zheng

Prevotellaceae
↓Jiang (A-MDD)

↓Chen

Prevotella
↑Lin

↓Jiang

Bacteroidaceae
↑Jiang (R-MDD)

↓Jiang (A-MDD)

Bacteroides
↑Jiang (R-MDD)

↓Jiang (A-MDD)

Porphyromonadaceae
↑Jiang

↔Chen

Parabacteroides
↑Jiang

Sphingobacteria Sphingobacteriales Chitinophagaceae
↓Chen

Marniabilaceae
↓Chen

Firmicutes
↑Chen

↓Jiang

↑Lin

Clostridia Clostridiales
↑Zheng

Lachnospiraceae
↑Chen

↑Zheng

↓Jiang

↓Naseribafrouei

Lachnospiraceae incertae
sedis
↑Jiang (A-MDD)

Anaerostipes
↑Zheng

Blautia
↑Jiang (A-MDD)

↑Zheng

Roseburia
↑Jiang

↓Zheng

Oscillospiraceae
↓Chen

Oscillibacter
↑Jiang (A-MDD)

↓Jiang (R-MDD)

↑Naseribafrouei

Ruminococcaceae
↑Chen

↑Zheng

↓Jiang (R-MDD)

Faecalibacterium
↓Jiang

↓Zheng

Ruminococcus
↓Jiang

Clostridiaceae
↑Chen

Clostridium (XIX+IX)

↑Jiang (A-MDD)

↑Lin

Unclassified

↑Zheng

(Continued)
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TABLE 3 | Continued

Phylum Class Order Family Genus

Negativicutes Selenomonadales Veillonellaceae
↓Jiang

Megamonas
↑Jiang (A-MDD)

↓Zheng

Dialister
↓Jiang

Acidaminococcaceae
↑Jiang

↓Zheng

Phascolarctobacterium
↑Jiang

Erysipelotrichia Eerysipelotrichales Erysipelotrichaceae
↑Chen

↓Jiang (A-MDD)

↑Zheng

Bacilli Lactobacillus Streptococcaceae Streptococcus
↑Lin

Fusobacteria
↑Jiang (A-MDD)

↓Jiang (R-MDD)

Fusobacteriia Fusobacteriales Fusobacteriaceae
↑Jiang (A-MDD)

Proteobacteria
↑Jiang (A-MDD)

↓Chen

↓Jiang (R-MDD)

Gammaproteobacteria Enterobacteriales Enterobacteriaceae
↑Jiang

↓Chen

Escherichia/Shigella
↓Jiang (R-MDD)

Klebsiella
↑Lin

Betaproteobacteria Burkholderiales Sutterellaceae
↓Chen

Parasutterella
↑Jiang (A-MDD)

Only taxa whose differences reached statistical significance (p ≤ 0.05) were selected.
↑, increased in depression; ↓, decreased in depression; ↔, direction not deciphered; A-MDD, Active-MDD; R-MDD, recovering-MDD exhibited 50% reduction in Hamilton Depression
Score after treatment. If “Jiang” is mentioned without identifying A-MDD or R-MDD, both exhibited the same directionality.

7.2, 5.5%), and the other (29) using weighted UniFrac analysis
(eigenvalues 8.6 and 6.8%).

According to the Cluster of Orthologous Group
classifications, Chen et al. (30) found the four most striking
group differences in fecal bacterial protein levels in the categories
of translation, ribosomal structure and biogenesis; carbohydrate
transport and metabolism; energy production and conversion;
and inorganic ion transport and metabolism (in descending
order of magnitude).

DISCUSSION

Main Findings
All studies reviewed found significant differences in taxa
between MDD and control groups, and one study additionally
demonstrated that fecal transplantation fromMDD patients into
mice induced depressive-like behaviors (23). However, there was
minimal consensus with regard to either microbial diversity
or relative abundance or directionality of differences in taxa
associated with MDD.

