
MINI REVIEW
published: 04 March 2019

doi: 10.3389/fpsyt.2019.00104

Frontiers in Psychiatry | www.frontiersin.org 1 March 2019 | Volume 10 | Article 104

Edited by:

Dimitrios Avramopoulos,

Johns Hopkins University,

United States

Reviewed by:

Pippa Ann Thomson,

Medical Research Council Institute of

Genetics and Molecular Medicine

(MRC), United Kingdom

Kirk Mykytyn,

The Ohio State University,

United States

*Correspondence:

Bing Lang

bing.lang@csu.edu.cn

Michal Pruski

17104596@stu.mmu.ac.uk

orcid.org0000-0001-7582-1418

Specialty section:

This article was submitted to

Behavioral and Psychiatric Genetics,

a section of the journal

Frontiers in Psychiatry

Received: 17 September 2018

Accepted: 12 February 2019

Published: 04 March 2019

Citation:

Pruski M and Lang B (2019) Primary

Cilia–An Underexplored Topic in Major

Mental Illness.

Front. Psychiatry 10:104.

doi: 10.3389/fpsyt.2019.00104

Primary Cilia–An Underexplored
Topic in Major Mental Illness
Michal Pruski 1,2,3* and Bing Lang 1,4*

1Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China, 2Critical Care

Laboratory, Critical Care Directorate, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester,

United Kingdom, 3 School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University,

Manchester, United Kingdom, 4 School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University

of Aberdeen, Aberdeen, United Kingdom

Though much progress has been made in recent years towards understanding the

function and physiology of primary cilia, they remain a somewhat elusive organelle. Some

studies have explored the role of primary cilia in the developing nervous system, and their

dysfunction has been linked with several neurosensory deficits. Yet, very little has been

written on their potential role in psychiatric disorders. This article provides an overview

of some of the functions of primary cilia in signalling pathways, and demonstrates that

they are a worthy candidate in psychiatric research. The links between primary cilia

and major mental illness have been demonstrated to exist at several levels, spanning

genetics, signalling pathways, and pharmacology as well as cell division and migration.

The primary focus of this review is on the sensory role of the primary cilium and the

neurodevelopmental hypothesis of psychiatric disease. As such, the primary cilium is

demonstrated to be a key link between the cellular environment and cell behaviour,

and hence of key importance in the considerations of the nature and nurture debate

in psychiatric research.
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INTRODUCTION

Recently Muñoz-Estrada et al. (1) published results from experiments on olfactory neuronal
precursor cells obtained from human sufferers of schizophrenia (SCZ) and bipolar disorder
(BD), linking primary cilia (PC) with major mental illness (MMI). Their work showed a general
decrease in the percentage of cells with PC in subjects suffering from MMI. Furthermore, in vitro
supplementation with lithium (a common pharmacotherapy for BD, mania and depression (2),
and previously shown (3) to cause in vivo and in vitro PC elongation in mouse neuronal cells)
was shown to have a positive effect on PC length. While their study (1) was conducted on samples
obtained from a very limited number of patients suffering from a variety of MMI and on different
treatment regimes, it highlights an area of psychiatric research that has been largely ignored.

PC are cellular protrusions originating from the centrosome’s mother centriole, and are present
on most mammalian cells (4, 5). Since they are linked with the centrosome, they need to be
disassembled or retracted whenever the centrosome needs to perform its microtubule organizing
centre functions, such as during cell division and migration (4, 6–9), making the exact role of
the PC in these processes somewhat unclear. PC are largely regarded as cellular sensory antennae
and signalling hubs, facilitating key developmental pathways such as Sonic Hedgehog (SHH) and
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WNT signalling (10–12). More recently, proposals have been
made that PC have an extracellular signalling role, as thanks to
its biochemical autonomy from the rest of the cell membrane the
cilium can express distinct proteins on its membrane as well as
have a different concentration of various factors in its cytoplasm
(13, 14). As such ciliary vesicles, can form distinct exosomic
parcels, but their role, especially in mammals, is not yet clear,
and arguments have been made that their primary function is to
dispose of redundant ciliary content (13, 14). This article reviews
various levels of evidence for the role of PC in MMI, focusing on
the well-established developmental hypothesis of MMI (15, 16).
PC play an important role in the development of the central
nervous system (CNS) and in a wide variety of roles in the adult
brain (10, 17). PC have been even called “neurons little helpers”
in the context of neurodevelopment (18), and have recently been
discussed in the context of the neuronal migration hypothesis of
dyslexia (19). Nevertheless, as discussed later, PC retract during
some cellular events, and might not be present on all types of
neurons during early development (8, 20). The following sections
will show why this elusive organelle should be considered an
attractive target for psychiatric research.

