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Aim: This paper proposes a novel alcoholism identification approach that can assist

radiologists in patient diagnosis.

Method: AlexNet was used as the basic transfer learning model. The global learning rate

was small, at 10−4, and the iteration epoch number was at 10. The learning rate factor

of replaced layers was 10 times larger than that of the transferred layers. We tested five

different replacement configurations of transfer learning.

Results: The experiment shows that the best performance was achieved by replacing

the final fully connected layer. Our method yielded a sensitivity of 97.44%± 1.15%, a

specificity of 97.41 ± 1.51%, a precision of 97.34 ± 1.49%, an accuracy of 97.42 ±

0.95%, and an F1 score of 97.37 ± 0.97% on the test set.

Conclusion: This method can assist radiologists in their routine alcoholism screening

of brain magnetic resonance images.

Keywords: alcoholism, transfer learning, AlexNet, data augmentation, convolutional neural network, dropout, local

response normalization, magnetic resonance imaging

INTRODUCTION

Alcoholism (1) was previously composed of two types: alcohol abuse and alcohol dependence.
According to current terminology, alcoholism differs from “harmful drinking” (2), which is an
occasional pattern of drinking that contributes to increasing levels of alcohol-related ill-health.
Today, it is defined depending on more than one of the following conditions: alcohol is
strongly desired, usage results in social problems, drinking large amounts over a long time
period, difficulty in reducing alcohol consumption, and usage resulting in non-fulfillment of
everyday responsibilities.

Alcoholism affects all parts of the body, but it particularly affects the brain. The size of gray
matter and white matter of alcoholism subjects are less than age-matched controls (3), and this
shrinkage can be observed using magnetic resonance imaging (MRI). However, neuroradiological
diagnosis using MR images is a laborious process, and it is difficult to detect minor alterations in
the brain of alcoholic patient. Therefore, development of a computer vision-based automatic smart
alcoholism identification program is highly desirable to assist doctors in making a diagnosis.

Within the last decade, studies have developed several promising alcoholism detection methods.
Hou (4) put forward a novel algorithm called predator-prey adaptive-inertia chaotic particle swarm
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optimization (PAC-PSO), and applied it to identify alcoholism
in MR brain images. Lima (5) proposed to use Haar wavelet
transform (HWT) to extract features from brain images, and the
authors used HWT to detect alcoholic patients. Macdonald (6)
developed a logistic regression (LR) system. Qian (7) employed
the cat swarm optimization (CSO) and obtained excellent results
in the diagnosis of alcoholism. Han (8) used wavelet Renyi
entropy (WRE) to generate a new biomarker; whereas Chen (9)
used a support vector machine, which was trained using a genetic
algorithm (SVM-GA) approach. Jenitta and Ravindran (10)
proposed a local mesh vector co-occurrence pattern (LMCoP)
feature for assisting diagnosis.

Recently, deep learning has attracted attention in many
computer vision fields, e.g., synthesizing visual speech (11), liver
cancer detection (12), brain abnormality detection (13), etc.
As a result, studies are now focused on using deep learning
techniques for alcoholism detection. Compared to manual
feature extractionmethods (14–18), deep learning can “learn” the
features of alcoholism. For example, Lv (19) established a deep
convolutional neural network (CNN) containing seven layers.
Their experiments found that their model obtained promising
results, and the stochastic pooling provided better performance
than max pooling and average pooling. Moreover, Sangaiah (20)
developed a ten-layer deep artificial neural network (i.e., three
fully-connected layers and seven conv layers), which integrated
advanced techniques, such as dropout and batch normalization,
into their neural network.

Transfer learning (TL) is a new pattern recognition problem-
solver (21–23). TL attempts to transfer knowledge learned using
one or more source tasks (e.g., ImageNet dataset) and uses it to
improve learning in a related target task (24). In perspective of
realistic implementation, the advantages of TL compared to plain
deep learning are: (i) TL uses a pretrained model as a starting
point; (ii) fine-tuning a pretrained model is usually easier and
faster than training a randomly-initialized deep neural network.