Sources of Bias
Methodologic Differences
Likely accounting for some of the discordance among
studies is discrepant methodology (see Table 2). The use of
metaproteomics and phylogenetic analysis of bacterial peptides
in one study (30) affects comparability with the other studies,

which used 16S RNA quantification. Furthermore, in contrast
to most of the studies, two articles limited their search of
the gut microbiome a priori to specific taxa: Firmicutes and
Bacteroidetes (30) or Bifidobacterium and Lactobacillus (28).
Even though most studies used high throughput sequencing
of 16S rRNA, the analysis methods involved different variable
regions, different pipelines, different databases, and different
cut-offs, which may each influence results to varying degrees.
Moreover, analytic methods differed widely among the studies.
Statistical methodology for microbiome analysis has not been
standardized across the field, and many approaches have been
noted to be prone to high false discovery rates (31), a concern
addressed specifically by only two studies (26, 30).

Sample Differences
Although strong population homogeneity was a within-study
strength, different population characteristics across studies
contribute to difficulties in comparability. For example,
geographic/ethnic dietary differences (32), as well as differences
in host genetics, immune characteristics, and behavioral factors
within each geographic population may be expected to affect the
gut microbiome directly. Differences in microbial composition
vary considerably by geographical location (33). In fact, regional
differences within a single province in China were found to be
the strongest phenotypic determinant of microbiome variability
in a large sample (N = 7,009) of similar ancestry (99% Han
Chinese), accounting for five-fold more variance than the next
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most relevant of the 30 attributes studied (34). Thus, a signal
associated with depression would need to account for enough
variance to be detected in the context of all these other effects.
Of note, a study of regionally heterogeneous participants did
find a signal for mental illness status that was reproducible
among subsets by region, although the mental illness status was
determined by self-report and covered several conditions in
addition to depression (33).

Small sample sizes, as low as only 10 individuals per
diagnostic group in two studies (29, 30), limit confidence in
the results. Additionally, exclusion criteria varied among the
six studies with respect to medical conditions. This may have
resulted in heterogeneity within the control groups, as systemic
inflammation due to medical conditions could be associated with
differences in the microbiota between individuals.

The use of medications in all the studies included in
this review is likely to also have had an impact on the gut
microbiome. In particular, there is evidence in the literature
that antipsychotics may impact the microbiome. For example,
atypical antipsychotics are associated with altered gut microbiota
in rodents (35–37). In a study of bipolar adults (38), significant
changes in the abundance of three genera were identified between
those taking vs. not taking antipsychotics. The inclusion of
individuals on antipsychotics in two of the six studies (27, 30),
therefore, contribute to the problems inherent in comparing
these studies. In addition, one of the studies included individuals
using probiotics (28), which may influence the composition of
the gut microbiome, improve gut wall function, and influence
immune system signaling (39, 40).

Mechanisms Through Which the
Microbiota may be Associated With
Psychopathology
Like the six articles reviewed here, many studies of the
microbiome have focused on the relative abundance of specific
microbial operational taxonomic units (OTUs) and health
outcomes of interest. However, looking for specific taxa as a
marker of disease may miss important information for certain
conditions. Although a great number of microbial taxa are
found in the human gut microbiome, a limited number will
take up niches in any one individual. For example, over 1,000
bacterial species were identified in a sample of 124 subjects. Each
individual’s feces harbored at least 160 species, but much of the
bacterial DNA coded for similar processes (41). Gut microbiome
distribution across individuals demonstrates surprisingly low
convergence even between individuals on identical diets (42), in
accord with evidence of conserved metabolic processes across
taxa (43). This suggests that different individuals can have
taxonomically varied but functionally similar microbiota, i.e.,
the same or similar essential functions can be performed by
a variety of microbial taxa. Likewise, varied permutations of
microbial communities can take up nutritional and locational
niches depending on opportunity and environment (6). With
respect to exploration of the gut microbiome’s effects on
depression, understanding microbial functions may therefore be
more illuminating than focusing on relative abundance of specific

taxa. Chen et al. (30), the most recent of the reviewed articles,
attempted to address this by employing a proteomic analysis
method to produce comparative functional assessment based on
the identified bacterial proteins. The impact of this article is
necessarily limited by the problem of generalizing from a very
small sample size (n= 10 MDD/10 controls).

