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Posttraumatic stress disorder (PTSD) is a psychiatric condition that can emerge after 
exposure to an exceedingly traumatic event. Previous neuroimaging studies have indicated 
that PTSD is characterized by aberrant resting-state functional connectivity (FC). However, 
few existing studies on PTSD have examined dynamic changes in resting-state FC related 
to network formation, interaction, and dissolution over time. In this study, we compared 
the dynamic resting-state local and large-scale FC between PTSD patients (n = 22) and 
healthy controls (HC; n = 22; conducted as standard deviation in resting-state local and 
large-scale FC over a series of sliding windows). Local dynamic FC was examined by 
calculating the dynamic regional homogeneity (dReHo), and large-scale dynamic FC 
(dFC) was investigated between regions with significant dReHo group differences. For the 
PTSD patients, we also investigated the relationship between symptom severity and dFC/
dReHo. Our results showed that PTSD patients were characterized by I) increased dynamic 
(more variable) dReHo in left precuneus (PCu); II) increased dynamic (more variable) dFC 
between the left PCu and left insula; and III) decreased dFC between left PCu and left 
inferior parietal lobe (IPL), and decreased dFC between left PCu and right PCu. However, 
there is no significant correlation between the clinical indicators and dReHo/dFC after the 
family-wise-error (FWE) correction. These findings provided the initial evidence that PTSD is 
characterized by aberrant patterns of fluctuating communication within brain system such 
as the default mode network (DMN) and among different brain systems such as the salience 
network and the DMN.

Keywords: posttraumatic stress disorder, resting-state functional magnetic resonance imaging, dynamic 
functional connectivity, regional homogeneity, default mode network

INTRODUCTION

Posttraumatic stress disorder (PTSD) is a psychiatric condition that can emerge after exposure 
to an exceedingly traumatic event (1). In the general population, PTSD occurs most commonly 
after traffic accidents and affects 10%–32% of those involved within 12 months after the event 
(2). Symptoms of PTSD include intrusive memories, hypervigilance, insomnia, and emotional 

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2019.00234
https://www.frontiersin.org/journals/psychiatry#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2019.00234&domain=pdf&date_stamp=2019-04-12
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry
https://creativecommons.org/licenses/by/4.0/
mailto:jianggh@gd2h.org.cn
https://doi.org/10.3389/fpsyt.2019.00234
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00234/full
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00234/full
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00234/full
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00234/full
https://loop.frontiersin.org/people/632362
https://loop.frontiersin.org/people/499355
https://loop.frontiersin.org/people/530762
https://loop.frontiersin.org/people/510834
https://loop.frontiersin.org/people/532318


Altered dFC Variability in PTSDFu et al.

2 April 2019 | Volume 10 | Article 234Frontiers in Psychiatry | www.frontiersin.org

numbing (3). Previous studies have indicated that PTSD patients 
exhibited abnormal interactions among the brain systems (4, 5). 
For example, Zhang et al. found that the dorsolateral prefrontal 
cortex showed increased resting-state functional connectivity 
(FC) with the visual cortex, suggesting that the disrupted frontal-
occipital system may be associated with the dysfunction of visual 
information processing (5). One of robustly identifiable networks 
is the default mode network (DMN) (6), which is involved in 
processing self-relevant stimuli (7, 8). The dysfunction of the 
DMN in PTSD patients may indicate impaired self-generated 
thoughts and autobiographical memory during rest (9).

One effective approach for exploring brain communication 
is through the analysis of resting-state fMRI studies (10). Recent 
resting-state studies in both animals and humans have revealed 
the dynamic nature of the spatiotemporal organization of 
blood oxygen level-dependent (BOLD) signals (11–13). Due to 
unconstrained mental activity, the resting state even shows more 
dynamic features than in task-stimuli studies (14). A recent study 
of dynamic FC network indicated that the static FC represented 
average connectivity across different dynamic states during 
the whole scanning period; it may not be sensitive enough to 
detect the alteration of neurofluctuations (15). In order to 
investigate the dynamic features of inter-regional BOLD signal 
fluctuations over temporal scales, the sliding window analysis 
of dynamic FC (dFC) was developed. This approach measured 
the variety correlations among discrete (large-scale) brain 
regions (16) using a short, sliding temporal window. Kaiser 
et al. found that the resting-state dFC revealed the interactions 
among networks or subnetworks over time (17). Early studies 
suggested that the dFC can be associated with the changes in 
arousal (18) and vigilance (19) since hypervigilance and hyper-
arousal are two typical symptoms of PTSD. We proposed to 
use dFC to investigate the characteristic features of PTSD in 
the resting state. Moreover, since changes in brain network 
topology are associated with those in local brain activity (20), it 
was reasonable for us to measure both the large-scale and local 
dynamic FC in our study.