GENETICS

Genomic and bioinformatics research has revealed that some
PC genes are linked to MMI. Of course, the mere fact that a
gene might be linked to both PC and MMI does not guarantee
the involvement of PC in MMI, as proteins might function
in different cellular compartments and in different cellular
processes. Similarly, a different severity of mutation might be
required to cause an effect on the PC or to precipitate MMI.
Nevertheless, the fact that data from an RNA interference study
looking at 41 MMI genes found that 23 affect cilia length (21)
should at least prompt one to look at the correlation between
PC and MMI genes. Here, we present evidence for two candidate
genes which may potentially connect PC with MMI.

Previously (22), researchers described a region on
chromosome 4p linked to MMI. One gene found in that
region was CC2D2A (23), also known as MKS6 and JBTS9.
It is involved in ciliogenesis (24), and in vesicles trafficking
in the PC’s transition zone (the region of the cilium that
regulates the trafficking of proteins between the cilium and
the rest of the cell, allowing the cilium to retain its distinct
protein composition), and has been implicated in neural tube
development and Sonic Hedgehog signalling (25–27). CC2D2A
has been linked to a range of CNS developmental conditions
linked to PC: Joubert syndrome (28–30), Meckel syndrome (31)
and mental retardation (32, 33); there is also a potential link with
Bardet-Biedl syndrome (BBS) (29). CC2D2A’s link to MMI has
not yet been thoroughly investigated (34), but MMI problems
have been observed in individuals with Joubert syndrome, and
AHI, also associated with Joubert syndrome, has been proposed
as a marker for SCZ (35).

Disc1, a gene involved in the formation and regulation of
cilia (36), has also been associated with MMI (37, 38). DISC1
associates with a variety of centrosomal components (39, 40),

recruiting BBS proteins to the centrosome (41, 42), and acting
as a switch between the processes of neuronal migration and
proliferation. DISC1 also interacts with the dynein complex (43),
which, together with the Intraflagellar Transport (IFT) complex
A, is vital for retrograde transport within the PC (12). Moreover,
one reported zebrafish DISC1 aberration caused a decrease in
β-catenin levels (44) correlating to a decrease in canonical WNT
activity.

As such, DISC1 is perhaps one of the strongest links between
PC and MMI.

NEURODEVELOPMENT

PC associated CNS defects range from cerebellar hypoplasia
through mental retardation to encephalocele and enlarged
ventricles (45–47). Moreover, various neurodevelopmental
defects have been associated with MMI, for which there is
evidence of PC involvement. This is unsurprising, as PC are
present from the earliest stages of CNS development through to
the mature brain (17, 48, 49). The centrosome, with which PC
are closely interlinked, is also a key player in CNS development
(50, 51).

Defective neuronal migration has been reported in several
studies relating to MMI, and is likely to contribute to reductions
of grey matter in patients affected by MMI (15, 52–56).
Additionally, BBS has been associated with cortical volume
reductions in both a human and mouse study (57, 58).
Molecular links between psychiatric pathways and PC, such as
the interaction of DISC1, WNT signalling, the BBS complex
and the centrosome exist in the context of cell migration and
proliferation (41–43, 59, 60). For example, PC have been shown
to be involved in several aspects of neuronal migration like radial
glial scaffold formation and interneuron migration (8, 61) as well
as galvanotaxic migration (62–64).

PC factors also influence important migratory processes of
microtubule (65–67) and actin (68, 69) organisation. Further,
CDC42, a molecule important for ciliary initiation (70–72)
promotes actin skeleton remodelling (73) and cell polarity (74,
75) through non-canonical WNT signalling (51). Furthermore,
CDC42 and actin skeleton remodelling have been associated
with deficits in dendritic spine formation frequently reported
in SCZ and BD (76–78). Issues relating to neuronal network
health, such as synaptic connectivity and neurite number have
also been highlighted in both mental illness and PC dysfunction
(53, 54, 79–85).

Problems with neuronal differentiation have been associated
with SCZ, and can result from DISC1 related changes in
WNT signalling (86–88). Asymmetric PC membrane inheritance
occurs during neocortical development, and is linked with
the inheritance of the centrosome, which is important for
proper neurogenesis (89–91), suggesting that PC function might
be important for cell division and fate specification, further
contributing to the aforementioned changes in cortical volume
(57, 58).