Fundamental bacterial functions involve consumption of
substrates and production of metabolites (44). A taxon’s specific
pattern of substrate and nutrient usage may shed light on its
survival fitness in certain environments and its ability to use
available materials for products, some of which may be relevant
to depression. Bacteria often demonstrate symbiotic relationships
with other taxa, metabolizing substrates into products which
may benefit themselves, feed or otherwise benefit their neighbors
and host, or influence/signal their neighbors and host (44).
Of particular interest with respect to depression etiology are
products that can interact with the nervous systems (central
and enteral) or play a role in immune responses such as
inflammation. Gut microbiota benefit the host in multiple
ways, include digesting/fermenting carbohydrates, producing
micronutrients, mounting immune responses to discourage
colonization by pathogens (45), and producing a variety of
neuroactive molecules (46). Thus, multiple possible pathways
exist whereby the microbiome may either contribute to or confer
resilience against depression. Some instances are explored below.

Bacterial Metabolism of Carbohydrates and Proteins
Dietary carbohydrates, including indigestible oligosaccharides,
are a common substrate for gut bacteria, which transform
them into short chain fatty acids (SCFAs), including acetate,
propionate, butyrate, and valerate. These substances serve
as energy sources for the host and for other bacterial
species (10, 47). SCFAs also trigger differentiation of T
cells (48) and can function as histone deacetylase inhibitors,
which as a class have immunosuppressive (49) and anti-
inflammatory (50–52) functions and have been proposed
as potential novel antidepressants (53). Additionally SCFAs
activate G protein-coupled receptors (49), are involved in
neurotransmitter production (54) and neuroprotection (55, 56),
and can themselves penetrate the blood-brain barrier (57).
We looked broadly at reports of SCFA production among the
reviewed case-control studies and found that in general the
genera reduced in MDD have extensive capacity to metabolize
carbohydrates, particularly mono- and disaccharides and their
derivatives [Bifidobacterium (58–62), Faecalibacterium (63), and
Ruminococcus (64–66)]. Bacteroides, found to be reduced in
a treatment-nonresponsive depressed subgroup compared to
healthy controls (27), as a genus has a particularly rich
armamentarium for metabolizing more complex carbohydrates
including glycans of human mucin (67–78).

In contrast, although some of the genera reported as elevated
in MDD also can metabolize carbohydrates [Anaerostipes (79),
Blautia (80), Clostridium (65, 81, 82)] it may be noteworthy
that several are high metabolizers of amino acids and proteins
[Clostridium (83, 84), Klebsiella (84), Parabacteroides (85),
Streptococcus (83), Oscillibacter and Alistipes (84)]. Increased
metabolism of proteins by microbiota involves fermentation, or
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bacterial putrefaction, a process that may divert essential host
amino acids from the host to the microbes and may result
in toxic products such as ammonia, putrescine, and phenol
(84). Dysbiosis that results in increased putrefaction has been
implicated in the pathogenesis of colorectal cancer (84) and
autism spectrum disorders (86). With regard to depression, in a
large epidemiologic study, elevated dietary intake of protein at
baseline was associated with more severe depressive symptoms
at 10-year follow-up in a dose-dependent manner, in women
only (87). Others have reported that interactions between dietary
protein levels and genetic polymorphisms can moderate the risk
of depression (88).

Thus, while not quantitatively testable across the studies
reviewed here, we may speculate that dysbiosis resulting in
a relatively lower capacity to metabolize carbohydrates and
higher capacity for protein metabolism may have a role in
the pathogenesis of MDD. Lower SCFA could contribute
to symptomatology as a result of lower energy and altered
neurotransmission, while both lower SCFA and higher
putrefaction products are implicated in intestinal inflammation,
relevant here as inflammatory bowel conditions have been
associated with a high co-morbidity with depression and
anxiety (89). We have focused our discussion on mechanisms
through which dysbiosis could contribute to the development
of depression. However, the directionality of the associations
between inflammatory bowel disease and depression is not
known. Thus, it is also plausible that depression may cause
digestive problems and dysbiosis either through altered dietary
choices or other mechanisms. One hypothesis could be that
in some individuals, depression confers a decreased ability to
digest proteins; the resulting increased residual protein in the
colon would give an advantage to higher concentrations of
microbes which prefer proteins as substrates, leading to higher
putrefaction and inflammation.