Regional homogeneity (ReHo) is one of the commonly 
used algorithms in measuring local FC (21–23). ReHo is a 
reliable measurement technique and robust against noise in 
the fast imaging sequence data (24). A prior animal study has 
suggested an association between ReHo variability and different 
states of neural activity (25). A recent study of dReHo using 
the sliding-window approach also indicated that brain regions 
with high dReHo fluctuation tended to be functional hubs in 
brain systems (26). A resting-state study has shown that the 
gene variants affected dReHo in attention-deficit/hyperactivity 
disorder (27). These findings introduced the clinical potential of 
dReHo analysis.

The investigation of dFC and dReHo in the resting state 
may provide new insight into the aberrant brain connectivity 
in PTSD. Previous studies investigating major depression 
(28), schizophrenia (29, 30), and bipolar disorder (31) showed 
abnormal dFC and dReHo under the resting state of these 
patients, and all of these psychiatry researches found aberrant 
dFC or aberrant dynamic local activities in the DMN. A possible 
explanation for these abnormalities is the dynamic nature of 

the DMN, which exhibits dynamic interactions with a number 
of other brain systems in the resting state (32). Kaiser et al. (17) 
indicated that the investigation of altered dynamic activity 
in areas of the DMN may be important in understanding the 
pathophysiology of psychiatric disorders.

Although there are few studies available that have focused 
on the dynamic brain activity in PTSD, prior static studies 
have suggested that the symptoms of PTSD are associated 
with the DMN. Mounting evidence has indicated that PTSD 
is associated with aberrant DMN connectivity (33–35). A 
static FC (sFC) study suggested that the aberrant activities in 
the DMN can be a predictor of the symptom severity of PTSD 
(8). A previous study also approved that the static fMRI data 
can be used to discriminate the PTSD from HC by using the 
multilevel parametric classification approach (36). A recent 
study compared the accuracy of sFC to the accuracy of dFC 
in classifying PTSD patients and HC (37). The results showed 
that the peak classification accuracy of dFC reached 94.2%, 
while the peak classification accuracy of sFC was 86.7%; this 
research indicated that the temporal dFC is a better predictor 
than sFC of the diagnostic features of PTSD. Additionally, this 
study indicated that, in comparison with the HC, the PTSD 
patients were characterized by decreased temporal variability of 
brain connectivity. Preti et al. also indicated that PTSD patients 
often stay trapped in one state and exhibited a decreased dFC in 
comparison with HC subjects (38). All of these studies indicated 
that the aberrant connectivity variability of brain networks is 
vital in the investigation of the neurophysiological mechanism 
of PTSD.

In order to explore the characteristic resting-state temporal 
variability of PTSD, we decided to measure both large-scale and 
local dynamic FC. Based on previous findings, we hypothesized 
that PTSD patients would exhibit altered dReHo in regions 
within the DMN. We also expected regions with dReHo 
alterations to show aberrant dFC and the connectivity measures 
to be associated with subjects’ symptomatology.