Moreover, PC are known to be involved in other
developmental aspects that could contribute to defective
neurogenesis and CNS cell migration, often involving PC’s
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close association with the centrosome and the Golgi apparatus.
These involve SHH (92–94) and Platelet Derived Growth
Factor (95–98) signalling, and governance of cell migration
(4, 8, 9, 50, 63, 99–102) and cell division (95–97, 103–110)
through sensing extracellular cues. This last point is exemplified
by the fact that serum withdrawal during cell culture is a
ciliogenic condition (97, 103, 105, 109), indicating that cells may
use their cilia to ensure that the extracellular conditions are right
for mitosis initiation.

WNT SIGNALLING

The WNT pathway is one of the best studied MMI signalling
pathways (111–114). Those affected by BD and SCZ have
been found to express mRNA levels suggestive of attenuated
canonical WNT signalling and enhanced non-canonical
signalling, particularly the WNT/Ca2+ pathway (111); although
a recent human cerebral organoid study showed an increase in
canonical WNT signalling in the early developmental stages of
brains with disrupted DISC1, suggesting that WNT changes
might be context/age dependent (114). The changes in mRNA
expression levels is a noteworthy finding since PC are known
to facilitate the switch from canonical to non-canonical WNT
signalling via Ca2+ signalling (103). PC modulates WNT
signalling via the degradation of Dishevelled by Inversin at the
basal body (51, 115, 116), repressing the canonical signalling
pathway (117, 118) and promoting the planar cell polarity
pathway (95). Curiously, different ciliary gene mutations
perturb WNT signalling in different ways, with mutations in
some genes being able to both increase and decrease β-catenin
levels (119).

Moreover, WNT signalling affects motile cilia, and might
affect PC by influencing basal body positioning on the apical
membrane (51, 120–122). The importance of such an overlap
and interaction between motile and primary cilia has been
highlighted in hydrocephalus (96), where defects in both
motile and primary cilia are known to be present (96, 123).
Hydrocephalus-like changes have similarly been reported in SCZ
(124). Motile cilia generate fluid flow, to which PC respond (125),
which is crucial for establishing body asymmetry (126), and is
detected by the polycystin receptors PC1 and PC2 (127–129),
which facilitate Ca2+ entry (127). This flow-induced calcium
signalling not only facilitates the switch from canonical to non-
canonical WNT signalling (103) but also regulates the cell
cycle (95), although recent experiments have started questioning
whether flow sensing happens via Ca2+ signalling (130).

Nevertheless, there is some evidence disputing PC’s role in
WNT signalling (11, 119). There is evidence from both zebrafish
and mice showing that disrupting PC does not affect WNT
signalling (131–133). The role of PC inWNT signalling is further
complicated by the fact that WNT signalling has a regulatory role
in ciliogenesis (120, 134, 135). As such, the exact role of PC in
WNT signalling, particularly in canonical WNT (11), requires
further investigation, though as argued in this section, such an
investigation might bring fruitful results if carried out in the
MMI context.

FIBROBLAST GROWTH FACTOR

The importance of the Fibroblast Growth Factor (FGF) signalling
system has been highlighted in SCZ research (136–138). This
system can regulate neuronal differentiation via the Stat1
pathway, and neuronal proliferation and function via the
ERK pathway (139). Moreover, FGF function has a positive
effect on dopamine neuron survival and neurite outgrowth
(139). Recently, bioinformatic and stem cell experiments
investigated the role of the FGF receptor 1 (FGFR1) (136, 137).
FGFR1 dysregulation can upregulate developmental pathways
involved in neurogenesis and downregulate those involved in
oligodendrogenesis (136), and data suggests that it can also lead
to cortical maldevelopment (137), though the dysregulation of
this pathway still awaits confirmation in a larger patient sample.

PC themselves do not seem to mediate FGF signalling, yet
both motile and tethering cilia (a type of kinocilium, located
on hair cells in the ear, with a microtubule structure similar to
motile cilia (5, 140, 141)) length is affected by FGF (142–144).
While it remains to be seen how ciliogenesis and PC length
can be controlled by FGF in mammals, zebrafish and Xenopus
studies suggest that FGF modulate the expression of Ift88 via
FGFR1 (144). The IFT machinery is responsible for trafficking
anterograde and retrograde cargo along the PC (145, 146) and
IFT dysregulation can result in underdevelopment of certain
organs, including the brain (145, 147). While the role of IFT in
MMI requires further study, IFT27 [which together with IFT88
and IFT172 belongs to the IFT complex B (148)] has in one
study been associated with BD (149), however the authors of that
study note that this conclusion should be taken with caution due
to the amount of variation present throughout the study. Since
IFT172 has been identified as also being BBS20 (150) it is worthy
to highlight that BBS is associated with such traits as reductions
in hippocampal, white and grey matter volumes (57), traits often
associated with MMI (151–154) and depression (155) belongs to
the IFT complex B.