Production of Micronutrients
Water-soluble vitamins from the diet may be absorbed from
the small intestine, including ascorbate (vitamin C), biotin
(B7), folate (B9), niacin (B3), pantothenic acid (B5) pyridoxine
(B6), riboflavin (B2), and thiamine (B1) (90). However, a
number of these water-soluble vitamins also can be generated
by microbiota and absorbed in the colon and thereby affect the
host (90). Therefore, dysbiosis resulting in low production of
micronutrients could contribute to depression pathophysiology,
particularly in the case of depressed patients with poor
nutritional intake. For example, Bifidobacterium, among the
genera that were less abundant in MDD in reviewed case-control
studies, can synthesize riboflavin, niacin, and folate (91). Low
folate levels have been associated with the presence of depression
by meta-analysis (92), and folate levels were inversely associated
with depressive symptom severity in one epidemiological study
(93). The relative contribution of dietary vs. bacterial folate to
the host is not clear (90); however, a carrier for uptake of folate
into human colonocytes has been described in cell culture (94)
and ex vivo (95) studies. Deficiency of thiamine is implicated in
depressive symptoms in older adults (96). Microbial production
results in a pool of free, absorbable thiamine and, similarly to

folate, specific carrier proteins exist to transport free thiamine
into both intestinal enterocytes and colonocytes (97). Microbial
production of vitamins also may affect humans indirectly in
a kind of food chain where vitamins produced by certain
microbes are needed by other microbiota whose downstream
products impact depression. For example, about half of human
gut microbes are thiamine auxotrophs, i.e., they require but
cannot make their own thiamine (98).

Inflammatory Regulation
Depression and anxiety symptoms increase with functional
gut disorders (99). Irritable bowel syndrome (IBS) has been
characterized by increased permeability of the mucosal
layer (100, 101) as well as gut microbiome dysbiosis (102).
Inflammation can compromise normal barriers protecting
the body from pathogenic gut bacteria (8, 103), resulting in
intestinal permeability (104), or “leaky gut,” and even leakage
at the blood-brain barrier (105, 106). One mechanism whereby
this occurs is tumor necrosis factor alpha (TNFα) induction of
shedding and apopotosis of intestinal epithelial cells (107). This
has been suggested as an explanation for the high association
of inflammatory gastrointestinal disorders with depression;
for example, 49% of people with inflammatory bowel disease
suffer from depressive symptoms (89). Gut dysbiosis promotion
of inflammation may contribute to multiple pathways in the
CNS that are implicated in the development of depression.
Upregulation of inflammatory cytokines (108) has downstream
consequences in brain, including shunting of tryptophan away
from serotonin synthesis toward the kynurenine pathway (109)
as well as excitotoxic and neurotoxic effects (110, 111).

Production of Neurotransmitters
In cell culture studies, gut microbiota have been found to
make precursers to neurotransmitters, such as tryptamine
(112), and neurotransmitters including GABA (9), serotonin,
norepinephrine, and dopamine (57). Among the bacteria found
in the reviewed studies to be lower in MDD (28), Bifidobacterium
is an efficient producer of GABA (113). Several bacterial strains
are known to produce serotonin directly (114). Moreover,
one study reported that male rodents reared in a germ-free
environment, a profound manipulation of the microbiome,
exhibit increased levels of serotonin in the hippocampus, along
with increased peripheral levels of tryptophan, a serotonin
precursor, suggesting the possibility of a peripheral origin to this
effect (21). Another animal study found that administration of a
probiotic containing Lactobacillus plantarum PS128 led to both
antidepressant-like effects in mice as well as increases in levels
of serotonin and dopamine in the striatum (115). Modulation
of neurotransmitter production is one possible means by which
the gut microbiome may affect the brain, with direct relevance
to depression.