METHOD

Subjects
Permission to undertake this study was granted by the ethics 
committee of Guangdong Second Provincial General Hospital. In  
January and February 2017, we recruited 30 trauma-exposed 
subjects from a serious highway traffic accident in Guangdong 
province. Prior to the examination, none of the patients had 
undergone any psychotherapy. The inclusion criteria for the PTSD 
patients were as follows: I) age >18 years; II) right-hand dominance; 
III) no preexisting psychiatric disorders or physical conditions as 
determined by a structural clinical interview using the Diagnostic 
and Statistical Manual of Mental Disorders, 4th edition (DSM-IV); 
IV) no psychiatric medications or substance abuse; V) no MR 
imaging contraindications; VI) no head trauma or neurologic 
disorders; VII) fulfills the criteria of DSM-IV and has a Clinical-
Administered PTSD Scale (CAPS) score >40; and VIII) not 
pregnant or nursing. After considering the strict requirements, 
eight subjects were excluded, five of them for failing to obtain the 
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CAPS score >40. Twenty-two demographically matched healthy 
controls (HCs) were recruited for this study. The inclusion 
criteria for HCs were as follows: I) age >18 years; II) right-hand 
dominance; III) no preexisting psychiatric disorders or physical 
conditions as determined by a structural clinical interview using 
the DSM-IV; IV) no psychiatric medications or substance abuse; 
V) no MR imaging contraindications; and VI) not pregnant or 
nursing. Each participant provided written informed consent, 
which was obtained prior to the MRI scanning.

Assessment of Mental Status
PTSD diagnosis was determined following the DSM-IV 
diagnostic criteria. Before undergoing resting-state MRI, all 
PTSD patients were screened with CAPS (39) in order to estimate 
the intensity and frequency of the symptoms. In addition, 
emotion assessments were conducted of all participants, 
including the Self-rating Anxiety Scale (SAS) (40) and the Self-
rating Depression (SDS) (41), in order to evaluate the emotional 
status. A further Structured Clinical Interview for DSM-IV was 
also performed to evaluate psychiatric disorder comorbidities.

Magnetic Resonance Imaging 
Data Acquisition
Each of the participants underwent a resting-state MRI in a 3.0-T 
MR imager (Ingenia; Philips, Best, The Netherlands) equipped 
with a 32-channel head coil at the Department of Medical 
Imaging in Guangdong Second Provincial General Hospital. A 
diagnostic T1-weighted image and a T2 fluid attenuated inversion 
recovery (T2-FLAIR) image were taken to exclude participants 
with brain lesions. The resting-state fMRI data were acquired 
using gradient echo-planar imaging (EPI) with the following 
parameters: repetition time (TR)/echo time (TE) = 2,000 ms/30 ms; 
matrix = 64 × 64; field-of-view = 230 mm × 230 mm; flip 
angle = 90; slice thickness = 3.6 mm, 0.6-mm gap; interleaved 
scanning; 38 transverse slices covering the whole brain at all 240 
volumes were acquired for each participant within 480 s; each 
volume was aligned along the anterior–posterior commissure. 
Each participant was instructed to lie still and to avoid falling 
asleep or thinking of anything in particular during MR scanning.

Resting-State Functional Magnetic 
Resonance Imaging Data Preprocess
Standard preprocessing of the functional images was performed 
with the DPARSF 4.3 Advanced Edition (http://rfmri.org/
DPARSF) and the SPM12 package (www.fil.ion.ucl.ac.uk/spm) 
based on MATLAB (Mathworks, Inc., Natick, MA, USA). The first 
10 volumes of each dataset were discarded for signal equilibration. 
The remaining data were performed using slice timing correction 
and realignment and co-registered with the anatomical scan. The 
co-registered T1-weighted images were segmented into gray matter, 
white matter, and cerebrospinal fluid. And then the functional 
images were normalized into the Montreal Neurological Institute 
(MNI) space with a voxel size of 3 × 3 × 3 mm3. The head movement 
parameters were obtained from the realignment steps in the 
DPARSF. We took the mean FD Jenkinson (42) as the head motion 

reference standard. We eliminated the subjects with motion (mean 
FD Jenkinson) greater than 2 × standard deviation (SD) above the 
group mean motion as recommended in a previous study (43). 
No subject was eliminated in this step. There was no significant 
difference in head motion between the PTSD patients and the 
HC (see Table 1). Linear detrending processing was conducted to 
remove the linear signal drift. Individual-level regression analysis 
was conducted to minimize the influence of head motion (Friston 
24 model), white matter signal noise, and cerebrospinal fluid signal 
noise. A temporal band-pass filter (0.0167–0.10 Hz) was applied to 
the data to remove the physical noise and any frequencies for which 
the period was shorter than that of a single sliding window (44). 
We performed spatial smoothing with a 6-mm full-width at half-
maximum (FWHM) kernel before performing the dReHo group 
analysis. As for the dFC, we performed the spatial smoothing with 
a 6-mm FWHM kernel before the linear detrending and nuisance 
signals regression, and band-pass filtering. Considering the size of 
FWHM Gaussian kernel might affect the results of dReHo/dFC 
analysis (45, 46), we used 4- and 8-mm FWHM Gaussian kernel 
to test the consistency of our results (45, 46) (see Supplementary 
Figures 1 and 2).