The contribution of this paper is that we may be the first to
apply transfer learning in this field of alcoholism identification.
We used AlexNet as the basic transfer learning model and
tested different transfer configurations. Further, the experiments
showed that the performance (sensitivity, specificity, precision,
accuracy, and F1 score) of our model is >97%, which is
superior to state-of-the-art approaches. We also validated the
effectiveness of using data augmentation which further improves
the performance of our model.

DATA PREPROCESSING

Datasets
This study was approved by the ethical committee of Henan
Polytechnic University. Three hundred seventy-nine slices were
obtained in which there are 188 alcoholic brain images and 191
non-alcoholic brain images. We divided the dataset into three
parts: a training set containing 80 alcoholic brain images and
80 non-alcoholic brain images; A validation set containing 30
alcoholic brain images and 30 non-alcoholic brain images; a test
set containing 78 alcoholic brain images and 81 non-alcoholic
brain images. The division is shown in Table 1.

TABLE 1 | Dataset division into training, validation, and test sets.

Alcoholic Non-alcoholic Total

Training 80 80 160

Validation 30 30 60

Test 78 81 159

Total 188 191 379

TABLE 2 | Data augmentation.

Alcoholic Non-alcoholic Total

Original Image 80 80 160

DA_I: Noise Injection 2,400 2,400 4,800

DA_II: Scaling 2,400 2,400 4,800

DA_III: Random Translation 2,400 2,400 4,800

DA_IV: Image Rotation 2,400 2,400 4,800

DA_V: Gamma Correction 2,400 2,400 4,800

Horizontal-flipped Image 80 80 160

DA_I: Noise Injection 2,400 2,400 4,800

DA_II: Scaling 2,400 2,400 4,800

DA_III: Random Translation 2,400 2,400 4,800

DA_IV: Image Rotation 2,400 2,400 4,800

DA_V: Gamma Correction 2,400 2,400 4,800

New Training Data 24,160 24,160 48,320

Data Augmentation
To improve the performance of deep learning, data augmentation
(DA) (25) was introduced. This was done because our deep neural
network model has many parameters, so we needed to show that
our model contains a proportional amount of sample images
to achieve optimal performance. For each original image, we
generated a horizontally flipped image. Then, for both original
and horizontal-flipped images, we applied the following five
DA techniques: (i) noise injection, (ii) scaling, (iii) random
translation, (iv) image rotation, and (v) gamma correction. Each
of those methods produced 30 new images.

Gaussian noise with zero-mean and variance of 0.01 was
applied to every image. Scaling was used with a scaling factor of
0.7–1.3, with an increase of 0.02. Random translation was utilized
with a random shift within [−40 40] pixels. Image rotation with
rotation angle varies from −30o to 30o and a step of 2o was
employed. Gamma correction with gamma value varies from 0.4
to 1.6 with a step of 0.04 was utilized.

The DA result is shown in Table 2. Each image generated
(1+30∗5)∗2= 302 images including itself. After DA, the training
set had 24,160 alcoholism brain images and 24,160 healthy brain
images. Altogether, the new training set consisted of a balanced
160∗320= 48,320 samples.

METHODOLOGY

Fundamentals of Transfer Learning
The core knowledge of transfer learning (TL) is shown in
Figure 1. The core is to use a relatively complex and successful
pre-trained model, trained from a large data source, e.g.,
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FIGURE 1 | Idea of transfer learning.

ImageNet, which is the large visual database developed for
visual object recognition research (26). It contains more than
14,000,000 hand-annotated images and at least one million
images are provided with bounding boxes. ImageNet contains
more than 20,000 categories (27). Usually, pretrained models are
trained on a subset of ImageNet with 1,000 categories. Then we
“transferred” the learnt knowledge to the relatively simplified
tasks (e.g., classifying alcoholism and non-alcoholism in this
study) with a small amount of private data.

Two attributes are important to help the transfer (28): (i) The
success of the pretrained model can promote the exclusion of
user intervention with the boring hyper-parameter tuning of new
tasks; (ii) The early layers in pretrainedmodels can be determined
as feature extractors that help to extract low-level features, such
as edges, tints, shades, and textures.