Therefore, if FGFR1 is proven to be implicated in a larger
cohort of individuals with schizophrenia and in the regulation of
human PC length, then there would be a mechanistic correlation
between defective PC and SCZ. However, it would remain to
be seen whether it was the PC dysfunction that contributed to
SCZ or whether they were independent consequences of aberrant
FGF signalling belongs to the IFT complex B.

PRIMARY CILIA AND DOPAMINE

The dopamine hypothesis is prominent in SCZ research (156,
157), and various dopamine receptors localise to PC (36) in a
manner dependent on IFT and BBS components (158, 159). Type
1 and 2 receptors have been shown to localise to PC in neurons
in regions such as the striatum, amygdala, and pituitary gland
(36, 158, 160, 161). Type 5 receptors, mediating both chemical
and mechanical signalling in the PC, were shown on mouse
endothelial cell (162), and type 4 receptors have also been shown
on non-neuronal cells (36).

While the relationship of dopamine signalling, PC and
MMI has not been explored, there might be an overlap
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between these during brain development. A possible explanation
involves the dysregulation of WNT signalling important for the
appropriate differentiation of dopaminergic neurons (163). The
WNTpathway also regulates dopaminergic neural progenitor cell
migration during electrotaxis (62); the health of PC has been
shown to affect electrotaxis in fibroblasts (63), though studies
in neurons are lacking. Moreover, dopamine signalling has been
found to affect PC length in striatal neurons (160). As such, the
implications of this interplay between PC and dopamine onMMI
remain to be explored.

CILIA–NATURE AND NURTURE

The theme of this research topic compilation concerns
neuropsychiatric disorders within the nature and nurture debate,
and as such it is fitting to discuss how PC might fit within
this debate. It is therefore valuable to reassess some of the
aforementioned points within the context of some of the
hypotheses of MMI.

The watershed hypothesis of MMI (164) suggests that the
diseases might manifest themselves as the cumulative effects
of smaller (potentially benign on their own) changes in
physiological processes. PC dysfunction might contribute to
small changes in several neurally important signalling pathways,
not all of which have been mentioned here (165). These
changes do not need to originate from serious mutations

affecting a single gene (e.g., Disc1), but in themselves might
be the result of several less severe changes in PC genes.
Nevertheless, it must be remembered that some ciliary proteins
might perform the majority of their work outside of the
PC (166).

More importantly, genetic changes might, in themselves,

not result in a pathological phenotype, but an environmental
insult (or several) might be required to trigger the pathological

process. This is known as the Two-Hit Hypothesis (167), and
is of particular interest here due to the sensory role of the
PC. There is a correlation between famine and SCZ (168–170),
and there is experimental evidence that environmental stressors,
such asmaternal ethanol consumption,methylmercury exposure,
and pentylenetetrazole (PTZ)-induced maternal seizures can
cause neural damage to developing embryos, even at relatively
low doses (171). This neural damage is associated with Heat
Shock Factor expression level variability, which might be caused
by oxidative stress damage (171). PC are involved in stress
regulating pathways, such as ERK, but are also affected by the
ERK response to oxidative stress and ischaemia (172, 173). Heat
shock itself was found to cause ciliary absorption mediated via
a reduced association of heat shock protein 90 with HDAC6,
and was hypothesised to decrease PC mediated signalling
during times of extracellular stress (174). Therefore, PC might
provide a molecular link bridging the genetic and environmental
components of MMI pathology.

TABLE 1 | Summary of the key points from each section, and avenues for future research related to each section.

Section Key points Future work

Genetics There is an overlap between genes associated with MMI

and PC. Disc1 is the gene with the strongest connection

to both MMI and PC.

The extent to which PC genes are associated with MMI requires further study via

GWAS. The large amount of genes associated with PC can be both a source of

false positive (due to pure statistical chance) and negative (watershed hypothesis,

or small frequencies of any one particular gene or SNP) results. Identified genes

should also have a mechanistic link between MMI and PC before a role of PC in

MMI can be deemed conclusive.

Neurodevelopment PC are involved in a range of developmental processes,

such as cell migration and proliferation. Defects in these

processes are associated with MMI.

Developmental processes can be disrupted in a variety of ways, as processes

such as cell migration and proliferation depend on a variety components.