Computation of dReHo and dFC
ReHo calculation: The ReHo algorithm measures voxel-wise 
short-distance FC with Kendall’s coefficient of concordance (23) 
using the following formula:
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where W is the Kendall’s coefficient of concordance among the 
given voxels, N denotes the length of the time series, K = 27 
is the size of the voxel cluster containing 3 × 3 × 3 adjacent 
voxels, Ri denotes the summation of the rankings of the BOLD 
signal amplitude of all K voxels at the ith time point, and R is 
the mean of Ri.

To compute the dReHo for these data, the time course was 
segmented into 60-s Hamming windows (30 dynamics). By 
sliding the onset of each window by 2 dynamics (4 s), for a 
total of 101 overlapping windows in the first level analysis, the 
dReHo was estimated by using the calculated SD of the ReHo 

TABLE 1 | Demographic and clinical data.

Characteristic PTSD (n = 22) HC (n = 22) t value P value

Age (years) 37.36 ± 8.95 40.32 ± 10.34 −1.014 0.317
Gender (M/F) 8/14 8/14
Head motion 0.169 ± 0.443 0.159 ± 0.441 0.073 0.942
Education (years) 11.82 ± 3.22 10.45 ± 4.25 1.200 0.237
CAPS 51.45 ± 6.93
SAS 36.09 ± 8.11 38.18 ± 6.02 −0.971 0.337
SDS 38.05 ± 9.49 39.09 ± 8.08 −0.393 0.696

Demographic data are presented as mean ± SD. PTSD, posttraumatic stress 
disorder; HC, healthy control; CAPS, Clinical-Administrated PTSD Scale; SAS, Self-
rating Anxiety Scale; SDS, Self-rating Depression Scale. The P-value was obtained 
by the two-sample t test.
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through the windows at each voxel, yielding a set of ReHo 
maps for each participant.

Two-sample t-test with head motion parameters (mean FD 
Jenkinson values), age, and sex as covariates was performed to test 
the difference in dReHo maps between the PTSD patients and HC 
at each voxel. Multiple comparisons correction was performed with 
Gaussian random field (GRF) theory at the cluster level (minimum 
z > 3.54; cluster significance: p < 0.05, two-tailed GRF corrected).

To determine whether the dReHo metrics were associated 
with clinical indicators, we performed general linear models with 
the clinical indicators (CAPS, SAS, SDS) and mean dReHo values 
from clusters with significant group differences as independent 
variables, and head motion parameters, age, and sex as covariates. 
The correlation analysis was accomplished with the SPSS software 
with a significance threshold of p < 0.05 (uncorrected).

Voxel-wise seed-based FC analyses were performed using the 
DPARSF 4.3. We employed the aberrant dReHo region, which 
we calculated above, as a seed region. Then we used the sliding-
window approach as we have used in the dReHo calculation; 
the time course was segmented into 60-s Hamming windows by 
sliding the onset of each window by 2 dynamics, for a total of 
101 overlapping windows in the first level analysis. Within each 
sliding window, the whole brain FC maps for the seed region 
were computed as the Fisher z transformed Pearson correlation 
coefficient between the averaged time course of all voxels in the 
seed and the time course of all other voxels in the whole brain, 
yielding a set of sliding window zFC maps for each participant. 
The dFC was estimated by calculating the standard deviation in 
zFC values through windows at each voxel.

Two-sample t-test with head motion parameters (mean FD 
Jenkinson values), age, and sex as covariates was performed to 
investigate the difference of dFC values between the PTSD group 
and the HC group at each voxel. Multiple comparisons were 
performed with GRF correction at the cluster level (minimum 
z > 3.29; cluster significance: p < 0.05, two-tailed GRF corrected).