Human Brain Imaging Supporting Gut
Microbiome-Brain Communication
The current literature supports bidirectional interactions
between the gut and brain mediated by gut microbiota
(25, 116, 117). There is evidence that gut microbiome
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composition is correlated with neural activity and brain
structure in humans, as assessed by functional and structural
MRI (118, 119). Specificially, an observational study in obese
and non-obese individuals found that both microbial diversity
as well as relative abundance of Actinobacteria were associated
with measures of white matter integrity and of regional
iron content in the brain (118). Another study in healthy
female volunteers identified two clusters of individuals based
on bacterial genotyping, a Bacteroides-abundant group and a
Prevotella-abundant group, and observed differences inmeasures
of both structural and functional neuroimaging when comparing
these groups (119). Both Bacteroides (27) and Prevotella (27, 29)
were associated with MDD in specific case-control studies and
exhibited divergent directionality.

Moreover, probiotic interventions can alter neural responses
assessed by fMRI (120, 121). Specifically, randomized, double-
blind, placebo-controlled treatment with Bifidobacterium longum
in patients with irritable bowel syndrome led to reduction
in neural responses to emotionally negative stimuli in limbic
brain regions including the amygdala (121). Likewise, B. longum
administration to mice via oral gavage had an anxiolytic
effect, and this was not seen in vagotomized animals (116).
Another small randomized trial in healthy women found that
administration of a probiotic containing multiple species was
associated with a decrease in neural responses to an emotional
faces attention task in a broad network of brain regions,
including insula and somatosensory processing regions (120). In
rodents, oral gavage administration of Lactobacillus rhamnosus,
which improved anxiety- and depression-like behaviors, also
caused brain region-specific alterations in GABAAα2 mRNA
expression detected by in situ hybridization (117). Neither
the neurochemical nor the behavioral effects were seen in
vagotomized animals, indicating that the vagus nerve mediated
this particular communication between the gut microbiota
and brain.

Important features of gut-brain communication that require
further elucidation with respect to influences inMDD include the
different roles of luminal vs. systemic bacteria, the mechanisms
of traversing the gut barrier into the portal circulation and the
blood-brain barrier (BBB), and the role of the vagus nerve.

The Role of Diet
Dietary effects on the gut microbiome are evident as early as
infancy, with gut microbiome differences observed between
breast-fed and formula-fed infants, including a greater
prevalence of Bifidobacteria in breast-fed infants (122). In
adulthood, gut microbiome composition is associated with self-
reported long-term dietary patterns, with a higher prevalence
of Prevotella observed in individuals reporting higher intake
of carbohydrates and simple sugars, and a higher prevalence
of Bacteroides observed in individuals reporting higher intake
of animal protein and saturated fats (32). Effects of short-
term dietary interventions on the gut microbiome are not
well understood. As one example, probiotic administration
in a recent study led not only to changes in brain activity
assessed by fMRI (see section Human Brain Imaging Supporting
Gut Microbiome-Brain Communication above), but also to

antidepressant effects and changes in urine metabolic profiles,
suggestive of microbiome effects, but no measureable effects on
gut microbiome composition were detected by fecal 16S rRNA
gene sequencing (121). It is unclear to what extent this finding
reflects limitations in our current microbiome quantification
tools, or resistance of the gut microbiome to change.

One dietary factor in the microbiome-inflammation-
depression relationship is the intake of polyunsaturated fatty
acids (PUFAs), especially with regard to the ratio of omega-3 to
omega-6 PUFAs, which has been found to be low in depression
(123). Omega-3 PUFAs tend to be anti-inflammatory while
omega-6 PUFAs such as arachidonic acid tend to be pro-
inflammatory [reviewed in (124)], and the PUFA balance has
effects on mucus adhesion of bacteria (125). For example, in a
study of gnotobiotic piglets the growth and mucus adhesion of
probiotic Lactobacillus paracasei were enhanced by concomitant
administration of a mixture of PUFAs (126). Omega-6 PUFAs
also are implicated in epithelial permeability and mucosal
damage through the generation of leukotrienes, inflammatory
metabolites of arachidonic acid (127). Dietary PUFA serves as a
substrate for some gut microbes, and PUFA-derived metabolites
have been proposed as novel gut microbial products that may
have important physiological effects (16, 128). Among the genera
reported in the reviewed case-control studies as less abundant
in MDD, Bifidobacterium degrades unsaturated fatty acids
including linoleic acid (129), a precursor to arachidonic acid.