Traditional TL only retrains the new layers (29). In this study,
we initially used the pretrained model, and then re-trained the
whole structure of the neural network. Importantly, the global
learning rate is fixed, and the transferred layers will have a low
factor, while newly-added layers will have a high factor.

AlexNet
AlexNet competed in the ImageNet challenge (30) in 2012,
achieved a top-5 error of only 15.3%,more than 10.8% better than
the result of the runner-up that used the shallow neural network.
Original AlexNet was performed on two graphical processing
units (GPUs). Nowadays, researchers tend to use only oneGPU to
implement AlexNet. Figure 2 illustrates the structure of AlexNet.
This study only counts layers associated with learnable weights.
Hence, AlexNet contains five conv layers (CL) and three fully-
connected layers (FCL), totaling eight layers.

The details of learnable weights and biases of AlexNet are
shown in Table 3. The total weights and biases of AlexNet are
60,954,656 + 10,568 = 60,965,224. In Matlab, the variable is
stored in single-float type, taking four bytes for each variable.
Hence, in total we needed to allocate 233 MB.

Common Layers in AlexNet
Compared to traditional neural networks, there are several
advanced techniques used in AlexNet. First, CLs contain a set
of learnable filters. For example, the user has a 3D input with a
size of PW×PH×D, a 3D filter with a size of QW×QH×D. As a

consequence, the size of the output activation map is SW×SH .
The value of SW and SH can be obtained by

SW = 1+
PW − QW + 2β

µ
(1)

SH = 1+
PH − QH + 2β

µ
(2)

where µ is the stride size and β represents the margin.
Commonly, there may be T filters. One filter will generate one
2D feature map, and T filters will yield an activation map with
a size of SW×SH×T. An illustration of convolutional procedure
is shown in Figure 3. The “feature learning” in the filters here,
can be regarded as a replacement of the “feature extraction” in
traditional machine learning.

Second, the rectified linear unit (ReLU) function was
employed to replace the traditional sigmoid function S(x) in
terms of the activation function (31). The reason is because the
sigmoid function may come across a gradient vanishing problem
in deep neural network models.

S(x) =
1

1+ exp(−x)
(3)

Therefore, the ReLU was proposed and defined as follows:

Re LU(x) = max(0, x) (4)

The gradient of ReLU is one at all times, when the input is
larger than or equal to zero. Scholars have proven that the
convergence speed of deep neural networks, with ReLU as the
activation function, is 6x quicker than traditional activation
functions. Therefore, the new ReLU function greatly accelerates
the training procedure.

Third, a pooling operation is implemented with two
advantages: (i) It can reduce the size of the feature map, and
thus reduce the computation burden. (ii) It ensures that the
representation becomes invariant to the small translation of the
input. Map pooling (MP) is a common technique that chooses
the maximum value among a 2 × 2 region of interest. Figure 4
shows a toy example of MP, with a stride of 2 and kernel size of 2.

The fourth improvement is the “local response normalization
(LRN).” Krizhevsky et al. (26) proposed the LRNs in order to
aid generalization. Suppose that ai represents a neuron computed
by applying kernel i and ReLU non-linearity, then the response-
normalized neuron bi will be expressed as:

bi =
ai

(

m+ α
min(Z−1,i+z/2)

∑

s=max(0,i−z/2)
a2s

)β
(5)

where z is the window channel size, controlling the number of
channels used for normalization of each element, and Z is the
gross number of kernels in that layer. Hyperparameters are set
as: β = 0.75, α = 10−4,m= 1, and z = 5.
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FIGURE 2 | Structure of AlexNet (5 CLs and 3 FCLs).

TABLE 3 | Learnable layers in AlexNet.

Name Weights Biases

CL1 11*11*3*96 = 34,848 1*1*96 = 96

CL2 5*5*48*256 = 307,200 1*1*256 = 256

CL3 3*3*256*384 = 884,736 1*1*384 = 384

CL4 3*3*192*384 = 663,552 1*1*384 = 384

CL5 3*3*192*256 = 442,368 1*1*256 = 256

FCL6 4096*9216 = 37,748,736 4096*1 = 4,096

FCL7 4096*4096 = 16,777,216 4096*1 = 4,096

FCL8 1000*4096 = 4,096,000 1000*1 = 1,000

CL

Subtotal

2,332,704 1,376

FCL

Subtotal

58,621,952 9,192

Total 60,954,656 10,568

FIGURE 3 | Illustration of convolution operation.