To explore the relationship between dFC metrics and clinical 
indicators, we performed general linear models with the clinical 

indicators and mean dFC values from clusters with significant 
group differences as independent variables, and head motion 
parameters, age, and sex as covariates. The correlation analysis 
was accomplished with SPSS software with significance threshold 
of p < 0.05 (uncorrected).

RESULTS

The demographic and clinical data are summarized in Table 1. 
Inconsistent with our prediction, compared with the HC, the 
PTSD patients exhibited an increased dReHo (more variability) 
in the left posterior cingulate cortex (PCC)/precuneus (PCu) 
(Figure 1). We also found a decreased dFC (less variability) 
between the left and right PCu, and the left inferior parietal lobe 
(IPL)/angular gyrus (AG), but increased dFC between the PCC 
and the left insula (Table 2 and Figure 2).

Next, we conducted analyses to test the association between 
the clinical indicators (CAPS, SAS, SDS) of PTSD and dReHo 
within the PTSD group. There is no significant correlation 
between the clinical indicators and dReHo/dFC after FWE 
correction (see Supplementary Figure 4).

DISCUSSION

In this study, by using resting-state dReHo analysis, we 
determined the local aberrant variability in the left PCu. The PCu 
is a key hub in the DMN of human brain (47). Aberrant resting-
state temporal dynamic brain activities were found in the dReHo 
and large-scale dFC of specific brain regions, which were mainly 
located in the posterior DMN (pDMN) and the primary region 
of the salience network (SN). These observations provide new 
insights into the aberrant brain activities in PTSD.

This study revealed a significantly increased dReHo (more 
variability) in left PCu, suggesting that the neurofluctuation of 
the left PCu is unstable in the PTSD patients in the resting state. 
The PCu is a key hub of the pDMN (47–49) and is considered to 

FIGURE 1 | Group differences of dReHo variability were revealed by two-sample t-test. The PTSD group shows increased (warm color) dReHo variability in the 
left PCu (cluster size: 104; AAL: Precuneus_L; Brodmann area 7; MNI coordinates: X: −12 Y: −48 Z: 60; peak t-value = 5.1868) relative to the HC. The Gaussian 
random theory was used for cluster-level multiple comparison correction (minimum z > 3.54; cluster significance p < 0.05, GRF corrected). dReHo, dynamic regional 
homogeneity; PTSD, posttraumatic stress disorder; AAL, anatomical automatic labeling; PCu, precuneus; MNI, Montreal Neurological Institute.
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be involved in self-referential processing (7) and autobiographic 
memory (50). In the resting state, the DMN exhibits dynamic 
interaction with a number of brain systems, such as the frontal–
parietal control network and the dorsal attention network (32). 
Although we found an aberrant local connectivity variety in 
the PCu, the evidence of aberrant DMN connectivity in PTSD 
patients is not entirely persuasive. In order to explore the 
dynamic interactions among the DMN and other brain networks, 
we employed the left PCu as the seed region and carried out the 
dFC of the whole brain.

Several studies have identified aberrant activities in the DMN 
of PTSD patients (6, 34, 35). In the present study, using seed-
based dFC, we identified lower-variability regions located in the 
right PCu and the left IPL. These results suggest that compared 
with the normal controls, the PTSD group exhibits decreased 
dFC (less variability) within the pDMN. We suspected that 
this restrained neurofluctuation within the pDMN represents 
decreased regulation of the self-referential processing. Previous 
studies using the independent component analysis identified 
the aberrant pDMN in PTSD patients (4, 51). Furthermore, 

TABLE 2 | Comparison of dFC between PTSD and HC.

Brain region Cluster size MNI coordinates AAL Brodmann’s area Peak 
t value

X Y Z

R PCu 44 3 −48 45 Precuneus_R 7 −4.0992
L IPL 62 −38 −78 42 Parietal_Inf_L 19 −4.1411
L Insula 33 −36 −12 21 Insula_L 13 4.6200

L, left; R, right; MNI, Montreal Neurological Institute; dFC, dynamic functional connectivity; AAL, anatomical automatic labeling; PCu, precuneus; IPL, inferior parietal lobe.