Current Analytic Tools
The analysis of trillions of gut microorganisms with respect
to genomic composition and functionality, which includes a
complex ecological network of interactions among bacteria and
with the host, is truly a “big data” enterprise. Increasingly
sophisticated systems biology techniques are coming on line to
perform these analyses, among them genome-scale metabolic
modeling (GEM), which aims to comprehensively describe the
metabolism of a microbe or a microbial community (130).
These systems were conceptualized 30 years ago and are now
reaching the stage of development where they can begin to be
utilized for predictive biology approaches (131). For example,
the GEM for Escherichia coli utilizes existing information of 66%
of its genome and has enabled a wide variety of applications
including models for interspecies metabolite exchange (132).
Relatively new analysis methods include shotgun metagenomic
sequencing, a powerful approach from which coding sequences
can be annotated with respect to known metabolic pathways,
allowing for functional inferences. However, this method also
has drawbacks, including expense, biased representation of
genome catalogs and functional annotations, sequencing of dead
cells, distortions of relative abundance reporting, and minimal
success in regard tomucosal microbiota (133). Another approach
utilizes PICRUSt (Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States), a bioinformatic tool
that allows for estimating the functional gene profile of a
metagenome using marker gene data (i.e., 16S sequences) and
a set of known genomes. This tool applies an ancestral state
reconstruction algorithm that predicts the presence of gene
families and then combines these into a metagenome. As such
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it provides a predictive metagenome and offers insights into
functional capacities of uncultured bacterial communities. Other
novel indices may also have greater merit for distinguishing
between affected and unaffected populations than abundance or
diversity measurements. For example, the growth rate of the
bacterial population, assessed as the ratio of DNA copy number
of DNA regions near the replication origin to those near the
terminus, has been shown to correlate with illness better than
species abundance in inflammatory bowel disease and type II
diabetes (134).

Developing Standards for Future Studies
Major sources of controllable clinical heterogeneity identified
in this review that can affect quantitative comparability of
clinical trials include: (1) psychiatric medication status; (2)
type of comparison group; (3) medical comorbidities; (4) non-
antibiotic medications impacting the gut microbiome (135);
(5) psychiatric comorbidities including substance use disorders;
and (6) use of well-validated diagnostic and depression severity
assessment instruments.

Although bioinformatic analysis pipelines in general are well-
standardized, handling of specimens, DNA extraction protocols
and sequencing methods introduce another important type
of heterogeneity.

Geographic differences may have a profound impact on
study outcomes (32–34), reflecting differences in ethnicity,
environmental exposures, or diet. Attempts to control
statistically for location found interpolation to be more
successful than an extrapolative approach (34).

The use of a standard panel of covariates would be an
essential approach to reduce the “noise” within which the
depression signal will need to be detected. Standards should
include assessment of diet, although this is difficult to achieve
comprehensively. One aspect of diet that may be important
to quantify with respect to depression includes consumption
of wine, a major source of polyphenols that interact with
the microbiome resulting in decreased fecal concentrations
of inflammatory cytokines (136). Easily quantified non-dietary
information that has a robust effect size on the gut microbiome
has been reported in studies (137, 138) using data from the
Belgian Flemish Gut Flora Project (FGFP; N = 1,106) and the
Dutch LifeLines-DEEP study (LLDeep; N = 1,135), as well a
larger study from China (N = 7,009) (34). Considering non-
dietary covariates, all three studies found Bristol stool score,
age, sex, body-mass index, triglycerides, cholesterol, and smoking
status to be among the characteristics most strongly associated
with microbiome composition.

This demonstrated need to build statistical models that
control for multiple covariates mandates larger sample sizes.
Without more studies, effect sizes for depression association
with the microbiome are presently uncertain. However, several
approaches may increase power to detect a role of dysbiosis
in mood disorders. One strategy is to recruit individuals with
extreme illness phenotypes. This has been used successfully in
psychiatric (139) and non-psychiatric (140) medical research to
elucidate pathophysiology. Applying this principle to the case of
mood disorders, studies of individuals with recurrent depressive

episodes, history of suicidality, or current inpatient treatment
may represent a more extreme phenotype with greater likelihood
of demonstrating biological abnormalities including dysbiosis.
Given the significant clinical and biological heterogeneity of
depression, focusing on a more narrow, severe phenotype may
increase statistical power in microbiome studies (141).