Fifth, the fully connected layers (FCLs) have connections
to all activations in the previous layer, so they can be
modeled as multiplying the input by a weight matrix and
then adds a bias vector. The last fully-connected layer
includes the equal number of artificial neurons as the
number of total classes C. Therefore, each neuron in the

last FCL represents the score of that cognate class, as shown
in Figure 5.

Sixth, the softmax layer (SL), utilizes the multiclass
generalization of logistic regression (32), also known as softmax
function. SL is commonly connected after the final FCL. From
the perspective of the activation function, the sigmoid/ReLU
function works on a single input single output mode, while the
SL serves as a multiple input multiple output mode, as shown
in Figure 6. A toy example can be imagined. Suppose we have a
four input at the final SL layer with values of (1–4), then after a
softmax layer, we have an output of [0.032, 0.087, 0.236, 0.643].

Suppose that T(f ) symbolizes the prior class probability of
class f, and T(h|f ) means the conditional probability of sample h
given class f. Then we can conclude that the likelihood of sample
h belonging to class f is

T(f
∣

∣h ) =
T(h

∣

∣f )× T(f )
F
∑

i=1
T(h |i )× T(i)

(6)

Here F stands for the whole number of classes. Let Ωf equals

�f = ln
[

T(h, f )× T(f )
]

(7)

Afterwards, we get

T(f
∣

∣h ) =
exp

(

�f (h)
)

F
∑

i=1
exp

(

�i(h)
)

(8)

Finally, a dropout technique is used, since training a big neural
network is too expensive. Dropout freezes neurons at random
with a dropout probability (PD) of 0.5. During training phase,
those dropped out neurons are not engaged in both a forward
and backward pass. During the test phase, all neurons are used
but with outputs multiplied by PD of 0.5 (33).

It can be regarded as taking a geometric mean of
predictive distributions, generated by exponentially-many small-
size dropout neural networks. Figure 7A shows a plain neural
network with numbers of neurons at each layer as (2, 4, 8, 10),
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FIGURE 4 | Example of max pooling (stride = 2, kernels size = 2).

FIGURE 5 | Structure of last fully-connected layer (C stands for the number of

total classes).

and Figure 7B shows the corresponding dropout neural network
with PD of 0.5, where only (1, 2, 4, 5) neurons remain active at
each layer.

Transfer AlexNet to
Alcoholism Identification
First, we needed to modify the structure. The last FCL was
revised, since the original FCLs were developed to classify 1,000
categories. Twenty randomly selected classes were listed as: scale,
barber chair, lorikeet, miniature poodle, Maltese dog, tabby,
beer bottle, desktop computer, bow tie, trombone, crash helmet,
cucumber, mailbox, pomegranate, Appenzeller, muzzle, snow
leopard, mountain bike, padlock, diamondback. We observed
that none of them are related to the brain image. Hence, we could

not directly apply AlexNet as the feature extractor. Therefore,
fine-tuning was necessary.

Since the length of output neurons in orthodox AlexNet
(1000) is not equal to the number of classes in our task
(2), we needed to revise the corresponding softmax layer and
classification layer. The revision is shown in Table 4. In our
transfer learning scheme, we used a new randomly-initialized
fully connected layer with two neurons, a softmax layer, and
a new classification layer with only two classes (alcoholism
and non-alcoholism).

Next, we set the training options. Three subtleties were
checked before training. First, the whole training epoch should be
small for a transfer learning. In this study, we set the number of
training epochs to 10. Second, the global learning rate was set to
a small value of 10−4 to slow learning down, since the early parts
of this neural network were pre-trained. Third, the learning rate
of new layers were 10 times that of the transferred layer, since the
transferred layers with pre-trained weights/biases and new layers
were with random-initialized weights/biases.