FIGURE 2 | Inter-regional dFC differences with regions showing significant dReHo differences between groups. The PTSD group shows increased dFC variability 
in left insula, but decreased dFC variability in right PCu and left IPL relative to the HC. Gaussian random theory was used for cluster-level multiple comparison 
correction (minimum z > 3.29; cluster significance p < 0.05, GRF corrected). dFC, dynamic functional connectivity; dReHo, dynamic regional homogeneity; PTSD, 
posttraumatic stress disorder; PCu, precuneus; IPL, inferior parietal lobe.
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Zhang et al. found a decreased intranetwork connectivity within 
the pDMN by measuring resting-state sFC. These researches 
suggested that the decreased FC in pDMN was associated 
with the dysfunction of evaluation of the self-related events in 
PTSD. The interaction between DMN and the executive control 
systems, which includes dorsal lateral middle frontal cortex and 
the IPL (52), is essential in regulating the self-generated thought 
(32). In the present study, a deceased dFC was found between the 
left PCu and the left IPL. Therefore, we inferred that the deceased 
dFC suggested a discrete FC state between the DMN and the 
executive control system, which may induce the dysregulation 
of self-referential processing. Previous studies indicated that 
the IPL is engaged in mediating visuospatial processing (53), 
which is critical when dealing with life-threatening events (54). 
Additionally, previous study indicated that the IPL is a vulnerable 
brain region to the neurotoxic effects of stress (55). Therefore, we 
suspected that the aberrant dFC between the PCu and the IPL 
might be a potential biomarker of PTSD.

In the present study, the left insula was the only region in the 
brain that exhibited significant positive dynamic correlation with 
the left PCu in the PTSD group. The insula is a key hub in the 
SN and is thought to be involved in the detection of personally 
salient internal and external stimuli that guide behaviors in order 
to maintain equilibrium (56). In addition, the insula is thought 
to be involved in mediation of the “switching” between activation 
of the DMN and the central executive network (CEN) to direct 
appropriate behavioral responses to the salience stimuli (57). 
Therefore, we suspected that the positive dynamic correlation 
between the left PCu and left insula might suggest an excessive 
interaction between the SN and the DMN. Previous studies using 
the graph theory approach identified dysregulation in three 
intrinsic brain networks (1, 58). Lei et al. found a disequilibrium 
among the CEN, DMN, and SN and suggested that the SN was 
crucial to the PTSD symptoms (58). Previous resting-state sFC 
study also revealed an increased correlation between the DMN 
seed region [PCC and ventromedial prefrontal cortex (vmPFC)] 
and SN (insula and precentral sulcus) (59). They found a 
positive correlation between the PTSD symptom severity and 
the vmPFC-precentral sulcus FC values. Our results provided 
an additional piece of evidence that, compared with the HC, the 
PTSD patients exhibited more variable connectivity between the 
DMN and the SN.

There are some limitations in the present study that should 
be highlighted. Firstly, little information is available on the 
meaning of the resting-state dFC in neurocognitive functioning. 
For example, it remains unknown whether the abnormal 
dynamic activities in the resting state are intrinsic properties or 

are affected by the present-moment cognitive activities (17, 60). 
As the number of resting-state dFC studies grows, we may gain 
a better understanding of these properties and their relation 
to the psychopathology. Secondly, since the dFC based on the 
sliding-window approach is composed of a few time points, the 
dynamic analysis is particularly sensitive to the physiological 
noise (61). Although, we did not denoised the physiological 
noise individually, we denoised the physiological noise in the 
preprocessing steps and group-level test and we also chose a 
relatively large window size in order to diminish the adverse 
effects of physiological noise. Thirdly, we only examined 
significant differences in regions exhibiting abnormal dynamic 
activity to focusing on the dynamic pattern related to PTSD; 
further exploration of static results is needed in our future 
works. Fourthly, the correlation results did not survive the FWE 
correction, so further exploration of the abnormal dynamic 
patterns and CAPS subscales is needed in our future large sample 
research to evaluate the relations between the dynamic patterns 
and specific clinical symptoms severity, such as intrusive memory 
and flash back.

In conclusion, this resting-state dFC (combine the dReHo 
and dFC) study provided evidence that the PTSD patients 
exhibited aberrant dReHo and dFC in comparison with the HC. 
Decreased variability within the DMN may suggest dysfunction 
of self-referential processing in PTSD patients, while increased 
variability between the insula and PCu may suggest dysregulation 
between the DMN and the SN.
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