Case-control designs are limited by the potential for
confounding factors between patient and control groups.
Aspects of study design that may further increase power of
future microbiome studies of depression include dense clinical
phenotyping of depression severity and symptom profiles using
well-validated assessment tools including the HAM (142) and the
Beck Depression Inventory (143). This would allow for within-
group correlation analyses, as well as longitudinal microbiome
quantification within patient groups, harnessing the statistical
power of within-subject statistical designs to examine questions
of state vs. trait abnormalities.

Thus, ideal study conditions would feature a large sample
of more severely ill, unmedicated patients diagnosed with
MDD and assessed for severity by trained clinical researchers
using validated instruments, in comparison to comprehensively
assessed healthy volunteers matched for sex, age, race, and
geographic/ethnic background. Subjects with current substance
use disorders or active medical illness, including chronic
inflammatory conditions, would be excluded from both MDD
and psychiatrically healthy volunteer groups. Comprehensive
diagnostic information obtained would include details on
past substance use history. Subjects would complete dietary
assessments, such as the USFDA’s Healthy Eating Index (144),
which has been validated for studying the microbiome (145),
and this information plus data on Bristol stool score, body-
mass index, triglycerides, cholesterol, and smoking status would
be included as covariates in statistical modeling. Interpretation
of the results would need to include rigorous control for false
discovery rates.

Similar to the situation with depression, the study of the
microbiome across a range of other neuropsychiatric conditions
is in its infancy (146), e.g., reviews of human research
on dysbiosis report on only 12 articles concerning autism
(147) and five articles concerning schizophrenia and bipolar
disorder combined (148). When greater consensus is reached
regarding the nature of dysbiosis in individual neuropsychiatric
conditions, perhaps by employing techniques advocated here
for standardization and sample selection, an important question
will be to determine the degree of overlap in findings across
these conditions. The use of an open science approach, creating
data sharing and data repositories specific to psychiatric illness,
will be important to advancing the field of what may be
called the psychomicrobiome. Such an approach would facilitate
amassing sample sizes that are sufficiently powered to detect
the effects of the confounding variables described above and
to detect what may be modest effect sizes in primary contrasts
of interest.

Limitations
Our review of this literature is limited to a descriptive
approach. Because these studies were disparate in their aims
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and methodologies, studied heterogeneous populations, reported
on relative rather than absolute abundance, and were small
and likely underpowered, a meta-analytic approach would
be handicapped.

The search for gut microbiota via stool carries specific
limitations. Location of the taxa within the gut may be
an important determinant of microbial effects on the host
organism (46), but stool may represent luminal and lower
intestinal populations, and composition differs between upper
and lower intestine and between luminal and mucosal layers
(149). Additionally, it may not be clear whether a taxon
maintains a stable population within the host (autochthonous)
or is just passing through (allochthonous); feces may consist of
allochthonous taxa plus some particularly proliferative and not
so adherent authochthonous taxa (6). We further note that other
sites of the human microbiome may be equally or more relevant
but are understudied with regard to depression, e.g., the oral
cavity [already used in human studies of anxiety (150), stress
(151), autism spectrum disorders (152), and migraine (153)],
which can be easily and directly sampled.

CONCLUSIONS

The limited existing human studies of depression and gut
microbiota report depression-specific findings regarding
proportions of microbiota; however, the sample sizes are small,
and no consensus has emerged concerning which bacterial
taxa are most relevant to depression. Therefore, the effect
size of depression-related microbial differences is presently

unclear. Future, larger studies may employ a functional system
of categorization, and should evaluate BMI, presence of
inflammation, and diet, and control for other factors that may
be important covariates. Studying depressed patients who are
unmedicated at the time of microbiome assessment and in an
active depressed state may help address possible confounds
of antidepressant medication effects and state vs. trait effects.
Improved resolution at the species level may be achieved using
next-generation sequencing approaches. Given the evidence of
microbial function that transcends taxonomic classification, and
the ecological nature of the microbial community, approaches
such as bacterial growth rate and genome-scale metabolic
modeling may prove useful in better understanding the
contribution of the gut microbiome to depression etiology.
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