Third, we varied the numbers of transferred layers and tested
different settings. The AlexNet consists of five conv layers (CL1,
CL2, CL3, CL4, and CL5) and three fully-connected layers (FCL6,
FL7, FL8). As a result, we tested five different transfer learning
settings as shown in Figure 8 in total, in all experiments. For
example, here Setting A means that the layers from the first layer
to layer A are transferred directly with learning rate as 10−4

× 1 = 10−4. The late layers from layer A to the last layer are
randomly initialized with a learning rate of 10−4 × 10= 10−3.

Implementation and Measure
We ran the experiment many times. Each time, the training-
validation-test division was set at random again. The training
procedure stopped when either the algorithm reached maximum
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FIGURE 6 | Two modes of activation function. (A) Single input single output mode. (B) Multiple input multiple output mode.

FIGURE 7 | Dropout neural network. (A) Before dropout. (B) After dropout.

TABLE 4 | Revision of Last three layers of AlexNet.

Layer Original Replaced

23 FCL (1000) with pre-trained

weights and biases

FCL (2) with random

initialization

24 Softmax Layer Softmax Layer

25 Classification Layer

(1,000 classes)

Classification Layer

(two classes: alcoholism

and non-alcoholism)

epoch, or the performance of validation decreased over a preset
training epoch. We repeatedly tuned the hyperparameters and
found those optimal hyper-parameters based on a validation
set. After the hyperparameters were fixed, we ran the final
model on the test set for 10 runs. The test set confusion
matrix across all runs was recorded, and the following five

measures were calculated: sensitivity (SEN), specificity (SPC),
precision (PRC), accuracy (ACC), and F1 score. Assume TP,
TN, FP, and FN stands for true positive, true negative, false
positive, and false negative, respectively, all five measures were
defined as:

SEN =
TP

TP + FN
(9)

SPC =
TN

TN + FP
(10)

PRC =
TP

TP + FP
(11)

ACC =
TP + TN

TP + TN + FP + FN
(12)

F1 considers both the precision and the sensitivity to computer
the score (34). That means, the measure of the “F1 score” is
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FIGURE 8 | Five different settings A-E (Setting A stands for the layers from first

layer till layer A are transferred layers, and the remaining layers are

replaced layers).

the harmonic mean of the previous two measures: precision
and sensitivity.

F1 =

(

SEN−1 + PRC−1

2

)−1

(13)

Using simple mathematical knowledge, we can obtain:

F1 = 2/
(

TP+FN
TP + TP+FP

TP

)

= 2/
(

2TP+FP+FN
TP

)

= 2×TP
2×TP+FP+FN

(14)

Then, the average and standard deviation (SD) of all five
measures of 10 runs of the test set were calculated and used
for comparison. For ease of understanding, a pseudocode of
our experiment is listed below in Table 5. The first block is
to split the dataset into non-test and test sets. In the second
block, the non-test set was split into training and validation
randomly. The performance of the retrained AlexNet model
was recorded and used to select the optimal transfer learning
setting S∗. In the final block, the performance on the test
set via the retrained AlexNet using setting S∗ was recorded
and outputted.

RESULTS

Data Augmentation Results
Figure 9 shows the horizontally flipped image. Here, vertical
flipping was not carried out because it can be seen as a
combination of horizontal flipping with 180-degree rotation.

TABLE 5 | Pseudocode of our experiment.

[NonTest, Test]=split(Dataset);

for S = [A, B, C, D, E]

for i = 1:10

[train(i), valid(i)] = split(NonTest),

Model(S, i) = TrainNetwork(AlexNet, train(i), valid(i), Setting = S),

PerfValid(S, i) = Predict(Model(S, i), valid(i)),

end

PerfValid(S) = mean(PerfValid(S, i)),

End

S* = argmax[Performance(S)],

for i = 1:10

[train(i), valid(i)] = split(NonTest),

Model(S*, i) = TrainNetwork(AlexNet, train(i), valid(i), Setting = S*),

PerfTest(S*, i) = predict(Model(S*, i), Test),

End

PerfTest(S*) = mean(PerfTest(S*, i)),

Output PerfTest(S*),

FIGURE 9 | Data augmentation by horizontal flipping. (A) Original image. (B)

Flipped image.

Figure 10 shows the data augmentation results of five different
techniques: (a) noise injection; (b) scaling; (c) random
translation; (d) image rotation; (e) Gamma correction. Due
to the page limit, the data augmentation results on the flipped
image are not shown.