Moreover, a single protein might act at several cellular locations. It is important

that defects in ciliary proteins that are found to play a role in MMI, do this in a way

that is mechanistically related to the PC. Additionally, changes in brain PC should

be studied via histological samples from both well-established MMI animal

models, and post-mortem patient brains.

WNT signalling WNT is a major signalling pathway that has been

implicated in MMI. PC have been often presented as

providing a switch mechanism for the different modalities

of WNT signalling.

Direct evidence of PC role in MMI WNT aberrations is still lacking. As such, iPSC

studies should look at WNT signalling changes in MMI patients, and assess if any

changes are due to changes in PC function.

Fibroblast growth factor FGF signalling has been highlighted in SCZ. FGF affects

expression of Ift88, a component of the ciliary transport

machinery.

The interplay between FGF, MMI and PC is still poorly understood. As such, the

avenues for exploration are very wide.

Primary cilia and

dopamine

Dopamine signalling has been of major interest in SCZ

research. Several dopamine receptors have been found

on PC, including neuronal PC. Moreover, dopamine

signalling has been found to affect ciliary length.

The importance of dopamine signalling via PC remains to be explored in the

context of MMI, iPSC experiments from patient samples could be of great help

here. This should be explored in both the contexts of adult brain function, and

neurodevelopment.

Cilia–nature and nurture PC’s main function is to receive extracellular signals, and

as such defects in PC can cause cellular defects in

responding to extracellular cues. PC presents a key point

of interaction between nature and nurture.

This is a complex and exciting area, as we grow in appreciation of the interactions

between genes and the environment. Investigators would need to both assess

whether some PC defects predispose people to aberrant reaction to

environmental stressors, and whether some mutations, while not disrupting PC

function in a healthy environment, might cause PC defects, resulting in

neurodevelopmental defects, when exposed to environmental stressors.
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FUTURE DIRECTIONS

As noted, this manuscript explored several possible links between
PC and MMI. Nevertheless, there is little literature directly
exploring this topic. As such, we hope that this manuscript will
encourage more research in this area. This section highlights
some avenues that might be taken in this exploration.

PC length and frequency could be explored in histological
specimens from animal models of MMI, and from human
MMI patients. With the advances in microscopy and image
analysis techniques [we have ourselves proposed such an analysis
algorithm (175) for PC length], this is becoming a viable
experimental strategy. Perhaps the biggest obstacle might be
obtaining human post-mortem samples that would be of good
enough quality to visualise PC.

This obstacle could be partly eliminated through the use
of induced pluripotent stem cell technology, where human
neurons (or other CNS cells) could be generated from tissues
samples of MMI patients that could be ethically obtained
during their lifetime. These cells could be subjected through
a battery of tests, such as the study of their migration
responses to a variety of cues. Such experiments would help
to overcome several limitations highlighted in the text, e.g.,
the study of MMI and PC deficient neurons in electric fields.
Moreover, using genetic editing technologies the effect of
specific MMI associated mutations can also be investigated.
These systems could also be used to evaluate the effects
of environmental stressors on PC in MMI neurons, a link
hypothesised in the previous section. The development of
methods for growing cerebral organoids (114, 137), while
perhaps raising ethical considerations, will allow for even
more complex PC functions to be evaluated in a CNS-
like environment.

Finally, while this paper has shown the involvement of PC
in a range of signalling pathways. Yet, the evidence might not
yet be strong enough to call the PC a signalling hub crucial for
MMI. More research should be done to elucidate the role of PC
in such key signalling processes for MMI as the dopamine and
serotonin pathways (176) [5-HT6 receptors are predominantly
expressed on PC (177, 178)], or to look at PC facilitation of
pathways involved in the neurodevelopmental defects exhibited
by those affected by MMI.

SUMMARY

This review has outlined why PC should be considered
as an interesting area for MMI research (see summary
in Table 1). It has demonstrated the involvement of
PC in a wide variety of cellular processes, such as cell
migration and proliferation, and as a signalling hub for
various intracellular pathways related to MMI. PC have
a unique ability to integrate information necessary for
various developmental processes, and as such might be the
missing link between the genetic and environmental causes
of MMI.

PC and neuropsychiatric disorders are interesting fields
for research, and much remains to be uncovered. While the
arguments presented here show a correlation between PC and
several different levels of biological processes associated with
psychiatric disease as well as treatment, much yet remains to be
experimentally proven. It is up to basic and clinical scientists
to determine whether these are just correlations or if there is,
indeed, a causative relationship between PC and MMI.
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