Comparison of Setting of TL
In this experiment, we compared five different TL settings on
the validation set. The results of Setting A are shown in Table 6,
where the last row shows the mean and standard deviation
value. The results of Setting E are shown in Table 7. Due to
page limit, we only show the final results of Setting B, C, and
D in Table 8.

Here, it can be seen from Table 8 that Setting E, i.e., replacing
the FCL8, achieves the greatest performance among all five
settings with respect to all measures. The reason may be (i)
we expanded a relatively small dataset to a large training
set using data augmentation; and (ii) the dissimilarity of our
data and the original 1,000-category dataset. The first fact
ensures that retraining avoids overfitting; and the latter fact
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FIGURE 10 | Five augmentation techniques of the original image. (A) Noise injection. (B) Scaling. (C) Random translation. (D) Image rotation. (E) Gamma correction.
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TABLE 6 | Ten runs of validation performance of transfer learning using Setting A.

Run SEN SPC PRC ACC F1

1 96.67 93.33 93.54 95.00 95.05

2 100.00 100.00 100.00 100.00 100.00

3 90.00 100.00 100.00 95.00 94.70

4 96.67 90.00 90.63 93.33 93.55

5 90.00 96.67 96.43 93.33 93.10

6 96.67 96.67 96.67 96.67 96.67

7 96.67 96.67 96.88 96.67 96.66

8 96.67 100.00 100.00 98.33 98.28

9 100.00 90.00 90.99 95.00 95.26

10 96.67 93.33 93.54 95.00 95.05

Mean ± SD 96.00 ± 3.27 95.67 ± 3.67 95.87 ± 3.40 95.83 ± 2.01 95.83 ± 2.00

TABLE 7 | Ten runs of validation performance of transfer learning using Setting E.

Run SEN SPC PRC ACC F1

1 93.33 100.00 100.00 96.67 96.55

2 100.00 96.67 96.88 98.33 98.39

3 100.00 100.00 100.00 100.00 100.00

4 100.00 100.00 100.00 100.00 100.00

5 93.33 93.33 93.33 93.33 93.33

6 96.67 100.00 100.00 98.33 98.28

7 100.00 100.00 100.00 100.00 100.00

8 96.67 93.33 93.54 95.00 95.05

9 96.67 93.33 93.54 95.00 95.05

10 100.00 100.00 100.00 100.00 100.00

Mean ± SD 97.67 ± 2.60 97.67 ± 3.00 97.73 ± 2.93 97.67 ± 2.38 97.67 ± 2.37

TABLE 8 | Comparison of different setting.

Setting SEN SPC PRC ACC F1

A 96.00 ± 3.27 95.67 ± 3.67 95.87 ± 3.40 95.83 ± 2.01 95.83 ± 2.00

B 96.33 ± 3.79 96.00 ± 2.49 96.12 ± 2.43 96.17 ± 2.36 96.15 ± 2.43

C 96.33 ± 3.48 96.33 ± 3.14 96.49 ± 2.94 96.33 ± 2.08 96.33 ± 2.11

D 97.00 ± 3.79 97.00 ± 2.77 97.06 ± 2.70 97.00 ± 2.56 96.98 ± 2.62

E 97.67 ± 2.60 97.67 ± 3.00 97.73 ± 2.93 97.67 ± 2.38 97.67 ± 2.37

Bold means the best.

suggests that it is more practical to put most of the layers
initialized with weights from a pretrained model, than freezing
those layers. For clarity, we plotted the error bar and show it
in Figure 11.

Analysis of Optimized TL Setting
The structure of the optimal transfer learning model
(Setting E) is listed in Table 9. Compared to the traditional
AlexNet model, the weights and biases of FCL8 were
reduced from 4,096,000 to 8,192, and from 1,000 to 2,
respectively. The main reason is that we only had two
categories in our classification task. Thus, the whole weight
of the deep neural network reduced slightly from 60,954,656
to 56,866,848.

Nevertheless, we can observe that FCL6 and FCL7 still
constitutes too many weights and biases. For example,
FCL6 occupied 37,748,736/56,866,848 = 66.38% of the
total weights in this optimal model, and FCL7 occupied
16,777,216/56,866,848 = 29.50% of the total weights.
Additionally, the FCL subtotal comprised 95.90% of the
total weights. This is the main limitation of our method.
To solve it, we need to replace the fully connected layers
with 1 × 1 conv layers. Another solution is to choose small-
size transfer learning models, such as SqueezeNet, ResNet,
GoogleNet, etc.

Effect of Data Augmentation
This experiment compared the performance of runs with
data augmentation against runs without data augmentation
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(DA). Configuration of transfer learning was set to Setting
E. All the other parameters and network structures were
the same as the previous experiments. The performance of
the 10 runs without using DA are shown in Table 10. The
results in terms of all measures are equal to or slightly
above 95%.

The comparison of using DA against not using DA is shown
in Table 11. We can discern that DA indeed enhances the
classification performance. The reason is that having a large
dataset is crucial for good performance. The alcoholism image
dataset is commonly of small size, and its size can be augmented
to the order of tens of thousands (48,320 in this study). AlexNet
can make full use of all its parameters with a big dataset. Without
using DA, overfitting is likely to occur in the transferred model.

Results of Proposed Method
In this experiment, we chose Setting E (replace the final block)
as shown in Figure 8. Here, the retrained neural network
was tested on the test set. The results over all 10 runs on

FIGURE 11 | Error bar of five TL settings.

the test set are listed in Table 12 with details of sensitivity,
specificity, precision, accuracy, and the F1 score of each
run. Setting E yielded a sensitivity of 97.44 ± 1.15%, a
specificity of 97.41 ± 1.51%, a precision of 97.34 ± 1.49%,
an accuracy of 97.42 ± 0.95%, and an F1 score of 97.37%
± 0.97%. Comparing Table 12 with Table 7, we can see that
the mean value of test performance is slightly worse than
that of the validation performance, but the standard deviation
of the test performance is much smaller than that of the
validation performance.

Comparison to Alcoholism
Identification Approaches
This proposed transfer learning approach was compared
with seven state-of-the-art approaches: PAC-PSO (4),
HWT (5), LR (6), CSO (7), WRE (8), SVM-GA (9),
and LMCoP (10). The comparison results are shown in
Table 13. The cognate bar plot is shown in Figure 12.
We can observe that our AlexNet transfer learning model
has more than 3% improvement compared to the next
best approach.

The reason is that this proposed model did not need
to find features manually; nevertheless, it only used a
learned feature from a pretrained model as initialization,
and utilized the enhanced training set to fine-tune those
learned features. This has two advantages: First, the
development is quite fast, which can be reduced to <1
day. Second, the features can be fine-tuned to be more
appropriate to this alcoholism classification task than other
manually-designated features.

The bioinspired-algorithm may help retraining our AlexNet
model. Particle swarm optimization (PSO) (35–37) and other
methods will be tested. Cloud computing (38) in particular
can be integrated into our method, to help diagnosis of
remote patients.

TABLE 9 | Learnable layers in optimal transfer learning model.

Name Weights Weights (%) Biases Biases (%)

CL1 (Ours) 11*11*3*96 = 34,848 0.06 1*1*96 = 96 1.00

CL2 (Ours) 5*5*48*256 = 307,200 0.54 1*1*256 = 256 2.68

CL3 (Ours) 3*3*256*384 = 884,736 1.56 1*1*384 = 384 4.01

CL4 (Ours) 3*3*192*384 = 663,552 1.17 1*1*384 = 384 4.01

CL5 (Ours) 3*3*192*256 = 442,368 0.78 1*1*256 = 256 2.68

FCL6 (Ours) 4096*9216 = 37,748,736 66.38 4096*1 = 4,096 42.80

FCL7 (Ours) 4096*4096 = 16,777,216 29.50 4096*1 = 4,096 42.80

FCL8 (AlexNet) 1000*4096 = 4,096,000 1000*1 = 1,000

FCL8 (Ours) 2*4096 = 8,192 0.01 2*1 = 2 0.02

CL Subtotal (AlexNet) 2,332,704 1,376

CL Subtotal (Ours) 2,332,704 4.10 1,376 14.38

FCL Subtotal (AlexNet) 58,621,952 9,192

FCL Subtotal (Ours) 54,534,144 95.90 8,194 85.62

Total (AlexNet) 60,954,656 10,568

Total (Ours) 56,866,848 100 9,570 100
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TABLE 10 | Ten runs without using data augmentation (Setting E).

Run SEN SPC PRC ACC F1

1 83.33 96.67 96.15 90.00 89.29

2 96.67 93.33 93.54 95.00 95.05

3 96.67 93.33 93.54 95.00 95.05

4 96.67 90.00 90.78 93.33 93.54

5 96.67 100.00 100.00 98.33 98.28

6 96.67 96.67 96.67 96.67 96.67

7 96.67 93.33 93.54 95.00 95.05

8 93.33 100.00 100.00 96.67 96.55

9 93.33 96.67 96.67 95.00 94.94

10 100.00 93.33 93.75 96.67 96.77

Mean ± SD 95.00 ± 4.28 95.33 ± 3.06 95.46 ± 2.84 95.17 ± 2.17 95.12 ± 2.32

TABLE 11 | Effect of using data augmentation technique.

DA SEN SPC PRC ACC F1

Not use DA 95.00 ± 4.28 95.33 ± 3.06 95.46 ± 2.84 95.17 ± 2.17 95.12 ± 2.32

Use DA

(ours)

97.67 ± 2.60 97.67 ± 3.00 97.73 ± 2.93 97.67 ± 2.38 97.67 ± 2.37

TABLE 12 | Ten runs of proposed method on the test set (Setting E).

Run SEN SPC PRC ACC F1

1 97.44 96.31 96.22 96.86 96.82

2 98.72 93.81 93.93 96.23 96.25

3 94.87 96.31 96.09 95.61 95.47

4 97.44 98.75 98.72 98.11 98.07

5 98.72 98.75 98.72 98.73 98.72

6 98.72 97.53 97.47 98.11 98.09

7 97.44 98.78 98.72 98.12 98.07

8 97.44 98.75 98.75 98.12 98.05

9 96.15 97.53 97.40 96.84 96.74

10 97.44 97.53 97.44 97.48 97.44

Mean ± SD 97.44 ± 1.15 97.41 ± 1.51 97.34 ± 1.49 97.42 ± 0.95 97.37 ± 0.97

TABLE 13 | Comparison with state-of-the-art approaches.

Approach SEN SPC PRC ACC F1

PAC-PSO (4) 90.67 91.33 91.28 91.00 90.97

HWT (5) 81.71 81.43 81.48 81.57 81.60

LR (6) 84.00 84.86 84.73 84.43 84.36

CSO (7) 91.84 92.40 91.92 92.13 91.88

WRE (8) 93.60 93.72 93.35 93.66 93.47

SVM-GA (9) 88.42 88.93 88.27 88.68 88.34

LMCoP (10) 89.04 90.00 89.35 89.53 89.19

AlexNet (Ours) 97.44 97.41 97.34 97.42 97.37

CONCLUSIONS

In this study, we proposed an AlexNet-based transfer learning
method and applied it to the alcoholism identification

task. This paper may be the first paper using transfer
learning in the field of alcoholism identification. The
results showed that this proposed approach achieved
promising results with a sensitivity of 97.44 ± 1.15%,
a specificity of 97.41 ± 1.51%, a precision of 97.34 ±

1.49%, an accuracy of 97.42 ± 0.95%, and an F1 score of
97.37± 0.97.

Future studies may include the following points: (i) other
deeper transfer learning models, such as ResNet, DenseNet,
GoogleNet, SqueezeNet, etc. should be tested; (ii) other data
augmentation techniques should be attempted. Currently our
dataset is small, so data augmentation may have a distinct effect
on improving the performance; (iii) how to set the learning
rate factor of each individual layer in the whole neural network,
remains a challenge and needs to be solved; (iv) this method is
ready to run on a larger dataset and can assist radiologists in their
routine screening of brain MR images.
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FIGURE 12 | Bar plot of comparison of eight algorithms.
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